Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24205
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇國棟(Guo-Dung Su)
dc.contributor.authorShao-Hsuan Hungen
dc.contributor.author洪紹軒zh_TW
dc.date.accessioned2021-06-08T05:18:27Z-
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-31
dc.identifier.citation[1] D. K. Mynbaev and L. L. Scheiner, Fiber-optic Communications Technology, Prentice-Hall, p.7 (2001)
[2] R. P. Feynman, “There’s Plenty of Room at the Bottom,” Journal of Microelectromechanical Systems, vol. 1, pp.60-66 (1992)
[3] http://www.darpa.mil/MTO/MOEMS/dmd/
[4] S. D. Robinson, “MEMS Technology – Micromachines Enabling the ‘All Optical Network’,” Proceedings of Electronic Components and Technology Conference, pp.423-428 (2001)
[5] R. Wood, V. Dhuler, and E. Hill, “A MEMS Variable Optical Attenuator,” Proceedings of IEEE/LEOS International Conference on Optical MEMS, pp.121-122 (2000)
[6] J. E. Ford and J. A. Walker, “Dynamic Spectral Power Equalization Using Micro-Opto-Mechanics,” IEEE Photonics Technology Letters, vol. 10, pp.1440-1442 (1998)
[7] C. J. Chang-Hasnain, “Tunable VCSELs,” Proceedings of IEEE/LEOS International Conference on Optical MEMS, pp.77-78 (2000)
[8] S.-S. Lee, L.-S. Huang, C.-J. Kim, and M. C. Wu, “Free-Space Fiber-Optic Switches Based on MEMS Vertical Torsion Mirrors,” Journal of Lightwave Technology, vol. 17, pp.7-13 (1999)
[9] J. E. Ford, V. A. Aksyuk, D. J. Bishop, and J. A. Walker, “Wavelength Add-Drop Switching Using Tilting Micromirrors,” Journal of Lightwave Technology, vol. 17, pp.904-911 (1999)
[10] T. Kawai, M. Koga, M. Okuno, and T. Kitoh, “PLC type compact variable optical attenuator for photonic transport network,” Electronics Letters, vol. 34, pp.264-265 (1998)
[11] N. A. Riza and Z. Yaqoob, “Submicrosecond Speed Variable Optical
Attenuator Using Acoustooptics,” IEEE Photonics Technology Letters, vol. 13, pp.693-695 (2001)
[12] M. J. Mughal and N. A. Riza, “Compact Acoustooptic High-Speed Variable Attenuator for High-Power Applications,” IEEE Photonics Technology Letters, vol. 14, pp.510-512 (2002)
[13] K. Hirabayashi, M. Wada, and C. Amano, “Optical-Fiber Variable-Attenuator Arrays Using Polymer-Network Liquid Crystal,” IEEE Photonics Technology Letters, vol. 13, pp.487-489 (2001)
[14] J. H. Lee, Y. Y. Kim, S. S. Yun, H. Kwon, Y. S. Hong, J. H. Lee, and S. C. Jung, “Design and characteristics of a micromachined variable optical attenuator with a silicon optical wedge,” Optics Communications, vol. 221, pp.323-330 (2003)
[15] Y. Y. Kim, S. S. Yun, C. S. Park, J-H Lee, Y. G. Lee, H. K. Lee, S. K. Yoon, and J. S. Kang, “Refractive Variable Optical Attenuator Fabricated by Silicon Deep Reactive Ion Etching,” IEEE Photonics Technology Letters, vol. 16, pp.485-487 (2004)
[16] C.-H. Kim, N. Park, and Y.-K. Kim, “MEMS Reflective Type Variable Optical Attenuator Using Off-axis Misalignment,” Proceedings of IEEE/LEOS International Conference on Optical MEMS, pp.55-56 (2002)
[17] H. Toshiyoshi, K. Isamoto, A. Morosawa, M. Tei, and H. Fujita, “A 5-VOLT OPERATED MEMS VARIABLE OPTICAL ATTENUATOR,” Proceedings of International Conference on Solid-State Sensors, Actuators, and Microsystems (Transducers ’03), pp.1768-1771 (2003)
[18] T.-S. Lim, C.-H. Ji, C.-H. Oh, Y. Yee, and J. U. Bu, “Electrostatic MEMS Variable Optical Attenuator with Folded Micromirror,” Proceedings of IEEE/LEOS International Conference on Optical MEMS, pp.143-144 (2003)
[19] B. Barber, C. R. Giles, V. Aksyuk, R. Ruel, L. Stulz, and D. Bishop, “A Fiber Connectorized MEMS Variable Optical Attenuator,” IEEE Photonics Technology Letters, vol. 10, pp.1262-1264 (1998)
[20] C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS Optical Switch Attenuator and Its Use in Lightwave Subsystems,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, pp.18-25 (1999)
[21] C. Marxer, P. Griss, and N. F. de Rooij, “A Variable Optical Attenuator Based on Silicon Micromechanics,” IEEE Photonics Technology Letters, vol. 11, pp.233-235 (1999)
[22] X. M. Zhang, A. Q. Liu, C. Lu, F. Wang, and Z. S. Liu, “Polysilicon micromachined fiber-optical attenuator for DWDM applications,” Sensors and Actuators A, vol. 108, pp.28-35 (2003)
[23] Agilent Technologies, Polarization Dependent Loss Measurement of Passive Optical Components: Application Note, p.2
[24] N. Maluf, An Introduction to Microelectromechanical Systems Engineering, Artech House, p.43 (2000)
[25] G. T. A. Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill (1998)
[26] M. J. Madou, Fundamentals of Microfabrication, second edition, CRC Press (2002)
[27] M. J. Madou, Fundamentals of Microfabrication, second edition, CRC Press, p.80 (2002)
[28] N. Maluf, An Introduction to Microelectromechanical Systems Engineering, Artech House, p.58 (2000)
[29] G. T. A. Kovacs, N. Maluf, and K. E. Petersen, “Bulk Micromachining of Silicon,” Proceedings of the IEEE, vol. 86, pp.1536-1551 (1998)
[30] M. J. Madou, Fundamentals of Microfabrication, second edition, CRC Press, p.188 (2002)
[31] M. J. Madou, Fundamentals of Microfabrication, second edition, CRC Press, p.192 (2002)
[32] M. J. Madou, Fundamentals of Microfabrication, second edition, CRC Press, p.210 (2002)
[33] N. Maluf, An Introduction to Microelectromechanical Systems Engineering, Artech House, pp.100-101 (2000)
[34] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface Micromachining for Microelectromechanical Systems,” Proceedings of the IEEE, vol. 86, pp.1552-1574 (1998)
[35] http://www.sfu.ca/immr/gallery/crm37/Comb-drive2.jpg
[36] W. C. Tang, T.-C. H. Nguyen, and R. S. Muller, “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators, vol. 20, pp.25-32 (1989)
[37] M. J. Madou, Fundamentals of Microfabrication, second edition, CRC Press, pp.104-107 (2002)
[38] N. Maluf, An Introduction to Microelectromechanical Systems Engineering, Artech House, p.67 (2000)
[39] S. D. Senturia, Microsystem Design, Kluwer Academic, p.70 (2001)
[40] M. J. Madou, Fundamentals of Microfabrication, CRC Press, p.189 (2002)
[41] G. Keiser, Optical Fiber Communications, McGraw-Hill, pp.33-49 (1991)
[42] Yves-Alain Peter, Micro-optical fiber switch for a large number of interconnects, Ph. D. thesis, p.13 (2001)
[43] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley, pp.81-83 (1991)
[44] http://tinyurl.com/bhyra
[45] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, p.127 (1996)
[46] R. E. Fischer and B. Tadic-Galeb, Optical System Design, McGraw-Hill, pp.28-30 (2000)
[47] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, pp.108-114, pp.134-151 (1996)
[48] R. E. Wagner and W. J. Tomlinson, “Coupling efficiency of optics in single-mode fiber components,” Applied Optics, vol. 21, pp.2671-2688 (1982)
[49] H. Kogelnik, “Coupling and conversion coefficients for optical modes,” Proceedings of the Symposium on Quasi-Optics, pp.333-347 (1964)
[50] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, pp.134-137, pp.145-146 (1996)
[51] G.-D. J. Su, H. Toshiyoshi, and M. C. Wu, “Surface-Micromachined 2-D Optical Scanners with High-Performance Single-Crystalline Silicon Micromirrors,” IEEE Photonics Technology Letters, vol. 13, pp.606-608 (2001)
[52] G.-D. J. Su, F. Jiang, E. Chiu, A. Avakian, J. Dickson, D. Jia, and T. Tsao, “Design, test, and qualification of stiction-free MEMS optical switches,” Proceedings of the Pacific Rim Conference on Lasers and Electro-Optics, vol. 1, pp.96-98 (2003)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24205-
dc.description.abstract微機電系統 (MEMS) 科技已經被證明能夠用來製作出可靠的光纖通訊元件。光學微機電式元件能夠比傳統的光學機械式元件有更快的運作速度。在光通訊系統中,可變式光衰減器 (VOA) 是一種很重要的元件。本論文主要是探討光開關式微機電可變光衰減器。
論文內容包含四個部份:
1.介紹可變式光衰減器與回顧各種不同操作原理的可變式光衰減器。
2.討論微機電製程的流程與不同的微機電製程技術。
3.說明我們的可變式光衰減器的製作流程以及量測上的結果。
4.探討我們的可變式光衰減器的機械模擬模型與光學模擬模型,實際去模擬這兩個模型並且討論模擬上所運用的原理。結合機械模擬與光學模擬的結果,可以得到動態衰減範圍對應於供應電流的模擬情況。
和實驗上量測得到的結果相比對,可以發現理論上的模擬結果與量測值非常吻合。
zh_TW
dc.description.abstractMicro-electro-mechanical Systems (MEMS) technology has been demonstrated to make reliable components for fiber-optic communications. Optical MEMS devices can operate at a higher speed than traditional optomechanical ones. A variable optical attenuator is one of the important devices for optical communications systems. In this thesis, I will talk about optical-shutter-type MEMS VOAs.
This thesis consists of four parts:
1.Introduce VOAs and review different kinds of VOAs based on different principles.
2.Discuss the basis of MEMS fabrication process and micromachining.
3.Show the fabrication process of our VOA and the measurement results.
4.Discuss the mechanical and optical simulation models of our VOA and go through the principles behind the simulation. Based on the results of the mechanical and optical simulation, the dynamic range of attenuation versus current can be obtained.
It is found that the theoretical calculations agree well with experimental results.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:18:27Z (GMT). No. of bitstreams: 1
ntu-94-R92941024-1.pdf: 1281618 bytes, checksum: e5496e7b6400e3f074a3ea2d284abd99 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 Ⅰ
Abstract Ⅱ
致謝 Ⅲ
Contents Ⅳ
List of Figures Ⅵ
List of Tables Ⅸ
Chapter 1: Introduction 1
1.1 Optical Fiber Communications Systems 1
1.2 Micro Electro Mechanical Systems 3
1.3 Optical MEMS 4
1.4 Organization of This Thesis 5
Chapter 2: Variable Optical Attenuator 6
2.1 Planar-lightwave-circuit (PLC) VOA 7
2.2 Acoustooptic VOA 8
2.3 Liquid Crystal VOA 9
2.4 Refractive VOA 10
2.5 Reflective VOA 12
2.6 Optical-shutter-type MEMS VOA 13
2.7 Specifications of VOAs 14
2.8 Summary 16
Chapter 3: Micromachining Fabrication Process 18
3.1 Basics of Micromachining Processes 18
3.2 Bulk Micromachining 22
3.3 Surface Micromachining 24
3.4 Deep Reactive Ion Etching (DRIE) 26
Chapter 4: Fabrication and Measurement 30
4.1 Fabrication Process 30
4.2 Measurement 35
Chapter 5: Mechanical and Optical Simulations 38
5.1 Mechanical Model 38
5.2 Propagation of Light Inside the VOA 42
5.3 ZEMAX 45
5.4 Optical Simulation Model 48
Chapter 6: Conclusion 56
6.1 Summary 56
6.2 Future Work 57
References 58
dc.language.isoen
dc.subject可變式光衰減器zh_TW
dc.subject微機電系統zh_TW
dc.subjectMEMSen
dc.subjectVOAen
dc.title光開關式微機電可變光衰減器的模擬與分析zh_TW
dc.titleThe Simulations and Analysis of Optical-shutter-type MEMS VOAsen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱奕鵬(Yih-Peng Chiou),何旻真(Min-Chen Ho)
dc.subject.keyword微機電系統,可變式光衰減器,zh_TW
dc.subject.keywordMEMS,VOA,en
dc.relation.page63
dc.rights.note未授權
dc.date.accepted2005-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved