Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24173
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芳仁
dc.contributor.authorSzu-Wei Leeen
dc.contributor.author李思緯zh_TW
dc.date.accessioned2021-06-08T05:17:37Z-
dc.date.copyright2005-08-12
dc.date.issued2005
dc.date.submitted2005-08-05
dc.identifier.citationAltschuler, Y., Liu, S.-H., Katz, L., Tang, K., Hardy, S., Brodsky, F., Apodaca, G., and Mostov, K. (1999) ADP-ribosylation factor 6 and endocytosis at the apical surface of Madin-Darby canine kidney cells. J. Cell Biol. 147, 7-12.
Arnaoutova, I., Jackson, C.L., Al-Awar, O.S., Donaldson, J.G., and Loh, Y.P. (2003) Recycling of Raft-associated prohormone sorting receptor carboxypeptidase E requires interaction with ARF6. Mol. Biol. Cell 14, 4448-4457.
Aronov, S., and Gerst, J.E. (2004) Involvement of the late secretory pathway in actin regulation and mRNA transport in yeast. J. Biol. Chem. 279, 36962-36971.
Ayscough, K.R., Stryker, J., Pokala, N., Sanders, M., Crews, P., and Drubin, D.G. (1997) High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399-416.
Basson, M.E., Moore, R.L., O’Rear, J., and Rine, J. (1987) Identifying mutations in duplicated functions in Saccharomyces cerevisiae: recessive mutations in HMG-CoA reductase genes. Genetics 117, 645-655.
Boeke, J.D., LaCroute, F., and Fink, G.R. (1984) A positive selection for mutants lacking orotidine-5’-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197, 345-346.
Boeke, J.D., Trueheart, J., Natsoulis, G., and Fink, G.R. (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154, 164-175.
Bohl, F., Kruse, C., Frank, A., Ferring, D., and Jansen, R.P. (2000) She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J. 19, 5514-5524.
Boman, A.J., Zhang, C., Zhu, X., and Kahn, R.A. (2000) A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol. Biol. Cell 11, 1241-1255.
Brown, J.L., Jaquenoud, M., Gulli, M.P., Chant, J., and Peter, M. (1997) Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev. 11, 2972-2982.
Chant, J. (1999) Cell polarity in yeast. Annu. Rev. Cell Dev. Biol. 15, 365-391.
Chant, J., Mischke, M., Mitchell, E., Herskowitz, I., and Pringle, J.R. (1995) Role of Bud3p in producing the axial budding pattern of yeast. J. Cell Biol. 129, 767-778.
Chardin, P., Paris, S., Antonny, B., Robineau, S., Beraud-Dufour, S., Jackson, C.L., and Chabre, M. (1996) A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 384, 481-484.
Cherfils, J. and Chardin, P. (1999) GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem. Sci. 8, 306-311.
Chu, C.W. Functional characterization of yeast Arf3p interacting protein Afi1p. (2004) Master thesis. Institute of Molecular Medicine, School of Medicine, National Taiwan University.
Clodi, M., Vollenweider, P., Klarlund, J., Nakashima, N., Martin, S., Czech, M.P., and Olefsky, J.M. (1998) Effects of general receptor for phosphoinositides 1 on insulin and insulin-like growth factor I-induced cytoskeletal rearrangement, glucose transporter-4 translocation, and deoxyribonucleic acid synthesis. Endocrinology 139, 4984-4990.
Cockcroft, S., Thomas, G.M., Fensome, A., Geny, B., Cunningham, E., Gout, I., Hiles, I., Totty, N.F., Truong, O., and Hsuan, J.J. (1994) Phospholipase D: a downstream effector of ARF in granulocytes. Science 263, 523-526.
Costa, R., Warren, D.T., and Ayscough, K.R. (2005) Lsb5p interacts with actin regulators Sla1p and Las17p, ubiquitin and Arf3p to couple actin dynamics to membrane trafficking processes. Biochem. J. 387, 649-658.
Cukierman, E., Huber, I., Rotman, M., and Cassel, D. (1995) The ARF1 GTPase activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999-2002.
Dell’Angelica, E.C., Puertollano, R., Mullins, C., Aguilar, R.C., Vargas, J.D., Hartnell, L.M., and Bonifacino, J.S. (2000) GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149, 81-94.
Dewar, H., Warren, D.T., Gardiner, F.C., Gourlay, C.G., Satish, N., Richardson, M.R., Andrews, P.D., and Ayscough, K.R. (2002) Novel proteins linking the actin cytoskeleton to the endocytic machinery in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 3646-3661.
Donaldson, J.G. (2003) Minireview. Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J. Biol. Chem. 278, 41573-41576.
Donaldson, J.G. and Jackson, C.L. (2000) Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol. 12, 475-482.
D’Souza-Schorey, C., Boshans, R.L., McDonough, M., Stahl, P.D., and van Aelst, L. (1997) A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J. 16, 5445-5454.
D’Souza-Schorey, C., Li, G., Colombo, M.I., and Stahl, P.D. (1995) A regulatory role for ARF6 in receptor-mediated endocytosis. Science 267, 1175-1178.
D’Souza-Schorey, C., van Donselaar, E., Hsu, V.W., Yang, C., Stahl, P.D., and Peters, P.J. (1998) ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. J. Cell Biol. 140, 603-616.
Du, Y., Pypaert, M., Novick, P., and Ferro-Novick, S. (2001) Aux1p/Swa2p is required for cortical endoplasmic reticulum inheritance in Saccharomyces cerevisiae. Mol. Biol. Cell 12, 2614-2628.
Engqvist-Goldstein, A.E. and Drubin, D.G. (2003) Actin assembly and endocytosis: from yeast to mammals. Annu. Rev. Cell Dev. Biol. 19, 287-332.
Estrada, P., Kim, J., Coleman, J., Walker, L., Dunn, B., Takizawa, P., Novick, P., and Ferro-Novick, S. (2003) Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J. Cell Biol. 163, 1255-1266.
Faty, M., Fink, M., and Barral, Y. (2002) Septins: a ring to part mother and daughter. Curr. Genet. 41, 123-131.
Fehrenbacher, K.L., Davis, D., Wu, M., Boldogh, I., and Pon, L.A. (2002) Endoplasmic reticulum dynamics, inheritance, and cytoskeletal interactions in budding yeast. Mol. Biol. Cell 13, 854–865.
Ferro-Novick, S. and Novick, P. (1993) The role of GTP-binding proteins in transport along the exocytic pathway. Annu. Rev. Cell Biol. 9, 575-599.
Finger, F.P. and Novick, P. (1998) Spatial regulation of exocytosis: lessons from yeast. J. Cell Biol. 142, 609–612.
Garcia-Ranea, J.A. and Valencia, A. (1998) Distribution and functional diversification of the ras superfamily in Saccharomyces cerevisiae. FEBS Lett. 434, 219-225.
Gaynor, E.C., Chen, C.Y., Emr, S.D., and Graham, T.R. (1998) ARF is required for maintenance of yeast Golgi and endosome structure and function. Mol. Biol. Cell 9, 653-670.
Gillingham, A.K., Tong, A.H., Boone, C., and Munro, S. (2004) The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi. J. Cell Biol. 167, 281-292.
Gimeno, C.J., Ljungdahl, P.O., Styles, C.A., and Fink, G.R. (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077–1090.
Gladfelter, A.S., Pringle, J.R., and Lew, D.J. (2001) The septin cortex at the yeast mother-bud neck. Curr. Opin. Microbiol. 4, 681-689.
Glomset, J.A. and Farnsworth, C.C. (1994) Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu. Rev. Cell Biol. 10, 181-205.
Godi, A., Pertile, P., Meyers, R., Marra, P., DiTullio, G., Iurisci, C., Luini, A., Corda, D., and DeMatteis, M.A. (1999) ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi Complex. Nature Cell Biol. 1, 280-287.
Godi, A., Santone, I., Pertile, P., Devarajan, P., Stabach, P.R., Morrow, J.S., DiTullio, G., Polishuk, R., Petrucci, T.C., Luini, A., and DeMatteis, M.A. (1998) ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc. Natl. Acad. Sci. USA 95, 8607-8612.
Goldberg, J. (1998) Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237-248.
Goldstein, A.L. and McCusker, J.H. (1999) Yeast functional analysis reports. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541-1553.
Hieter, P., Mann, C., Snyder, M., and Davis, R.W. (1985) Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40, 381-392.
Hirst, J., Lui, W.W., Bright, N.A., Totty, N., Seaman, M.N., and Robinson, M.S. (2000) A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell Biol. 149, 67-80
Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A.J., and Frohman, M.A. (1999) Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521-532.
Houndolo, T., Boulay, P.L., and Claing, A. (2004) G protein-coupled receptor endocytosis in ADP-ribosylation factor 6-depleted cells. J. Biol. Chem. 280, 5598-5604.
Huang, C.-F., Buu, L.-M., Yu, W.-L., and Lee, F.-J.S. (1999) Characterization of a novel ADP-ribosylation factor-like protein (yARL3) in Saccharomyces cerevisiae. J. Biol. Chem. 274, 3819-3827.
Huang, C.F., Liu, Y.W., Tung, L., Lin, C.H., and Lee, F.J. (2003) Role of Arf3p in development of polarity, but not endocytosis, in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 3834-3847.
Irazoqui, J.E., Howell, A.S., Theesfeld, C.L., and Lew, D.J. (2005) Opposing roles for actin in Cdc42p polarization. Mol. Biol. Cell 16, 1296-1304.
Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983) Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168.
Jackson, C.L. and Casanova, J.E. (2000) Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol. 10, 60-67.
Jansen, R.P., Dowzer, C., Michaelis, C., Galova, M., and Nasmyth, K. (1996) Mother cell-specific HO expression in budding yeast depends on the unconventional myosin Myo4p and other cytoplasmic proteins. Cell 84, 687-697.
Kahn, R.A. and Gilman, A.G. (1984) Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J. Biol. Chem. 259, 6228-6234.
Kahn, R.A. and Gilman, A.G. (1986) The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J. Biol. Chem. 261, 7906-7911.
Kahn, R.A., Randazzo, P., Serafini, T., Weiss, O., Rulka, C., Clark, J., Amherdt, M., Roller, P., Orci, L., and Rothman, J.E. (1992) The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport. J. Biol. Chem. 267, 13039-13046.
Kahn, R.A., Yucal, J.K., and Malhotra, V. (1993) ARF signaling: a potential role for phospholipase D in membrane traffic. Cell 75, 1045-1048.
Kang, C.M. and Jiang, Y.W. (2005) Genome-wide survey of non-essential genes required for slowed DNA synthesis-induced filamentous growth in yeast. Yeast 22, 79-90.
Kanoh, H., Willinger, B.T., and Exton, J.H. (1997) Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation factor, is recruited to Golgi membranes. J. Biol. Chem. 272, 5421-5429.
Kathryn, R.A. (2004) Endocytosis: actin in the driving seat. Curr. Biol. 14, R124-R126.
Kawasaki, R., Fujimura-Kamada, K., Toi, H., Kato, H., and Tanaka, K. (2003) The upstream regulator, Rsr1p, and downstream effectors, Gic1p and Gic2p, of the Cdc42p small GTPase coordinately regulate initiation of budding in Saccharomyces cerevisiae. Genes Cells 8, 235-250.
Kim, D.W. (2003) Characterization of Grp1p, a novel cis-Golgi matrix protein. Biochem. Biophys. Res. Commun. 303, 370-378.
Klausner, R.D., Donaldson, J.G., and Lippincott-Schwartz, J. (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071-1080.
Knop, M., Siegers, K., Pereira, G., Zachariae, W., Winsor, B., Nasmyth, K., and Schiebel, E. (1999) Yeast functional analysis reports. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963-972.
Koshland, D., Kent, J.C., and Hartwell, L.H. (1985) Genetic analysis of the mitotic transmission of minichromosomes. Cell 40, 393-403.
Lafourcade, C., Galan, J.M., Gloor, Y., Haguenauer-Tsapis, R., and Peter, M. (2004) The GTPase-activating enzyme Gyp1p is required for recycling of internalized membrane material by inactivation of the Rab/Ypt GTPase Ypt1p. Mol. Cell. Biol. 24, 3815-3826.
Lassing, I. and Lindberg, U. (1985) Specific interaction between phosphatidylinositol 4,5-phosphate and profilactin. Nature 314, 472-474.
Lawrence, C.W. (1991) Classical mutagenesis techniques. Methods Enzymol. 194, 273-281.
Lee, F.J., Huang, C.F., Yu, W.L., Buu, L.M., Lin, C.Y., Huang, M.C., Moss, J., and Vaughan, M. (1997) Characterization of an ADP-ribosylation factor-like 1 protein in Saccharomyces cerevisiae. J. Biol. Chem. 272, 30998-31005.
Lee, F.J., Stevens, L.A., Kao, Y.L., Moss, J., and Vanghan, M. (1994) Characterization of a glucose-repressible ADP-ribosylation factor 3 (ARF3) from Saccharomyces cerevisiae. J. Biol. Chem. 269, 20931-20937.
Lewis, M.J., Nichols, B.J., Prescianotto-Baschong, C., Riezman, H., and Pelham, H.R.B. (2000) Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol. Biol. Cell 11, 23-38.
Lewis, S.M., Poon, P.P., Singer, R.A., Johnston, G.C., and Spang, A. (2004) The ArfGAP Glo3 is required for the generation of COPI vesicles. Mol. Biol. Cell 15, 4064-4072.
Longtine, M.S. and Bi, E. (2003) Regulation of septin organization and function in yeast. Trends Cell Biol. 13, 403-409.
Longtine, M.S., McKenzie, A. III, Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J.R. (1998) Yeast functional analysis reports. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953-961.
Lorenz, M.C., Cutler, N.S., and Heitman, J. (2000) Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol. Biol. Cell 11, 183-199.
Madania, A., Dumoulin, P., Grava, S., Kitamoto, H., Scharer-Brodbeck, C., Soulard, A., Moreau, V., and Winsor, B. (1999) The Saccharomyces cerevisiae homologue of human Wiskott–Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol. Biol. Cell 10, 3521-3538.
Michelitch, M. and Chant, J. (1996) A mechanism of Bud1p GTPase action suggested by mutational analysis and immunolocalization. Curr. Biol. 6, 446-454.
Millar, C.A., Powell, K.A., Hickson, G.R., Bader, M.F., and Gould, G.W. (1999) Evidence for a role for ADP-ribosylation factor 6 in insulin-stimulated glucose transporter-4 (GLUT4) trafficking in 3T3-L1 adipocytes. J. Biol. Chem. 274, 17619-17625.
Miura, K., Jacques, K.M., Stauffer, S., Kubosaki, A., Zhu, K., Hirsch, D.S., Resau, J., Zheng, Y., and Randazzo, P.A. (2002) ARAP1: a point of convergence for Arf and Rho signaling. Mol. Cell 9, 109-119.
Moss, J. and Vaughan, M. (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J. Biol. Chem. 270, 12327-12330.
Moss, J. and Vaughan, M. (1998) Molecules in the ARF orbit. J. Biol. Chem. 273, 21431-21434.
Nie, Z., Hirsch, D.S., and Randazzo, P.A. (2003) Arf and its many interactors. Curr. Opin. Cell Biol. 15, 396-404.
Nigavekar, S.S. and Cannon, J.F. (2002) Characterization of genes that are synthetically lethal with ade3 or leu2 in Saccharomyces cerevisiae. Yeast 19, 115–122.
Norman, J.C., Jones, D., Barry, S.T., Holt, M.R., Cockcroft, S., and Critchley, D.R. (1998) Arf1 mediates paxillin recruitment to focal adhesions and potentiates Rho-stimulated stress fiber formation in intact and permeabilized Swiss 3T3 fibroblasts. J. Cell Biol. 143, 1981-1995.
Pacheco-Rodriguez, G., Meacci, E., Vitale, N., Moss, J., and Vaughan, M. (1998) Guanine nucleotide exchange on ADP-ribosylation factors catalyzed by cytohesin-1 and its Sec7 domain. J. Biol. Chem. 273, 26543-26548.
Paduch, M., Jelen, F., and Otlewski, J. (2001) Structure of small G proteins and their regulators. Acta Biochim. Pol. 48, 829-850.
Palecek, S.P., Parikh, A.S., and Kron, S.J. (2002) Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. Microbiology 148, 893-907.
Panic, B., Whyte, J.R.C., and Munro, S. (2003) The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol. 13, 405-410.
Park, H.O., Chant, J., and Herskowitz, I. (1993) BUD2 encodes a GTPase-activating protein for Bud1/Rsr1 necessary for proper bud-site selection in yeast. Nature 365, 269-274.
Park, H.O., Sanson, A., and Herskowitz. I. (1999) Localization of Bud2p, a GTPase-activating protein necessary for programming cell polarity in yeast to the presumptive bud site. Genes Dev. 13, 1912-1917.
Pasqualato, S., Menetrey, J., Franco, M., and Cherfils, J. (2001) The structural GDP/GTP cycle of human Arf6. EMBO Rep. 2, 234-238.
Pasqualato, S., Renault, L., and Cherfils, J. (2002) Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep. 3, 1035-1041.
Peters, P.J., Hsu, V.W., Ooi, C.E., Finazzi, D., Teal, S.B., Oorschot, V., Donaldson, J.G., and Klausner, R.D. (1995) Overexpression of wild type and mutant ARF1 and ARF6: distinct perturbations of non-overlapping membrane compartments. J. Cell Biol. 128, 1003-1017.
Poon, P.P., Cassel, D., Spang, A., Rotman, M., Pick, E., Singer, R.A., and Johnston, G.C. (1999) Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function. EMBO J. 18, 555-564.
Powner, D.J., Hodgkin, M.N., and Wakelam, M.J. (2002) Antigen-stimulated activation of phospholipase D1b by Rac1, ARF6, and PKC alpha in RBL-2H3 cells. Mol. Biol. Cell 13, 1252-1262.
Prigent, M., Dubois, T., Raposo, G., Derrien, V., Tenza, D., Rosse, C., Camonis, J., and Chavrier, P. (2003) ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J. Cell Biol. 163, 1111-1121.
Pringle, J.R., Preston, R.A., Adams, A.E.M., Sterns, T., Drubin, D.G., Haarer, B.K., and Jones, E.W. (1989) Fluorescence microscopy methods for yeast. Methods Cell Biol. 31, 357-435.
Protopopov, V., Govindan, B., Novick, P., and Gerst, J.E. (1993) Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function of the late secretory pathway in S. cerevisiae. Cell 74, 855-861.
Pruyne, D. and Bretscher, A. (2000) Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci. 113, 365-375.
Radhakrishna, H., Al-Awar, O., Khachikian, Z., and Donaldson, J.G. (1999) Arf6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci. 112, 855-866.
Radhakrishna, H. and Donaldson, J.G. (1997) ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J. Cell Biol. 139, 49-61.
Radhakrishna, H., Klausner, R.D., and Donaldson, J.G. (1996) Aluminum fluoride stimulates surface protrusions in cells overexpressing the ARF6 GTPase. J. Cell Biol. 134, 935-947.
Randazzo, P.A., Nie, Z., Miura, K., and Hsu, V.W. (2000) Molecular aspects of the cellular activities of ADP-ribosylation factors. Sci. STKE 59, RE1.
Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J.D., Sheetz, M.P., and Meyer, T. (2000) Phosphatidylinositol 4, 5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221-228.
Robertson, L.S. and Fink, G.R. (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc. Natl. Acad. Sci. USA 95, 13783-13787.
Roman, H. (1956) Studies of gene mutation in Saccharomyces. Cold Spring Harb. Symp. Quant. Biol. 21, 175-185.
Roth, M.G. (1999a) Lipid regulators of membrane traffic through the Golgi complex. Trends Cell Biol. 9, 174-179.
Roth, M.G. (1999b) Snapshots of ARF1: implications for mechanisms of activation and inactivation. Cell 97, 149-152.
Rothstein, R.J. (1983) One-step gene disruption in yeast. Methods Enzymol. 101, 202-211.
Rua, D., Tobe, B.T., and Kron, S.J. (2001) Cell cycle control of yeast filamentous growth. Curr. Opin. Microbiol. 4, 720-727.
Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
Santy, L.C. and Casanova, J.E. (2002) GTPase signaling: bridging the GAP between ARF and Rho. Curr. Biol. 12, R360-R362.
Schott, D., Huffaker, T., and Bretscher, A. (2002) Microfilaments and microtubules: the news from yeast. Curr. Opin. Microbiol. 5, 564-574.
Schweitzer, J.K. and D’Souza-Schorey, C. (2002) Localization and activation of the ARF6 GTPase during cleavage furrow ingression and cytokinesis. J. Biol. Chem. 277, 27210-27216.
Sciorra, V.A., Audhya, A., Parsons, A.B., Segev, N., Boone, C., and Emr, S.D. (2005) Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway. Mol. Biol. Cell 16, 776-793.
Sewell, J.L. and Kahn, R.A. (1988) Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc. Natl. Acad. Sci. USA 85, 4620-4624.
Sherman, F., Fink, G.R., and Hicks, J.B. (1986) Methods in Yeast Genetics, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
Shin, O.H., Ross, A.H., Mihai, I., and Exton, J.H. (1999) Identification of arfophilin, a target protein for GTP-bound class II ADP-ribosylation factors. J. Biol. Chem. 274, 36609-36615.
Stearns, T., Kahn, R.A., Botstein, D., and Hoyt, M.A. (1990) ADP-ribosylation factor is an essential protein in Saccharomyces cerevisiae and is ensoded by two genes. Mol. Cell. Biol. 10, 6690-6699.
Takai, Y., Sasaki, T., and Matozaki, T. (2001) Small GTP-binding proteins. Physiol. Rev. 81, 153-208.
TerBush, D.R. and Novick, P. (1995) Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J. Cell Biol. 130, 299–312.
Tong, A.H., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., Robinson, M., Raghibizadeh, S., Hogue, C.W., Bussey, H., Andrews, B., Tyers, M., and Boone, C. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364-2368.
Trilla, J.A., Duran, A., and Roncero, C. (1999) Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae. J. Cell Biol. 145, 1153-1163.
Tucker, C.L. and Fields, S. (2003) Lethal combinations. Nat. Genet. 35, 204-205.
Valdez-Taubas, J. and Pelham, H.R. (2003) Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr. Biol. 13, 1636-1640.
Valdivia, R.H., Baggott, D., Chuang, J.S., and Schekman R.W. (2002) The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins. Dev. Cell 2, 283-294.
Warren, D.T., Andrews, P.D., Gourlay, C.G., and Ayscough, K.R. (2002) Sla1p couples the yeast endocytic machinery to proteins regulating actin dynamics. J. Cell Sci. 115, 1703-1715.
Yang, C.Z. and Mueckler, M. (1999) ADP-ribosylation factor 6 (ARF6) defines two insulin-regulated secretory pathways in adipocytes. J. Biol. Chem. 274, 25297-25300.
Zakrzewska, E., Perron, E., Laroche, A., and Pallotta, D. (2003) A role for GEA1 and GEA2 in the organization of the actin cytoskeleton in Saccharomyces cerevisiae. Genetics 165, 985-995.
Zhang, C.J., Cavenagh, M.M., and Kahn, R.A. (1998) A family of Arf effectors defined as suppressors of the loss of Arf function in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 273, 19792-19796.
Zhdankina, O., Strand, N.L., Redmond, J.M., and Boman, A.L. (2001) Yeast GGA proteins interact with GTP-bound Arf and facilitate transport through the Golgi. Yeast 18, 1-18.
Ziman, M., Chuang, J.S., Tsung, M., Hamamoto, S., and Schekman, R. (1998) Chs6p-dependent anterograde transport of Chs3p from the chitosome to the plasma membrane in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 1565-1576.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24173-
dc.description.abstract腺嘌呤核苷二磷酸核醣化因子(ADP-ribosylation factors, ARFs)屬於演化上具高度保留性的小鳥糞嘌呤核苷三磷酸結合蛋白(small GTP-binding proteins),在真核細胞內胞器之間的囊泡生成與傳遞過程中扮演重要的角色。雖然酵母菌的第三腺嘌呤核苷二磷酸核醣化因子(Arf3p)與哺乳動物的第六腺嘌呤核苷二磷酸核醣化因子(ARF6)最為相似,但卻沒有參與流相、膜內化或交配型受體媒介之胞飲作用,反而在酵母菌出芽生殖時不對稱結構(極性;polarity)的建立過程中發揮功能。為了更深入探究Arf3p的生物功能,我們採用功能性研究及遺傳學探討的方式。先前大規模的酵母菌雙雜合(yeast two-hybrid)分析結果指出第二出芽位置選擇蛋白(bud site selection; Bud2p)與Arf3p之間有相互作用,而本研究結果顯示於活的有機體內(in vivo) Bud2p以仰賴鳥糞嘌呤核苷三磷酸(GTP)的形式與Arf3p有專一性的結合。Bud2p在細胞中的分布不受酵母菌第三腺嘌呤核苷二磷酸核醣化因子基因(ARF3)剔除所影響,反之亦然。然而,非極化且大量表現之Arf3p及其永久活化型(Arf3Q71L)會因極化且大量表現之Bud2p而集中在母體與芽體連接處,這顯示了在活的細胞內Bud2p確實與Arf3p有作用。雖然Bud2p為第一出芽位置選擇蛋白(Bud1p)的GTP水解活化蛋白(GTPase-activating protein; GAP),但其可能是Arf3p的調節者而不是GAP。此外,在高溫的情況下,分別剔除這兩個基因皆會影響早期肌動蛋白在芽體的聚集,但同時剔除這兩個基因並不會加劇此顯型,意味著Bud2p和Arf3p參與於相同的途徑來間接調控肌動蛋白細胞骨架的結構。再者,兩者皆非環化酶結合蛋白無效等位基因第一抑制者[suppressor of the null allele of CAP (cyclase-associated protein); Snc1p]及第三幾丁質合成酶(chitin synthase 3; Chs3p)的運輸所必需。Bud2p與Arf3p之間真正的關係尚待釐清,而Arf3p與胞飲作用之機轉的相互關係亦需進一步的探討。zh_TW
dc.description.abstractADP-ribosylation factors (ARFs) are highly conserved small GTP-binding proteins and are critical components of vesicular trafficking in eukaryotic cells. Yeast Arf3p, in spite of its similarity to mammalian homologue ARF6, is not required for fluid-phase, membrane internalization or mating-type receptor-mediated endocytosis; instead, it is involved in polarity development. To further explore the biological functions of Arf3p, functional and genetic studies were adopted. Bud2p, which was reported to show an interaction with Arf3p in large-scale yeast two-hybrid analysis, specifically interacts with Arf3p in a GTP-dependent manner in vivo. The subcellular localization of Bud2p is not affected by ARF3 disruption, and vice versa. However, nonpolarized overexpressed Arf3p and Arf3Q71L are concentrated at the mother-bud junction by polarized overexpressed Bud2p, indicating that Bud2p also interacts with Arf3p in living cells. Although BUD2 encodes a GAP for Bud1p, it may not be a GAP for Arf3p. BUD2 disruption as well as ARF3 disruption exhibits early actin patch depolarization at higher temperatures, and combination of arf3 and bud2 deletions does not exacerbate the phenotype, implying that Bud2p and Arf3p contribute a role in the same pathway indirectly regulating actin cytoskeleton organization. Moreover, neither Arf3p nor Bud2p is required for Snc1p and Chs3p trafficking. The precise relationship between Bud2p and Arf3p remains to be elucidated. Besides, an interaction between Arf3p and the endocytic machinery, in which Lsb5p and Ysc84p were shown to be together involved, needs to be determined.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:17:37Z (GMT). No. of bitstreams: 1
ntu-94-R92448002-1.pdf: 3026572 bytes, checksum: d75cacad0ba57f1e54088846f0cf506f (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 4
Abstract 5
Introduction 6
Small GTP-binding proteins 6
Structure 7
A role as molecular switches 8
ADP-ribosylation factors (ARFs) 9
Structure of ARFs 9
Guanine nucleotide exchange factors 11
GTPase-activating proteins 11
Effectors of ARFs 12
Mammalian ARFs 12
ARF function in vesicle formation 14
ARF function in actin remodeling 15
Yeast ARFs 16
Materials and Methods 18
Results 29
I. Arf3p and its interacting protein, Bud2p 29
Bud2p interacts with Arf3p in yeast two-hybrid analysis 29
Bud2p interacts with Arf3p in vivo 29
Arf3p is not required for Bud2p localization, and vice versa 30
Bud2p may not be a GTPase-activating protein for Arf3p 32
Arf3-mRFP and Arf3Q71L-mRFP are enriched to the mother-bud junction by polarized GFP-Bud2 and colocalized with GFP-Bud2 at the neck and the plasma membrane 33
BUD2 is not synthetic lethal with ARF3 34
Both Bud2p and Arf3p are indirectly involved in actin patch polarization 34
Neither Arf3p nor Bud2p participates in trafficking of Snc1p and Chs3p 35
II. Genetic studies of ARF3 38
Synthetic lethal screen of ARF3 38
Neither LSB5 nor YSC84 has genetic interactions with ARF3 40
Discussion 42
References 57
Table 1. Yeast strains used in this study 69
Table 2. Primers used in this study 71
Table 3. Antibodies used in this study 73
Table 4. Synthetic lethal screenings performed in this study …………74
Figure Legends …………………………………………………75
Figures ……………………………………………………………81
Figure 1: Structure of small GTP-binding proteins …………………………81
Figure 2: The interswitch toggle of human ARF6 ………………………………82
Figure 3: Function of ARF in membrane traffic ………………………………83
Figure 4: Schematic of feedforward and feedback loops involving ARF and phosphoinositides …………………………………………………………84
Figure 5: Interactions between Bud2p and Arf3p in yeast two-hybrid analysis ……………………………………………………………………85
Figure 6: In vivo interactions between Bud2p and Arf3p ……………………86
Figure 7: ARF3 disruption does not affect the localization of overexpressed GFP-Bud2 …………………………………………………………………87
Figure 8: Subcellular localization of Arf3-GFP and it mutants is not affected by BUD2 disruption ……………………………………………………..88
Figure 9: Bud2p overexpression does not affect the subcellular localization of Arf3-GFP ………………………………………………………………89
Figure 10: Arf3-mRFP and Arf3Q71L-mRFP are enriched at the mother-bud junction by polarized GFP-Bud2 and colocalized with GFP-Bud2 at the neck and the plasma membrane ……………………90
Figure 11: ARF3 or BUD2 disruption does not affect the growth rate …….92
Figure 12: Both Bud2p and Arf3p are indirectly involved in actin patch polarization ……………………………………………………………….93
Figure 13: ARF3 disruption does not affect FM4-64 uptake at 34oC ……………94
Figure 14: Subcellular distribution of Snc1-GFP is not affected by ARF3 or BUD2 disruption ………………………………………………………………95
Figure 15: Chs3-GFP distribution is not affected by ARF3 or BUD2 disruption ………………………………………………………………96
Figure 16: Neither LSB5 nor YSC84 has a genetic interaction with ARF3 ………97
Figure 17: BY4741 lsb5 ysc84 double deletion cells exhibit no defects in FM4-64 uptake and transport, but some fragmentation of vacuoles ………98
Appendix A ……………………………………………………………99
Appendix B …………………………………………………………100
dc.language.isoen
dc.subject二磷酸核醣化因子zh_TW
dc.subject腺嘌呤核&#33527zh_TW
dc.subjectADP-ribosylation factoren
dc.title酵母菌第三腺嘌呤核苷二磷酸核醣化因子之遺傳探討及功能研究zh_TW
dc.titleFunctional and genetic study of yeast ADP-ribosylation factor 3en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧述諄,林敬哲,鄭明媛
dc.subject.keyword腺嘌呤核&#33527,二磷酸核醣化因子,zh_TW
dc.subject.keywordADP-ribosylation factor,en
dc.relation.page102
dc.rights.note未授權
dc.date.accepted2005-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved