請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24210完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡懷楨 | |
| dc.contributor.author | Rong-Feng Yung | en |
| dc.contributor.author | 楊榮峯 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:18:35Z | - |
| dc.date.copyright | 2005-08-01 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-30 | |
| dc.identifier.citation | Aoyama, H. and Asamoto, K. 1988. Determination of somite cells: independence of cell differentiation and morphogenesis. Development 104:15–28
Aoyama, H. 1993. Developmental plasticity of the prospective dermatome and the prospective sclerotome region of avian somite. Dev. Growth Differ. 35:507–19 Bagnall, K. M., Higgins, S. J. and Sanders, E. J. 1989. The contribution made by cells from a single somite to tissues within a body segment and assessment of their integration with similar cells from adjacent segments. Development 107:931–43 Barrallo-Gimeno, A., Holzschuh, J., Driever, W. and Knapik, E. W. 2004. Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function. Development 131: 1463-77 Birchmeier, C. and Brohmann, H. 2000. Genes that control the development of migrating muscle precursor cells. Curr. Opin. Cell Biol. 12:725–30 Borue, X. and Noden, D. M. 2004. Normal and aberrant craniofacial myogenesis by grafted trunk somitic and segmental plate mesoderm. Development 131: 3967-80 Borycki, A. G., Strunk, K., Savary, R. and Emerson, C. P., Jr. 1997. Distinct signal/response mechanisms regulate pax1 and QmyoD activation in sclerotomal and myotomal lineages of quail somites. Dev. Biol. 185:185–200 Braun, T. and Arnold, H. H. 1995. Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO J. 14: 1176–1186 Brent, A. E., Braun, T. and Tabin, C. J. 2005. Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132:515-28 Brill, G., Kahane, N., Carmeli, C., von Schack, D., Barde, Y. A. and Kalcheim, C. 1995. Epithelialmesenchymal conversion of dermatome progenitors requires neural tube-derived signals: characterization of the role of Neurotrophin-3. Development 121:2583–94 Chen, J. C., Love, C. M. and Goldhamer, D. J. 2001. Two upstream enhancers collaborate to regulate the spatial patterning and timing of MyoD transcription during mouse development. Dev. Dyn. 221:274–88 Chen, Y. H., Lee, W. C., Liu, C. F. and Tsai, H. J. 2001. Molecular structure, dynamic expression, and promoter analysis of zebrafish (Danio rerio) myf-5 gene. Genesis 29:22–35 Chen, Y. H. and Tsai, H. J. 2002. Treatment with Myf5-morpholino results in somite patterning and brain formation defects in zebrafish. Differentiation 70:447-56. Christ, B., Brand-Saberi, B., Grim, M. and Wilting, J. 1992. Local signalling in dermomyotomal cell type specification. Anat. Embryol. 186:505–10 Christ, B. and Ordahl, C. P. 1995. Early stages of chick somite development. Anat. Embryol. 191: 381-396 Couly, G. F., Coltey, P. M. and le Douarin, N. M. 1992. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114: 1-15 Coutelle, O., Blagden, C. S., Hampson, R., Halai, C., Rigby, P. W. and Hughes, S. M. 2001. Hedgehog signaling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis. Dev. Biol. 236:136–50 de la Brousse, F.C. and Emerson, C.P., Jr. 1990. Localized expression of a myogenic regulatory gene, qmf1, in the somite dermatome of avian embryos. Genes Dev. 4:567–81 Devoto, S.H., Melancon, E., Eisen, J. S and Westerfield M. 1996. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122:3371–80 Gerhart, J., Baytion, M., DeLuca, S., Getts, R., Lopez, C., Niewenhuis, R., Nilsen, T., Olex, S., Weintraub, H. and George-Weinstein, M. 2000. DNA dendrimers localize MyoD mRNA in presomitic tissues of the chick embryo. J. Cell Biol. 149: 825–34 Gustafsson, M. K., Pan, H., Pinney, D. F., Liu, Y., Lewandowski, A., Epstein, D. J. and Emerson, C. P., Jr. 2002. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev. 2002 16:114-26. Hacker, A. and Guthrie, S. 1998. A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125: 3461-72 Haines, L., Neyt, C., Gautier, P., Keenan, D. G., Bryson-Richardson, R. J., Hollway, G. E., Cole, N. J. and Currie, P. D. 2004. Met and Hgf signaling controls hypaxial muscle and lateral line development in the zebrafish. Development 131: 4857-69 Hasty, P., Bradley, A., Morris, J. H., Edmondson, D. G., Venuti, J. M., Olson, E. N. and Klein, W. H. 1993. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364: 501–506 Hatta, K., Schilling, T. F., Bremiller, R. A. and Kimmel, C. B. 1990. Specification of jaw muscle identity in zebrafish: correlation with engrailed homeoprotein expression. Science 250: 802-805 Heasman, J. 2002. Making sense of antisense. Dev. Biol. 243: 209-214 Kelly, R. G., Jerome-Majewska, L. A. and Papaioannou, V. E. 2004. The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Hum. Mol. Genet. 13: 2829-40 Kimmel, C. B., Schilling, T. F. and Hatta, K. 1991. Patterning of body segments of the zebrafish embryo. Curr. Top. Dev. Biol. 25: 77-110 Kimmel, C. B., Miller, C. T. and Keynes, R. J. 2001. Neural crest patterning and the evolution of the jaw. J. Anat. 199: 105-20 Lu, J. R., Bassel-Duby, R., Hawkins, A., Chang, P., Valdez, R., Wu, H., Gan, L., Shelton, J. M., Richardson, J. A. and Olson, E. N. 2002. Control of facial muscle development by MyoR and capsulin. Science 298: 2378–2381 Miller, C. T., Yelon, D., Stainier, D. Y. and Kimmel, C. B. 2003. Two endothelin 1 effectors, hand2 and bapx1, pattern ventral pharyngeal cartilage and the jaw joint. Development 130: 1353-65 Mootoosamy, R. C. and Dietrich, S. 2002. Distinct regulatory cascades for head and trunk myogenesis. Development 129: 573-83 Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esumi, E., Li, S., Nonaka, I. and Nabeshima, Y. 1993. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364:532–35 Noden, D. M. 1983a. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Amer. J. Anat. 168: 257-276 Noden, D. M. 1983b. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev. Biol. 96: 144-165 Noden, D. M., Marcucio, R., Borycki, A. G. and Emerson, C. P., Jr. 1999 Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis. Dev. Dyn. 216: 96-112 Nowicki, J. L. and Burke, A. C. 2000. Hox genes and morphological identity: axial versus lateral patterning in the vertebrate mesoderm. Development127: 4265–75 Ordahl, C. P. and Le Douarin, N. M. 1992. Two myogenic lineages within the developing somite. Development 114: 339–53 Parker, M. H., Seale, P. and Rudnicki, M. A. 2003. Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat. Rev. Genet. 4: 497-507 Patapoutian, A., Yoon, J. K., Miner, J. H., Wang, S., Stark, K. and Wold, B. 1995. Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development 121: 3347-58 Perry, R. L. and Rudnick, M. A. 2000. Molecular mechanisms regulating myogenic determination and differentiation. Front. Biosci. 5: D750–D767 Pownall, M. E., Gustafsson, M. K. and Emerson, C.P., Jr. 2002. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu. Rev. Cell. Dev. Biol. 18 :747-83 Puri, P. L. and Sartorelli, V. 2000. Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and posttranscriptional modifications. J. Cell. Physiol. 185: 155–173 Rudnicki, M. A., Braun, T., Hinuma, S. and Jaenisch, R. 1992. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71:383–90 Santagati, F. and Rijli, F. M. 2003. Cranial neural crest and the building of the vertebrate head. Nat. Rev. Neurosci. 4:806-18 Sassoon, D., Lyons, G., Wright, W. E., Lin, V., Lassar, A., Weintraub, H. and Buckingham, M. 1989. Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature 341:303–7 Schilling, T. F. and Kimmel, C. B. 1994. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120: 483-94 Schilling, T. F. and Kimmel, C. B. 1997. Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development 124: 2945-60 Selleck, M. A. and Stern, C. D. 1991. Fate mapping and cell lineage analysis of Hensen’s node in the chick embryo. Development 112:615–26 Tajbakhsh, S., Bober, E., Babinet, C., Pournin, S., Arnold, H. and Buckingham, M. 1996. Gene targeting the myf-5 locus with nlacZ reveals expression of this myogenic factor in mature skeletal muscle fibres as well as early embryonic muscle. Dev. Dyn. 206:291–300 Tajbakhsh, S., Rocancourt, D., Cossu, G. and Buckingham, M. 1997. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89: 127-38 Tajbakhsh, S. and Buckingham, M. 1999. The birth of muscle progenitor cells in the mouse: spatiotemporal considerations. In Somitogenesis, ed. C Ordahl, pp. 225– 68. San Diego: Academic Press Trainor, P. A. and Tam, P. P. 1995. Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121: 2569-82 Tzahor, E., Kempf, H., Mootoosamy, R. C., Poon, A. C., Abzhanov, A., Tabin, C. J., Dietrich, S. and Lassar, A. B. 2003. Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle. Genes Dev. 17: 3087-99 Weinberg, E. S., Allende, M. L., Kelly, C. S., Abdelhamid, A., Murakami, T., Andermann, P., Doerre, O. G., Grunwald, D. J. and Riggleman, B. 1996. Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development 122:271–80 Winterbottom, R. 1974. A descriptive synonomy of the striated muscles of the Teleostei. Proc. Acad. Nat. Sci. Philad. 125: 225-317 Zhang, W., Behringer, R. R. and Olson, E. N. 1995. Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev. 9: 1388–1399 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24210 | - |
| dc.description.abstract | Myf5和MyoD屬於肌肉發育調控因子,其為肌肉細胞命運決定所必需。然而過去對於Myf5及MyoD的研究,主要著重在軀幹肌肉的發育;對於Myf5和MyoD在頭部肌肉發育時扮演的角色,則很少探討。因此我首先利用whole mount in situ hybridization的方式,來觀察myf5和myoD在斑馬魚頭部肌肉表現的情形。結果顯示myf5表現於兩組斜肌(superior oblique & inferior oblique)、側直肌(lateral rectus)以及咽弧肌肉(pharyngeal arch muscles)的前驅細胞。相較於myf5表現於有限的肌肉前驅細胞,myoD則在所有的頭部肌肉前驅細胞均會表現。抑制myf5轉譯的實驗則顯示,兩組斜肌、側直肌、胸骨舌骨肌(sternohyoideus)以及所有的咽弧肌的形成需要myf5的功能;並且這幾條肌肉的myoD及myogenin表現亦需要myf5的功能。然而抑制myoD轉譯的實驗則顯示,四組直肌(superior rectus, inferior rectus, medial rectus & lateral rectus)以及腹側的咽弧肌的形成需要myoD的功能;而這幾條肌肉的myogenin表現亦需要myoD的功能。此外,由於在whole mount in situ hybridization的實驗中,觀察到表現myf5的上斜肌和下斜肌前驅細胞,有從後端往前端遷移的跡象,我便利用myf5上游調控片段驅動綠螢光蛋白的基因轉殖魚,在活體進行追蹤上斜肌和下斜肌的前驅細胞,結果更證實這些細胞具有遷移行為。抑制myf5轉譯的實驗則顯示,上斜肌和下斜肌的前驅細胞其遷移需要myf5的功能。另外,抑制myf5的轉譯,亦會導致頭形異常、頭部咽弧軟骨減少、頭部神經嵴細胞減少以及頭部大量細胞凋亡,而抑制myoD轉譯則無此現象。故綜合以上結果,在斑馬魚,myf5和myoD在頭部肌肉及軟骨發育時,其扮演的角色不同。 | zh_TW |
| dc.description.abstract | The myogenic regulatory factors Myf5 and MyoD are essential for muscle cell fate specification. The function of Myf5 and MyoD are known on the trunk myogenesis. However, the roles of Myf5 and MyoD during head myogenesis are largely unknown. In this study, I used whole mount in situ hybridization to observe the expression patterns of myf5 and myoD in the head of zebrafish. Results showed that myf5 was expressed in the precursors of two obliques, lateral rectus and pharyngeal muscles. On contrast, myoD transcripts were detected in all of the head muscle precursors. Specifically knockdown of myf5 revealed that myf5 was required for the formation of two obliques, lateral rectus, sternohyoideus and all of the pharyngeal muscle. Myf5 was also required for the expressions of myoD and myogenin in these muscles. However, specifically knockdown of myoD revealed that myoD was required for the formation of the superior rectus, inferior rectus, medial rectus and ventral pharyngeal muscles. MyoD was also required for the expression of myogenin in these muscles. In addition, we also observed that the two myf5-positive oblique precursors migrated from posterior to anterior by whole mount in situ hybridization experiment. This observation was also supported by using myf5:EGFP transgenic zebrafish that carries the reporter EGFP driven by the upstream regulatory fragment of myf5. Since the myf5-expressing cells with GFP can be traced in vivo, the migration of two egfp-positive oblique precursors were observed. Loss-of-function experiments also revealed that myf5 was required for superior oblique and inferior oblique migration. Furthermore, we found that inhibition of myf5 translation result in abnormal head and reduction of the number in cranial neural crest cells and cartilage, and induce apoptosis in the head cells. But these defectives did not occur in the myoD-morpholino-injected embryos. Taken together, our results revealed that myf5 and myoD play distinct roles during head myogenesis and cartilage formation in zebrafish. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:18:35Z (GMT). No. of bitstreams: 1 ntu-94-R92b43022-1.pdf: 2045463 bytes, checksum: f10c01b9ff68c7c8c4b59da9c10537e6 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 中文摘要 -----------------------------------------------1
英文摘要 -----------------------------------------------2 前言 ----------------------------------------------------4 實驗材料 ---------------------------------------------- 11 實驗方法 ---------------------------------------------- 16 結果 ----------------------------------------------------24 討論 ----------------------------------------------------36 參考資料 ---------------------------------------------- 43 圖表 ----------------------------------------------------49 附錄 ----------------------------------------------------61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肌肉發育調控因子 | zh_TW |
| dc.subject | 肌肉 | zh_TW |
| dc.subject | 肌肉發育 | zh_TW |
| dc.subject | 軟骨 | zh_TW |
| dc.subject | 頭部神經嵴 | zh_TW |
| dc.subject | myf5 | en |
| dc.subject | myogenesis | en |
| dc.subject | myoD | en |
| dc.subject | muscle | en |
| dc.subject | cranial neural crest | en |
| dc.subject | cartilage | en |
| dc.title | Myf5和MyoD在斑馬魚頭部發育上扮演不同的角色 | zh_TW |
| dc.title | Myf5 and MyoD Play Distinct Roles in Craniofacial Development of Zebrafish | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃火鍊,胡清華,潘惠錦,張百恩 | |
| dc.subject.keyword | 肌肉,肌肉發育,軟骨,頭部神經嵴,肌肉發育調控因子, | zh_TW |
| dc.subject.keyword | muscle,myogenesis,cartilage,cranial neural crest,myf5,myoD, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2005-07-31 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
