Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24165
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝旭亮
dc.contributor.authorI-Ching Huangen
dc.contributor.author黃怡靜zh_TW
dc.date.accessioned2021-06-08T05:17:27Z-
dc.date.issued2004
dc.identifier.citationAhmad, M., and Cashmore, A.R. (1993). HY4 gene of A. thaliana encodes a protein with the characteristics of a blue-light photoreceptor. Nature 366, 162-166.
Ang, L.H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer, A., and Deng, X.W. (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1, 213-222.
Armstrong, R.N. (1997). Structure, catalytic mechanism and evolution of the glutathione transferases. Chem. Res. Toxicol. 10, 2-18.
Ballesteros, M. Bolle, C., Lois, L.M, Moore, J.M., Vielle-Caizada, J.P., Grossnikians, U., and Chua, N.H. (2001). LAF1, a MYB transcription activator for phytochrome A signaling. Genes Dev. 15, 2613-2625.
Bilang, J., and Sturm, A. (1995). Cloning and characterization of a glutathione S-transferase that can be photolabeled with 5-azidoindole-acetic acid. Plant Physiol. 109, 253-260.
Bolle, C., Koncz, C., and Chua, N.H. (2000). PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev. 14, 1269-1279.
Briggs, W.R., and Christie, J.M. (2002). Phototropins 1 and 2, versatile plant blue-light receptors. Trends Plant Sci. 7, 204-210.
Briggs, W.R., and Huala, E. (1999). Blue-light photoreceptors in higher plants. Annu. Rev. Cell Dev. Biol. 15, 33-62.
B?che, C., Poppe, C., Schafer, E., and Kretsch, T. (2000). Eidl, a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses. Plant Cell 12, 547-558.
Cashmore, A.R., Jarillo, J.A., Wu, Y.L., and Liu, D. (1999). Cryptochromes, Blue light receptors for plants and animals. Science 284, 760-765.
Castle, L.A., and Meinke , D.W. (1994). A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell 6, 25-41.
Chory, J., Peto, C.A., Ashbaugh, M., Saganich, R., Pratt, L., and Ausubel, F. (1989). Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants. Plant Cell 1, 867-880.
Chung, M.H., Chen, M.K., and Pan, S.M. (2000). Floral spray transformation can efficiently generate Arabidopsis transgenic plants. Transgenic Res. 9, 471-476.
Clough, R.C., and Vierstra, R.D. (1997). Phytochrome degradation. Plant Cell Environ. 20, 713-721.
Clough, S.J., and Bent, A.F. (1998). Floral dip, a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
Cusack, S. (1995). Eleven down and nine to go. Nat. Struct. Biol. 2, 824-831.
Deng, X.W., Caspar, T., and Quail, P.R. (1991). COP1, a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 5, 1172-1182.
Deng, X.W., Matsui, M., Wei, N., Wagner, D., Chu, A.M., Feldmann ,K.A., and Quail, P.R. (1992). COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gb homologous domain. Cell 71, 791-801.
DeRidder, B.P., Dixon, D.P., Beussman, D.J., Edwards, R., and Goldsbrough, P.B. (2002). Induction of glutathione S-transferases in Arabidopsis by herbicide safeners. Plant Physiol. 130, 1497-1505.
Desnos, T., Puente, P., Whitelam, G.C., and Harberd, N.P. (2001). FHY1, a phytochrome A-specific signal transducer. Genes Dev. 15, 2980-2990.
Deutscher, M.P. (1967). Rat liver glutamyl ribonucleic acid synthetase. Ⅱ. Further properties and anomalous pyrophosphate exchange. J. Biol. Chem. 242, 1132-1139.
Dixon, D.P., Cole, D.J., and Edwards, R. (1999). Dimerisation of maize glutathione transferases in recombinant bacteria. Plant Mol. Biol. 40, 997-1008.
Dixon, D.P., Cole, D.J., and Edwards, R. (2000). Characterisation of a zeta class glutathione transferase from Arabidopsis thaliana with a putative role in tyrosine catabolism. Arch. Biochem. Biophys. 384, 407-412.
Dixon, D.P., Lapthorn, A., and Edwards, R. (2002a). Plant glutathione transferases. Genome Biol. 3, 3004.1-3004.10
Dixon, D.P., Davis, B.G., and Edwards, R. (2002b). Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J. Bio. Chem. 277, 30859-30869.
Droog, F. (1997). Plant glutathione S-transferases,a tale of theta and tau. J. Plant Growth Regul. 16, 95-107.
Edwards, R., and Dixon, D.P. (2000). The role of glutathione transferases in herbicide metabolism. In, Herbicides and their Mechanisms ofAction (ed. by Cobb A.H. and Kirkwood R.C.). Sheffield Academic Press, Sheffield, 38-71.
Edwards, R., Dixon, D.P., and Walbot, V. (2000). Plant glutathione S-transferases, enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5, 193-198.
Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D. (1990). Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203-206.
Fairchild, C.D., Schumaker, M.A., and Quail, P.H. (2000). HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev. 14, 2377-2391.
Fankhauser, C., and Chory, J. (2000). RSF1, an Arabidopsis locus implicated in phytochrome A signaling. Plant Physiol. 124, 39-45.
Fankhauser, C., and Staiger, D. (2002). Photoreceptors in Arabidopsis thaliana, light perception, signal transduction and entrainment of the endogenous clock. Planta 216, 1-16.
Folta, K.M., and Spalding, E.P. (2001). Unexpected roles for cryptochrome2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J. 26, 471-478.
Gagnon, Y., Lacoste, L., Champagne, N., and Lapointe, J. (1996). Widespread use of the glu-tRNAGln transamidation pathway among bacteria. A member of the alpha purple bacteria lacks glutaminyl-tRNA synthetase. J. Biol. Chem. 271, 14856-14863.
Gallagher, S., Short, T.W., Ray, P.M., Pratt, L.H, and Briggs, W.R. (1988). Light-mediated changes in two proteins found associated with plasma membrane fractions from pea stem sections. Proc. Natl. Acad. Sci. USA 85, 8003-8007.
Gonneau, J., Mornet, R., and Laloue, M. (1998). A Nicotiana plumbaginfolia protein labeled with an azido cytokinin agonist is a glutathione S-transferase. Physiol. Plant 103, 114-124.
Guo, H., Duong, H., Ma, N., and Lin, C. (1999). The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J. 19, 279-287.
Guo, H., Mockler, T., Duong, H., and Lin, C. (2001). SUB1, an Arabidopsis Ca2+-binding protein involved in cryptocbrome and phytochrome coaction. Science 291, 487-490.
Hagen, G., Kleinschmidt, A., and Guilfoyle, T. (1984). Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162, 147-153.
Hagen, G., Martin, G., Li, Y., and Guifoyle, T.J. (1991). Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol. Biol. 17, 567-579.
Hare, P.D., Moller, S.G, Huang, L.F., and Chua, N.H. (2003). LAF3, a novel factor required for normal phytochrome A signaling. Plant Physiol. 133, 1592-1604.
Harlow, E., and Lane, D. (1988). Antibodies, A Laboratory Manual. p. 649. Cold Spring Harbor Laboratory Press, USA.
Hoecker, U., Tepperman, J.M., and Quail, P.H. (1999). SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284, 496-499.
Hoecker, U., Xu, Y., and Quail, P.H. (1998). SPA1, a new genetic locus involved in phytochrome A-specific signal transduction. Plant Cell 10, 19-33.
Holm, M., Ma, L.G., Qu, L.J., and Deng, X.W. (2002). Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev. 16, 1247-1259.
Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14, 1958-1970.
Huala, E., Oeller, P.W., Liscum, E., Han, I.S., Larsen, E., and Briggs, W.R. (1997). Arabidopsis NPH1, a protein kinase with a putative redox-sensing domain. Science 278, 2120-2123.
Hudson, M., Ringli, C., Boylan, M.T., and Quail, P.H. (1999). The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev. 13, 2017-2027.
Jarillo, J.A.., Ahmad, M., and Cashmore, A.R. (1998). NPL1 , a second member of the NPH serine/threonine kinase family of Arabidopsis. Plant Physiol. 117, 719.
Jarillo, J.A., Gabrys, H., Capel, J., Alonso, J.M., Ecker, J.R., and Cashmore, A.R. (2001). Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410, 952-954.
Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K.., Ishiguro, S., Kato, T., Tabata, S., Okada, K., and Wada, M. (2001). Arabidopsis NPL1, a
phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138-2141.
Kampranis, S.C., Damianova, R., Atallah, M., Toby, G., Kondi, G., Tsichlis, P.N., and Makris, A.M. (2000). A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 275, 29207-29216.
Karnio, B., Malec, P., and Chamovitz, D.A. (1999). Arabidopsis FUSCA5 encodes a novel phosphoprotein that is a component of the COP9 complex. Plant Cell 11, 839-848.
Kendrick, R.E., and Kronenberg, G.H.M. (1994). Photomorphogenesis in Plants, 2nd ed. (Dordrecht, The Netherlands, Kluwer).
Kim, Y.M., Woo, J.C., Song, P.S., and Soh, M.S. (2002). HFR1, a phytochrome A-signaling component, acts in a separate pathway from HY5, downstream of COP1 in Arabidopsis thaliana. Plant J. 30, 711-719.
Kinoshita, T., Doi, M., Suetsugu, N., Kagawa, T., Wada, M., and Shimazaki, K. (2001). Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656-660.
Kircher, S., Gil, P., Kozma-Bognar, L., Fejes, E., Speth, V., Husseistein-Muller, T., Bauer, D., Adam, E., Schafer, E., and Nagy, F. (2002). Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14, 1541-1555.
Kircher, S., Kozma-Bognar, L., Kim, L., Adam, E., Harter, K., Schafer, E., and Nagy, F. (1999). Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11, 1445-1456.
Kleiner, O., Kircher, S., Harter, K., and Batschauer, A. (1999). Nuclear localization of the Arabidopsis blue-light receptor cryptocbrome 2. Plant
J. 19, 289-296.
Kwok, S.F., Solano, R., Tsuge, T., Chamovitz, D.A., Ecker, J.R.., Matsui, M., and Deng, X.W. (1998). Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations. Plant Cell 10, 1779-1790.
Lamour, V., Quevillon, S., Diriong, S., N’Guyen, V.C., Lipinski, M., and Mirande, M. (1994). Evolution of the Glx-tRNA synthetase family, the glutaminyl enzyme as a case of horizontal gene transfer. Proc. Natl. Acad. Sci. USA 91, 8670-8674.
Lamoureux, G.L., and Rusness, D.G. (1993). Glutathione in the metabolism and detoxification of xenobiotics in plants. In, DeKok L.J., et al. (Eds.) Sulfur Nutrition and Assimilation in Higher Plants, SPB Academic Publishing, pp. 221-237.
Lapointe, J., Duplain, L., and Proulx, M. (1986). A single glutamyl-tRNA synthetase aminoacylates tRNAGln and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro. J. Bacteriol. 165, 88-93.
Lapointe, J., and S?il, D. (1972). Glutamyl transfer ribonucleic acid synthetase of Escherichia coil. I. Purification and properties. J. Biol. Chem. 247, 4966-4974.
Lee, L.W., Ravel, J.M., and Shive, W. (1967). A general involvement of acceptor ribonucleic acid in the initial activation step of glutamic acid and glutamine. Arch. Biochem. Biophys. 121, 614-618.
Lee, C., Levin, A., and Branton, D. (1987). Copper staining , A five-minute protein stain for sodium dodecyl sulfate-polyacrylamide gels. Analytical Biochemistry 166, 308-312.
Lin, C. (2002). Blue light receptors and signal transduction. Plant Cell 14 (suppl.), S207-S225.
Lin, C.T., Yang, H.Y., Guo, H.W., Mockler, T., Chen, J., and Cashmore, A.R. (1998). Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Nat. Acad. Sci. USA 95, 2686-2690.
Liscum, E., and Briggs, W. (1995). Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7, 473-485.
Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H., and Deng, X. W. (2001). Light Control of Arabidopsis Development Entails Coordinated Regulation of Genome Expression and Cellular Pathways. Plant Cell. 13 ,2589-2608.
Mannervik, B., and Danielson, U.H. (1998). Glutathione transferase, Structure and catalytic activity. CRC Crit. Rev. Biochem. 23, 283-337.
Marrs, K.A. (1996). The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 127-158.
Mas, P., Devlin, P.F., Panda, S., and Kay, S.A. (2000). Functional interaction of phytochrome B and cryptochrome 2. Nature 408, 207-211.
Mauch, F., and Dudler, R. (1993). Differential induction of distinct glutathione S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol. 102, 1193-1201.
McNellis, T.W., Von Arnim, A.G, and Deng, X.W. (1994). Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development, Evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell 6, 1391-1400.
Mehler, A.H. and Mitra, K. (1967). The activation of arginyl transfer ribonucleic acid synthetase by transfer ribonucleic acid. J. Biol. Chem. 242, 5495-5499.
Mersereau, M., Pazour, G.J., and Das, A. (1990). Efficient transformation of Agro bacterium tumefaciens by electroporation. Gene 90, 149-151.
Meyer, D.J., Coles, B., Pemble, S.E., Gilmore, K.S., and Fraser, G.M. (1991). Theta, a new class of glutathione transferase purified from rat and man. Biochem. J. 274, 409-414.
Mitra, K., and Mehler, A.H. (1966). The role of transfer ribonucleic acid in the pyrophosphate exchange reaction of arginine-transfer ribonucleic acid synthetase. J. Biol. Chem. 241, 5161-5162.
Mitra, S.K., and Mehler, A.H. (1967). The arginyl transfer ribonucleic acid synthetase of Escherichia coli. J. Biol. Chem. 242, 5490-5494.
Mollter, S.G., Ingles, P.J., and Whitelam, G.C. (2002). The cell biology of phytochrome signaling. New Phytol. 154, 553-590.
Mueller, L.A., Goodman, C.D., Sitady, R.A., and Walbot, V. (2000). AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol. 123, 1561-1570.
Oyama, T., Shimura, Y., and Okada, K. (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyls. Genes Dev. 11, 2983-2995.
Nagy, F., and Schafer, E. (2002). Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Biol. 53, 329-355.
Peng, Z., Serino, G, and Deng, X.W. (2001a). A role of Arabidopsis COP9 signalosome in multifaceted developmental processes revealed by the characterization of its subunit 3. Development 128, 4277-4288.
Peng, Z., Serino, G., and Deng, X.W. (2001b). Molecular characterization of subunit 6 of the COP9 signalosome and its role in multifaceted development processes in Arabidopsis. Plant Cell 13, 2393-2408.
Quail, P.H. (1997). An emerging molecular map of the phytochromes. Plant Cell Environ. 20, 657-666.
Quail, P.H. (2002a) Photosensory perception and signalling in plant cells, new paradigms Cuff. Opin. Cell Biol. 14, 180-188.
Quail, P.H. (2002b). Phytochrome photosensory signaling networks. Nat. Rev. Mol. Cell Biol. 3, 85-92.
Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y., and Wagner, D. (1995). Phytochromes, photosensory perception and signal transduction. Science 268, 675-680.
Ravel, J..M., Wang, S.F., Heinemeyer, C., and Shive, W. (1965). Glutamyl and glutaminyl ribonucleic acid synthetase of Escherichia coli W. J. Biol. Chem. 240, 432-438.
Rogers, K.C., and S?ll, D. (1995). Divergence of glutamate and glutamine aminoacylation pathways, providing the evolutionary rationale for mischarging. J. Mol. Evol. 40, 476-481.
Roxas, V.P., Smith, R.K., Allen, E.R., and Allen, R.D. (1997). Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 15, 988-991.
Sakai, T., Kagawa, T., Kasahara, M., Swartz, T.E., Christie, J.M., Briggs, W.R., Wada, M., and Okada, K. (2001). Arabidopsis nph1 and npl1, blue light receptors that mediate both phototropism and chioroplast relocation. Proc. Natl. Acad. Sci. USA 98, 6969-6974.
Sambrook, J., Fritsch, E.R., and Maniatis, T. (1989). Molecular cloning, a laboratory manual, second edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
Sancar, A. (2000). Cryptochrome, the second photoactive pigment in the eye and its role in circadian photorecpetion. Annu. Rev. Biochem. 69, 31-67.
Sch?fer, E., and Bowler, C. (2002). Phytochrome-mediated photoperception and signal transduction in higher plants. EMBO reports 3, 1042-1048.
Schon, A., Kannangara, C.G., Gough, S., and Soil, D. (1988). Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 331, 187-190.
Schwechheimer, C., and Deng, X.W. (2000). The COP/DET/FUS proteins-regulators of eukaryotic growth and development. Seminars in Cell and Developmental Biology 11, 495-503.
Schwechheimer, C., and Deng, X.W. (2001). COP9 signalosome revisited, a novel mediator of protein degradation. Trends Cell Biol. 11, 420-426.
Serino, G., Tsuge, T., Kwok, S., Matsui, M., Wei, N., and Deng, X.W. (1999). Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome. Plant Cell 11, 1967-1980.
Sharrock, R.A., and Quail, P.H. (1989). Novel phytochrome sequences in Arabidopsis thaliana, Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3, 1745-1757.

Siatecka, M., Rozek, M.., Barciszewski, J., and Mirande, M. (1998). Modular evolution of the Glx-tRNA synthetase family-rooting of the evolutionary tree between the bacteria and archaealeukarya branches. Eur. J. Biochem. 256, 80-87.
Soh, M.S., Hong, S.H.., Hanzawa, H., Furuya, M., and Nam, H.G. (1998). Genetic identification of FIN2, a far red light specific signaling component of Arabidopsis thaliana. Plant J. 16, 411-419.
Sommer, A., and B?ger, P. (1999). Characterization of recombinant corn glutathione S-transferases isoforms Ⅰ, Ⅱ, Ⅲ, and Ⅳ. Pestic. Biochem. Physiol. 63, 127-138.
Staswick, P.E., Tiryaki, I., and Rowe, M.L. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405-1415.
Sullivan, J.A., and Deng, X.W. (2003). From seed to seed, the role of photoreceptors in Arabidopsis development. Dev. Biol. 260, 289-297.
Tepperman, J.M., Zhu, T., Chang, H.S., Wang, X., and Quail, P.H. (2001). Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc. Natl. Acad. Sci. USA 98, 9437-9442.
Wagner, U., Edwards, R., Dixon, D.P., and Mauch, F. (2002). Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol. Biol. 49, 515-532.
Wang, H., and Deng, X.W. (2002a). Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J. 21, 1339-1349.
Wang, H., and Deng, X.W. (2002b). in The Arabidopsis book ed. C. R. Somerville and E. M. Meyerowitz, American Society of Plant Biologists, Rockville, MD; doi/10.1199/tab.0074.
Wei, N., Chamovitz, D.A., and Deng, X.W. (1994). Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78, 117-124.
Wei, N., and Deng, X.W. (1992). COP9, a new genetic locus involved in light-regulated development and gene expression in Arabidopsis. Plant Cell 12, 1507-1518.
Wei, N., and Deng, X.W. (1999). Making sense of the COP9 signalosome. Trends Genet. 15, 98-103.
Yang, H.Q., Wu, Y.J., Tang, R.H., Lin, D., Liu, Y., and Cashmore, A.R. (2000). The C termini of Arabidopsis crytochromes mediate a constitutive light response. Cell 103, 815-827.
Zetti, R., Schell, J., and Palme, K. (1994). Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3H] indole-3-acetic acid, identification of a glutathione S-transferase. Proc. Natl. Acad. Sci. USA 91, 689-693.
Zeidler, M., Bolle, C., and Chua, N.H. (2001). The phytochrome A specific signaling component PAT3 is a positive regulator of Arabidopsis photomorphogenesis. Plant Cell Physiol. 42, 1193-1200.
Zhou, Y.C., Dieterle, M., Buche, C., and Kretsch, T. (2002). The negatively acting factors EID1 and SPA1 have distinct functions in phytochrome A-specific light signaling. Plant Physiol. 128, 1098-1108.
Meyer, D.J., Coles, B., Pemble, S.E., Gilmore, K.S., and Fraser, G.M. (1991). Theta, a new class of glutathione transferase purified from rat and man. Biochem. J. 274, 409-414.
Mitra, K., and Mehler, A.H. (1966). The role of transfer ribonucleic acid in the pyrophosphate exchange reaction of arginine-transfer ribonucleic acid synthetase. J. Biol. Chem. 241, 5161-5162.
Mitra, S.K., and Mehler, A.H. (1967). The arginyl transfer ribonucleic acid synthetase of Escherichia coli. J. Biol. Chem. 242, 5490-5494.
Mollter, S.G., Ingles, P.J., and Whitelam, G.C. (2002). The cell biology of phytochrome signaling. New Phytol. 154, 553-590.
Mueller, L.A., Goodman, C.D., Sitady, R.A., and Walbot, V. (2000). AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol. 123, 1561-1570.
Oyama, T., Shimura, Y., and Okada, K. (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyls. Genes Dev. 11, 2983-2995.
Nagy, F., and Schafer, E. (2002). Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Biol. 53, 329-355.
Peng, Z., Serino, G, and Deng, X.W. (2001a). A role of Arabidopsis COP9 signalosome in multifaceted developmental processes revealed by the characterization of its subunit 3. Development 128, 4277-4288.
Peng, Z., Serino, G., and Deng, X.W. (2001b). Molecular characterization of subunit 6 of the COP9 signalosome and its role in multifaceted development processes in Arabidopsis. Plant Cell 13, 2393-2408.
Quail, P.H. (1997). An emerging molecular map of the phytochromes. Plant Cell Environ. 20, 657-666.
Quail, P.H. (2002a) Photosensory perception and signalling in plant cells, new paradigms Cuff. Opin. Cell Biol. 14, 180-188.
Quail, P.H. (2002b). Phytochrome photosensory signaling networks. Nat. Rev. Mol. Cell Biol. 3, 85-92.
Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y., and Wagner, D. (1995). Phytochromes, photosensory perception and signal transduction. Science 268, 675-680.
Ravel, J..M., Wang, S.F., Heinemeyer, C., and Shive, W. (1965). Glutamyl and glutaminyl ribonucleic acid synthetase of Escherichia coli W. J. Biol. Chem. 240, 432-438.
Rogers, K.C., and S?ll, D. (1995). Divergence of glutamate and glutamine aminoacylation pathways, providing the evolutionary rationale for mischarging. J. Mol. Evol. 40, 476-481.
Roxas, V.P., Smith, R.K., Allen, E.R., and Allen, R.D. (1997). Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 15, 988-991.
Sakai, T., Kagawa, T., Kasahara, M., Swartz, T.E., Christie, J.M., Briggs, W.R., Wada, M., and Okada, K. (2001). Arabidopsis nph1 and npl1, blue light receptors that mediate both phototropism and chioroplast relocation. Proc. Natl. Acad. Sci. USA 98, 6969-6974.
Sambrook, J., Fritsch, E.R., and Maniatis, T. (1989). Molecular cloning, a laboratory manual, second edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
Sancar, A. (2000). Cryptochrome, the second photoactive pigment in the eye and its role in circadian photorecpetion. Annu. Rev. Biochem. 69, 31-67.
Sch?fer, E., and Bowler, C. (2002). Phytochrome-mediated photoperception and signal transduction in higher plants. EMBO reports 3, 1042-1048.
Schon, A., Kannangara, C.G., Gough, S., and Soil, D. (1988). Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 331, 187-190.
Schwechheimer, C., and Deng, X.W. (2000). The COP/DET/FUS proteins-regulators of eukaryotic growth and development. Seminars in Cell and Developmental Biology 11, 495-503.
Schwechheimer, C., and Deng, X.W. (2001). COP9 signalosome revisited, a novel mediator of protein degradation. Trends Cell Biol. 11, 420-426.
Serino, G., Tsuge, T., Kwok, S., Matsui, M., Wei, N., and Deng, X.W. (1999). Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome. Plant Cell 11, 1967-1980.
Sharrock, R.A., and Quail, P.H. (1989). Novel phytochrome sequences in Arabidopsis thaliana, Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3, 1745-1757.

Siatecka, M., Rozek, M.., Barciszewski, J., and Mirande, M. (1998). Modular evolution of the Glx-tRNA synthetase family-rooting of the evolutionary tree between the bacteria and archaealeukarya branches. Eur. J. Biochem. 256, 80-87.
Soh, M.S., Hong, S.H.., Hanzawa, H., Furuya, M., and Nam, H.G. (1998). Genetic identification of FIN2, a far red light specific signaling component of Arabidopsis thaliana. Plant J. 16, 411-419.
Sommer, A., and B?ger, P. (1999). Characterization of recombinant corn glutathione S-transferases isoforms Ⅰ, Ⅱ, Ⅲ, and Ⅳ. Pestic. Biochem. Physiol. 63, 127-138.
Staswick, P.E., Tiryaki, I., and Rowe, M.L. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405-1415.
Sullivan, J.A., and Deng, X.W. (2003). From seed to seed, the role of photoreceptors in Arabidopsis development. Dev. Biol. 260, 289-297.
Tepperman, J.M., Zhu, T., Chang, H.S., Wang, X., and Quail, P.H. (2001). Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc. Natl. Acad. Sci. USA 98, 9437-9442.
Wagner, U., Edwards, R., Dixon, D.P., and Mauch, F. (2002). Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol. Biol. 49, 515-532.
Wang, H., and Deng, X.W. (2002a). Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J. 21, 1339-1349.
Wang, H., and Deng, X.W. (2002b). in The Arabidopsis book ed. C. R. Somerville and E. M. Meyerowitz, American Society of Plant Biologists, Rockville, MD; doi/10.1199/tab.0074.
Wei, N., Chamovitz, D.A., and Deng, X.W. (1994). Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78, 117-124.
Wei, N., and Deng, X.W. (1992). COP9, a new genetic locus involved in light-regulated development and gene expression in Arabidopsis. Plant Cell 12, 1507-1518.
Wei, N., and Deng, X.W. (1999). Making sense of the COP9 signalosome. Trends Genet. 15, 98-103.
Yang, H.Q., Wu, Y.J., Tang, R.H., Lin, D., Liu, Y., and Cashmore, A.R. (2000). The C termini of Arabidopsis crytochromes mediate a constitutive light response. Cell 103, 815-827.
Zetti, R., Schell, J., and Palme, K. (1994). Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3H] indole-3-acetic acid, identification of a glutathione S-transferase. Proc. Natl. Acad. Sci. USA 91, 689-693.
Zeidler, M., Bolle, C., and Chua, N.H. (2001). The phytochrome A specific signaling component PAT3 is a positive regulator of Arabidopsis photomorphogenesis. Plant Cell Physiol. 42, 1193-1200.
Zhou, Y.C., Dieterle, M., Buche, C., and Kretsch, T. (2002). The negatively acting factors EID1 and SPA1 have distinct functions in phytochrome A-specific light signaling. Plant Physiol. 128, 1098-1108.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24165-
dc.description.abstract為了更瞭解阿拉伯芥生長發育過程裡,FIN219在光訊息傳遞中所扮演的角色,利用酵母菌雙雜交法(yeast two-hybrid)找出在阿拉伯芥cDNA library中跟FIN219有交互作用之蛋白質。我們找出一個基因,它的產物可跟FIN219的C端有交互作用,並命名為FIPl(FIN219-interacting protein 1),此基因轉譯出一個24 kD的GST(2,4-D induced glutathione S-transferase,Atlg78370);另一個基因產物跟FIN219的C端也有交互作用,命名為FIP2(FIN219-interacting protein 2),此基因轉譯出一個79 kD的GluRS (glutamyl-tRNA synthetase,At5g26707)。本篇論文將FIP2大量表現在Columbia野生型阿拉伯芥和fin219突變體,觀察它可能的外表型;結果顯示,FIP2的大量表現體在遠紅光下,其下胚軸比野生型阿拉伯芥長,但較加fin219突變體短。另外,亦發現FIP2 T-DNA插入的轉殖株,在紅光、遠紅光中,其下胚軸比野生型阿拉伯芥長,但較加fin219突變體的短,其中調控的關係目前還不清楚。本篇論文主要是針對FIP1作較詳盡的研究。
FIP1 cDNA有654 bp,轉譯出一個217氨基酸、24 kD的蛋白質。Northern分析的結果顯示,此基因是可以受到auxin及jasmonic acid的誘導。此外,當FIP1大量表現在Columbia野生型阿拉伯芥時,發現轉植株的下胚軸在連續遠紅光或紅光照射下表現出不敏感(hyposensitive)的外表型,即較野生型(WT)阿拉伯芥長的下胚軸;而大量表現在加fin219突變體中時,則無任何外表型,暗示它的表現與有正確功能的FIN219有關。另外,FIP1 antisense轉殖株的外表型則呈現比野生型阿拉伯芥短的下胚軸,由此推測FIP1在遠紅光所調控的抑制下胚軸的途徑裡扮演一負向調節者。由北方墨漬法分析亦顯示,FIP1基因在照射白光、遠紅光中表現量有增加的趨勢;但是在藍光、紅光和黑暗中FIP1的表現並不明顯。此外,亦發現在光敏素A (phytochromo A)、光敏素B和其他光訊息傳遞途徑的突變體中,例如fin219和fhy,FIP1 mRNA的表現量下降。
而基因的表現,也與蛋白質在細胞內的位置有關;利用基因槍方式將GUS-FIP1質體送到洋蔥表皮細胞,發現GUS-FIP1融合蛋白表現在細胞質和細胞核,而且此細胞內的位置,並未受光的影響而改變。綜合目前研究顯示,FIP1和FIN219有交互作用且參與光訊息傳遞,特別是遠紅光和紅光。
zh_TW
dc.description.abstractTo further understand the function of FIN219 in light signaling during Arabidopsis development, a yeast two-hybrid approach was utilized to isolate FIN219-interacting partners. A gene FIP1 (FIN219-interacting protein 1) encoding a 24 kD of GST(2,4-Dinduced glutathione S-transferase,At1g78370) was recovered and interacting with the C-terminus of FIN219. Another FIN219-interacting partner FIP2 (FIN219-interacting protein 2) encoding a 79 kD of G1uRS (glutamyl-tRNA synthetase,at5g26707) was recovered and interacting with the C-terminus of FIN219, too. The transgenic plants overexpressing the FIP2 gene in wild type Columbia display a hyposensitive phenotype with longer hypocotyls than wild type in far red (FR) light. However, FIP2 T-DNA insertional mutants also exhibit a longer hypocotyl phenotype in both FR and R light conditions. The reasons that two opposite constructs generate similar results remain to be determined. So the thesis will focus on the characterization of FIP1 gene functions in Arabidopsis.
FIP1 gene encoding a 24 kD of protein with 217 amino acids can be induced by auxin and jasmonic acid according to the results of Northern analysis. The transgenic plants overexpressing the FIP1 gene in wild type Columbia display a hyposensitive phenotype with longer hypocotyls under continuous far-red and red light and this longer hypocotyl phenotype is regulated by FIN219; however, FIP1 antisense lines show an opposite phenotype, suggesting that FIP1 may act as a negative regulator for FR-mediated inhibition of hypocotyl elongation. Furthermore, the results of Northern blot analyses indicated that FIP1 gene expression is upregulated by white light and detectable in FR, but its expression is hardly detected in dark ,blue and red light conditions. Besides, its expression is reduced in phytochrome A and B mutants and several light signaling transducer such as fin2l9 and fhy1 mutants.
The GUS-FTP1 fusion protein is localized in both nucleus and cytoplasm based on the result of transient assays in onion cells. Taking all current results together, the FTP1 is interacting with F1N219 and involved in light signaling pathway, especially in FR and R light spectrum.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:17:27Z (GMT). No. of bitstreams: 0
Previous issue date: 2004
en
dc.description.tableofcontents縮寫表………………………………………………………………………………………………………………1
中文摘要……………………………………………………………………………………………………………2
英文摘要……………………………………………………………………………………………………………4
第一章 前言
一、導論………………………………………………………………………………………………………6
二、光訊息傳遞………………………………………………………………………………………………7
三、研究目標…………………………………………………………………………………………………11
四、酵母菌雙雜交法…………………………………………………………………………………………12
五、轉殖株之分析……………………………………………………………………………………………16
第二章 材料興方法
1. 質體之構築及製備………………………………………………………………………………………………17
1.1 質體構築方法………………………………………………………………………………………………19
1.1.1 質體的抽取……………………………………………………………………………………………19
1.1.2 RT (Reverse transcription)………………………………………………………………………19
1.1.3 PCR ……………………………………………………………………………………………………20
1.1.4 T-A cloning …………………………………………………………………………………………21
1.1.5 限制酵素(Restriction enzyme)之處理……………………………………………………………21
1.1.6 結合反應(Ligation)…………………………………………………………………………………22
1.1.7 大腸桿菌勝任細胞之製備(Sambrook et al.,1989)………………………………………………23
1.1.8 大腸桿菌之轉型及鑑定(Sambrook et al.,1989)…………………………………………………23
2. 構築酵母菌雙雜交法(yeast two hybrid)的質體及其分析方法……………………………………………24
2.1. 構築酵母菌雙雜交法(yeast two hybrid)的質體………………………………………………………24
2.2. 酵母菌轉殖…………………………………………………………………………………………………28
2.3. α-galactosidase分析……………………………………………………………………………………29
2.4. Colony-lift filter分析…………………………………………………………………………………29
2.5. 抽酵母菌質體法……………………………………………………………………………………………30
2.6. 酵母菌交配法(yeast mating)……………………………………………………………………………32
3. 大腸桿菌中大量表現的質體及其分析方法……………………………………………………………………33
3.1. 大腸桿菌中大量表現的質體………………………………………………………………………………33
3.2. SDS聚丙烯醯胺膠體電泳(Polyacrylamide gel electrophoresis PAGE)……………………………34
3.3. 蛋白質染色法………………………………………………………………………………………………37
3.4. FIN219-GBP和FIP1-His融合蛋白質的表達………………………………………………………………38
3.5. FIN219-GBP和FIPI-His融合蛋白質的純化………………………………………………………………40
3.6. 蛋白質的定量………………………………………………………………………………………………40
3.7. Pull down實驗 ……………………………………………………………………………………………41
4. FIP1與報導基因(reporter gene)融合的質體及其分析方法 ………………………………………………42
4.1. FIP1與報導基因(reporter gene)融合的質體 …………………………………………………………42
4.2. 基因槍法(particle bombardment)………………………………………………………………………44
4.3. GUS 活性染色分析…………………………………………………………………………………………46
5. 植物轉殖的質體及轉殖方法……………………………………………………………………………………47
5.1. 植物轉殖的質體……………………………………………………………………………………………47
5.2.阿拉伯芥之無菌栽培………………………………………………………………………………………50
5.3. 阿拉伯芥之轉殖及篩選……………………………………………………………………………………51
5.3.1. 阿拉伯芥之轉殖 ……………………………………………………………………………………51
5.3.2. 阿拉伯芥轉殖株之篩選 ……………………………………………………………………………53
5.4. check 轉殖秣之外表型……………………………………………………………………………………53
5.5. 植物蛋白質的萃取與定量…………………………………………………………………………………54
5.6. 北方分析(Northern blot) ………………………………………………………………………………54
5.6.1. 總RNA的抽取…………………………………………………………………………………………54
5.6.2. RNA sample 電泳……………………………………………………………………………………55
5.6.3. RNA轉印………………………………………………………………………………………………56
5.6.4. DIG系統………………………………………………………………………………………………57
5.7. 西方分析……………………………………………………………………………………………………58
6. 荷爾蒙誘導FIP1表現……………………………………………………………………………………………61
第三章 結果
1. 酵母菌雙雜交法………………………………………………………………………………………………62
1.1. 酵母菌雙雜交法質體的構築 …………………………………………………………………………62
1.2. 酵母菌雙雜交法 ………………………………………………………………………………………63
1.3. yeast mating …………………………………………………………………………………………64
1.4. Pull down assay………………………………………………………………………………………64
2. FIP1和FIP2基因的選殖………………………………………………………………………………………66
3. FIP1基因表現…………………………………………………………………………………………………67
4. 阿拉伯芥FIP1基因之研究……………………………………………………………………………………70
5. 阿拉伯芥FIP2基因之研究……………………………………………………………………………………73
6. FIP1蛋白質次細胞位置之研究………………………………………………………………………………75
第四章 討論 ………………………………………………………………………………………………………76
1. glutathione S-transferase (FTP1)生理功能的探討…………………………………………………76
2. glutamyl-tRNA synthetase (FTP2)生理功能的探討 …………………………………………………80
3. 未來展望……………………………………………………………………………………………………81
參考文獻 ……………………………………………………………………………………………………………82
附圖 …………………………………………………………………………………………………………………92
附錄一、一般藥品之配製…………………………………………………………………………………………130
附錄二、培養藥品之配製…………………………………………………………………………………………131
dc.language.isozh-TW
dc.title在阿拉伯芥中興FIN219交互作用蛋白質之功能分析zh_TW
dc.titleFunctional Studies of FIN219-Interacting Proteins in Arabidpsisen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee#VALUE!
dc.subject.keywordNULLen
dc.relation.page134
dc.rights.note未授權
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
沒有與此文件相關的檔案。
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved