Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24167
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周子賓
dc.contributor.authorChia-Wei Huangen
dc.contributor.author黃佳韋zh_TW
dc.date.accessioned2021-06-08T05:17:29Z-
dc.date.issued2004
dc.identifier.citationAdachi-Yamada T, Fujimura-Kamada K, Nishida Y, Matsumoto K. (1999). Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 400, 166-169.
Adachi-Yamada T and O’Connor MB. (2002). Morphogenetic apoptosis: a mechanism for correcting discontinuities in morphogen gradients. Dev. Biol.
251, 74—90.
Baeg G-H and Perrimon N. (2000). Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila. Curr Opin. Cell Biol. 12, 575-580.
Baeg G-H, Lin X, Khare N, Baumgartner S, Perrimon N. (2001). Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128, 87-94.
Bell AW, Ward MA, Blackstock WP, Freeman HNM, Choudhary JS et al. (2001). Proteomics characterization of abundant Golgi membrane proteins. J. Biol. Chem. 276, 5152-5 165.
Bellaiche Y, The I, Perrimon N. (1998). Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394,85-88.
Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, Lose EJ.
(1992). Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8, 365-393.
Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. (1999). Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729-777.
Bertin J, Mendrysa SM, LaCount DJ, Gaur S, Krebs JF, Armstrong RC, Tomaselli KJ, Friesen PD. (1996). Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease. J. Virol. 70, 625 1-6259.
Bidlingmaier S and Snyder M. (2002). Large-scale identification of genes important for apical growth in Saccharomyces cerevisiae by directed allele replacement technology (DART) screening. Funct. Integr. Genomics1, 345-356.
Bourin MC and Lindahl U. (1993). Glycosaminoglycans and the regulation of blood coagulation. Biochem J.289, 313-330.
Brand All and Perrimon N. (1993). Targeted gene expression as means of altering cell fates and generating dominant phenotypes. Development 118, 40 1-415.
Bruckner K, Perez L, Clausen H, Cohen S. (2000). Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 406, 411-415.
Bump NJ, Hackett M, Hugunin M, Seshagiri S, Brady K, Chen P, Ferenz C, Franklin S, Ghayur T, Li P. (1995). Inhibition of ICE protease by baculovirus antiapoptotic protein P35. Science 269, 1885-1888.
Burke R, Nellen D, Bellotto M, Hafen E, Senti K-A, Kickson BJ and Basler K.
(1999). Dispatched, a novel sterol-sensing domain protein dedicated to the
release of cholesterol-modified Hedgehog from signaling cells. Cell 99,
803-815.
Cadigan KM, Fish MP, Rulifson EJ, Nusse R. (1998). Wingless repression of Drosophila Frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93, 767-777.
Chang YY. (2002). Heparan sulfate proteoglycans modulate Hedgehog maintenance in Drosophila wing discs. Master thesis. National Taiwan University, Taiwan,ROC.
Chen P, Nordstrom W, Gish B, Abrams JM. (1996). grim, a novel cell death gene in Drosophila. Genes Dev. 10, 1773-1782.
Cohen SM. (1990). Specification of limb development in the Drosophila embryo by positional cues from segmentation genes. Nature 343, 173-177.
David G Bai XM, van der Schueren B, Cassiman JJ, van den Berghe H. (1992). Developmental changes in heparan sulfate expression: in situ detection with mAbs. J. Cell Biol. 119, 961-975.
Desai UR, Wang H, Linhardt, RJ. (1993). Specificity studies on the heparin lyases from Flavobacterium heparinum. Biochemistry 32, 8140-8145.
Desbordes SC, Sanson B. (2003). The glypican Dally-like is required for Hedgehog signalling in the embryonic epidermis of Drosophila. Development 130,6245-6225.
Esko JD and Lindahl U. (2001). Molecular diversity of heparan sulfate. J. Clin. Invest. 108, 169-173.
Fraser AG Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325-330.
Fujise M, Izumi S, Selleck SB, Nakato H. (2001). Regulation of dally, an integral membrane proteoglycan, and its function during adult sensory organ formation of Drosophila. Dev. Biol. 235, 433-448.
Fujise M, Takeo S, Kamimura K, Matsuo T, Aigaki T, Izumi S, Nakato H. (2003). Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development 130, 1515-1522.
Giraldez AJ, Copley RR, Cohen SM. (2002). HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient. Dcv. Cell 2, 667-676.
Greco V, Hannus M, Eaton S. (2001). Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106, 633-645.
Grether ME, Abrams JM, Agapite J, White K, Steller H. (1995). The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694-1708.
Haeker U, Lin X, Perrimon N. (1997). The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide biosynthesis. Development 124, 3565-3573.
Haerry TE, Heslip TR, Marsh JL, O’Connor MB. (1997). Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124,
3055-3064.
Hay BA, Wolff T, Rubin GM. (1994). Expression of baculovirus P35 prevents cell death in Drosophila. Development 120, 2121-2129.
Hay BA, Wassarman DA, Rubin GM. (1995). Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83, 1253 -1262.
Ingham PW. (2001). Hedgehog signaling: a tale of two lipids. Science 294,
1879-1881.
Iozzo RV. (1998). Matrix glypicans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609-652.
Jackson SM, Nakato H, Sugiura M, Jannuzi A, Oakes R, Kaluza V, Golden C, Selleck SB. (1997). Dally, a Drosophila glypican, controls cellular responses to the TGF-beta-related morphogen, Dpp. Development 124, 4113-4120.
Kjellen L and Lindahl U. (1991). Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443-475.
Kooyman DL, Byrne GW, McClellan S, Nielsen D, Tone M, Waldmann H,
Coffman TM, McCurry KR, Platt JL, Logan JS. (1995). In vivo transfer of
GPI-linked complement restriction factors from erythrocytes to the endothelium.Science 269, 89-92.
Lander AD and Selleck SB. (2000). The elusive functions of proteoglycans: in vivo veritas. J. Cell Biol. 148, 227-232.
Lin X. and Perrimon N. (1999). Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signaling. Nature 100, 281-284.
Lin X. and Perrimon N. (2003). Developmental roles of heparan sulfate proteoglycans in Drosophila. Glycoconj. 1 19, 363-368.
Lindahl U, Kusche-Gullberg M, Kjellen L. (1998). Regulated diversity of heparan sulfate. J. Biol. Chem. 273, 24979-24982.
Luders F, Segawa H, Stein D, Selva EM, Perrimon N, Turco SJ, Hacker U. (2003). Slalom encodes an adenosine Y-phosphate 5-phosphosulfate transporter essential for development in Drosophila. EMBO J. 22, 3635-3644.
Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M, Beachy PA.
(2003). Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039-2045.
Martin-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovsky AM,
Martinez-Arias A. (1998). puckered encodes a phosphatase that mediates a
feedback loop regulating JNK activity during dorsal closure in Drosophila.
Genes Dev. 1998 12, 557-570
Milan M, Campuzano S, Garcia-Bellido A. (1996). Cell cycling and patterned cell proliferation in the Drosophila wing during metamorphosis. Proc. Natl.
Acad.Sci. USA 93, 11687-11692.
Milan M, Campuzano S, Garcia-Bellido A. (1997). Developmental parameters of cell death in the wing disc of Drosophila. Proc. Natl. Acad. Sci. USA 94, 569 1-5696.
Nellen D, Burke R, Struhl G Basler K. (1996). Direct and long-range action of a Dpp morphogen gradient. Cell 85, 357-368.
Nybakken K and Perrimon N. (2002). Heparan sulfate proteoglycan modulation of developmental signaling in Drosophila. Biochim. Biophys. Acta 1573:280-291.
Perrimon N, Lanjuin A, Arnold C, Noll E. (1996). Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. Loci on the second and third chromosomes identified by P-element-induced mutations. Genetics
144, 1681-1692.
Perrimon N and Bernfield M. (2000). Specificities of heparan sulfate proteoglycans in developmental processes. Nature 404, 725-728.
Plotnikov AN, Schiessinger J, Hubbard SR, Mohammadi M. (1999). Structural basis for FGF receptor dimerization and activation. Cell 98, 64 1-650.
Reichsman F, Smith L, Cumberledge S. (1996). Glycosaminoglycans can modulate extracellular localization of the wingless protein and promote signal transduction. J. Cell Biol. 135, 8 19-827.
Rubin JB, Choil Y, Segal RA. (2002). Cerebellar proteoglycans regulate sonic hedgehog responses during development. Development 129, 2223 -2232.
Sekeisky JJ, Newfel SJ, Raftery LA, Chartoff EH, Gelbart WM. (1995). Genetic characterization and cloning of mother against dpp, a gene required for decepentaplegic function in Drosophila melanogaster. Genetics 139,
1347-1358.
Selva EM, Hong K, Baeg G-H, Beverley SM, Turco SM, Perrimon N, Hacker U. (2001). Dual role of the fringe connection gene in both heparan sulfate and fringe-depnedent signaling events. Nature Cell Biol. 3, 809-8 15.
Song HH. (2001). A novel putative Golgi gene, rotini, is required for the production and transportation of Drosophila Hedehog. Master thesis. National Taiwan University, Taiwan, ROC.
Sotillos S and Campuzano S. (2000). DRacGAP, a novel Drosophila gene, inhibits EGFR/Ras signaling in the developing imaginal wing disc. Development 127,5427-5438.
Strigini M and Cohen SM. (2000). Wingless gradient formation in the Drosophila wing. Curr Biol. 10, 293-300.
Stanley H, Botas J, Maihotra V. (1997). The mechanism of Golgi segregation during mitosis is cell type-specific. Proc. Natl. Acad. Sci. USA 94,
14467-14470.
Tabata T and Kornberg TB. (1994). Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76, 89-102.
Tabata T. (2001). Genetics of morphogen gradients. Nat. Rev. Genet. 2, 620-630.
Takei Y, Ozawa Y, Sato M, Watanabe A, Tabata T. (2003). Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131, 73-82.
The I, Bellaiche Y, Perrimon N. (1999). Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell 4,633-639.
Tsuda M, Kamimura K, Nakato H, Archer M, Staatz W, Fox B, Humphrey M, Olson S, Futch T, Kaluza V, Siegfried E, Stam L, Selleck SB. (1999). The cell-surface proteoglycan Dally regulates Wingless signaling in Drosophila. Nature 400, 276-280.
Weigmann K, Cohen SM, Lehner CF. (1997). Cell cycle progression, growth and patterning in imaginal discs despite inhibition of cell division after inactivation of Drosophila Cdc2 kinase. Development 124, 3555-3563.
Wu CC, Taylor RS, Lane DR, Ladinsky MS, Weisz JA, Howell KE. (2000). GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic
1, 963-975.
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K et al. (1999). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 90 1—906.
Xue D and Horvitz R. (1995). Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus P35 protein. Nature 377, 248-251.
Zhou Q, Krebs JF, Snipas SJ, Price A, Alnemri ES, Tomaselli KJ, Salvesen GS.(1998). Interaction of the baculovirus anti-apoptotic protein P35 with caspase.Specificity, kinetics and characterization of the caspase/P35 complex.
Biochemistry 37, 10757-10765.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24167-
dc.description.abstract人類 GPP34 的果蠅同源物Ritini ( Rti)經本實驗室證實經由調控HSPGs 的表現進而調節 Hedgehog ( Hh )型態決定因數的分佈。當Rti在翅碟細胞高量表達時引起成蟲組織萎死現象,這與 JNK 活化引起的異位細胞死亡是相關的。由於 TUNEL 測試的分佈顯示死亡細胞是散亂的產生,推測這是Rti所引起的異常二級效應。當以 3G10 抗體時,顯現高量表達 Rti 引起偵測有功能的HSPGs 量的銳減。此外 ,擴散性因數如 Hh 和 Wingless ( Wg )的正常分佈被混淆;同時, Hh 及 Decapetapleigic ( Dpp )訊息強度都呈現下降趨勢。已知 HSPGs 參與發育訊息與型態決定因數分佈的成形,我們進一步提出高量 Rti 所引起的 JNK 細胞死亡現像是因為 HSPGs 的減量表現造成型態因數的平滑分佈被破壞所造成。zh_TW
dc.description.abstractAs previously reported, Ritini (Rti), a Drosophila homologue of human GPP34 family, has been suggested to participate in modulating the distribution of Hedgehog (Hh) morphogen through the extracellular heparan sulfated proteoglycans (HSPGs) by means of the mosaic study.
Here, it is reported that, overexpression of Rti in wing imaginal disc cells leads to a tissue atrophy phenotype, which is associated with the induction of apoptosis by activating c-Jun N-terminal Kinase (JNK) pathway. Notably, these apoptotic cells detected from TUNEL method exhibit sporadic distribution in the GAL4 expression pattern. This finding strongly implies the case is a secondary effect caused by other possible Rti-induced abnormalities rather than Rti overexpression itself. Furthermore, a decrease of functional HSPGs was observed in Rti-overexpressing territories, where the distribution of diffusible HS-binding ligands, such as Hh and Wingless (Wg), are impaired. Meanwhile, we also noted that overexpression of Rti down-regulates the signaling activities of Hh and Decapetapleigic (Dpp), but not Wg.
Today, a number of studies have illustrated that the biological function of HSPGs plays an important role in modulating developmental signals and shaping morphogen gradients. Besides, the abatement of continuities in proximodistal information causes JNK-dependent apoptosis during wing development. Taken together, we propose a model where Rti-induced apoptosis is indirectly resulted from the abnormalities of functional HSPGs in Rti-overexpressing cells, followed by disruption of smooth gradients of morphogens.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:17:29Z (GMT). No. of bitstreams: 0
Previous issue date: 2004
en
dc.description.tableofcontentsIntroduction . . . . . . . . . . . . . . . . . . 1
The formation of diverse structure of HSPGs . . . . . . . . . . . . . . . . . . 1
Developmental roles of genes involved in HSPG biosynthesis . . . . . . . 3
Mechanism of HSPG modulation of morphogens . . . . . . . . . . . . . . . 6
rotini modulates the Hh signal through HSPGs . . . . . . . . . . . . . . . . . 9
Materials and Methods . . . . . . . . . . . . . . . . . . 12
Drosophila maintenance . . . . . . . . . . . . . . . . . . 12
Heat-shock treatment condition . . . . . . . . . . . . . . . . . . 12
The GAL4-UAS system . . . . . . . . . . . . . . . . . . 13
Immunoblotting assay . . . . . . . . . . . . . . . . . . 13
Immunofluorescence analysis of Drosophila S2 cells . . . . . . . . . . . . . 14
Immunohistochemistry . . . . . . . . . . . . . . . . . . 14
Acridine Orange staining and TUNEL method . . . . . . . . . . . . . . . 15
Heparinase III treatment . . . . . . . . . . . . . . . . . . 16
Results . . . . . . . . . . . . . . . . . . 17
Rti protein is localized in the Golgi apparatus . . . . . . . . . . . . . . . . . . 17
Overexpression of Rti disrupts normal tissue development . . . . . . . . 19
Excess levels of Rti atrophy the normal wing development . . . . . 20
Overexpression of Rti induces apoptosis during wing development . . 21
Rti causes eye ablation and apoptosis when ectopically expressed in the retina .22
Overexpression of Rti leads to the reduction of 3G10 staining . . . . . 24
Overexpression of Rti reduces the strength of Hh and Ptc staining . . . . . 25
The distribution of Wg is affected in Rti-overexpressing cells . . . . . . . 28
Decreased Dpp activity in Rti-overexpressing cells . . . . .. . . . 29
Rti-induced apoptosis is JNK-dependent and caspase-mediated . . . . . . . 31
Discussion . . . . . . . . . . . . . . . . . . 33
Rti belongs to GPP34 Golgi phosphoprotein family . . . . . . . . . . . 33
Rti overexpression causes apoptosis and an atrophied wing phenotype . . . 34
Induction of apoptosis is critical for the Rti-induced wing atrophy . . . . . 36
Involvement of Rti in the integrity of HSPGs . . . . . . . . . . . . . . . . 37
Requirement of Rti-dependent HSPGs for modulation of morphogens . . . . . 39
A possible mechanism for Rti-induced apoptosis . . . . . . . . . . . . . . . 41
Acknowledgement . . . . . . . . . . . . . . . . . . 44
References . . . . . . . . . . . . . . . . . . 45
dc.language.isoen
dc.titleRotini,果蠅的GPP34 高基氏體蛋白,經由 HSPGs 調控細胞凋零的機制探討zh_TW
dc.titleThe approach of Rotini , a Drosophila homologue of GPP34 family , acting through HSPGs and modulating apoptosisen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee#VALUE!
dc.subject.keywordNULLen
dc.relation.page76
dc.rights.note未授權
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved