Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24162
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何國川(Kuo-Chuan Ho)
dc.contributor.authorYing-Chan Hsuen
dc.contributor.author徐英展zh_TW
dc.date.accessioned2021-06-08T05:17:23Z-
dc.date.copyright2006-01-19
dc.date.issued2005
dc.date.submitted2005-10-13
dc.identifier.citation[1] Y. Hamakawa ed., Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications, Springer-Verlag, Germany (2004).
[2] T. Markvart, Solar Electricity, 2nd ed., John Wiley & Sons, Chichester (2000).
[3] M. Grätzel, “Photoelectrochemical cells,” Nature, 414, 338-344 (2001).
[4] R. H. Bube, Photovoltaic Materials, Imperial College Press, London (1998).
[5] M. A. Green, “Photovoltaic principles,” Physica E, 14, 11-17 (2002).
[6] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., 25, 676-677 (1954).
[7] S. Nakamura, KRI Report No. 8 of Phase XVI, KRI, Inc., Japan (2005).
[8] M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, “Solar cell efficiency tables (version 26),” Prog. Photovolt: Res. Appl., 13, 387-392 (2005).
[9] S. E. Shaheen, D. S. Ginley, and G. E. Jabbour, “Organic-based photovoltaics: toward low-cost power generation,” MRS Bulletin, 30, 10-19 (2005).
[10] M. Grätzel, “Mesoscopic solar cells for electricity and hydrogen production from sunlight,” Chem. Lett., 34, 8-13 (2005).
[11] J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, “A hybrid planar-mixed molecular heterojunction photovoltaic cell,” Adv. Mater., 17, 66-71 (2005).
[12] H. Spanggaard, F. C. Krebs, “A brief history of the development of organic and polymeric photovoltaics,” Sol. Energy Mater. Sol. Cells, 83, 125-146 (2004).
[13] M. B. Prince, “Silicon solar energy converters,” J. Appl. Phys., 26, 534-540 (1955).
[14] P. Rappaport, “The photovoltaic effect and its utilization,” RCA Rev., 20, 373-397 (1959).
[15] D. C. Reynolds, G. Leies, L. L. Antes, and R. E. Marburger, “Photovoltaic effect in cadmium sulfide,” Phys. Rev., 96, 533-534 (1954).
[16] D. A. Jenny, J. J. Loferski, and P. Rappaport, “Photovoltaic effect in GaAs p-n junctions and solar energy conversion,” Phys. Rev., 101, 1208-1209 (1956).
[17] N. S. Lewis, “Photoelectrochemistry,” Electrochem. Soc. Interface, Fall, 28-31 (1996).
[18] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, 238, 37-38 (1972).
[19] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature, 261, 402-403 (1976).
[20] S. Anderson, E. C. Constable, M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, K. R. Seddon, and R. D. Wright, “Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser,” Nature, 280, 571- 573 (1979).
[21] H. Hamnett and S. Dennison, “Bright future for liquid electrolyte solar cells?” Nature, 300, 687-688 (1982).
[22] G. Hodes, J. Manassen, and D. Cahen, “Photoelectrochemical energy conversion storage using polycrystalline chalcogenide electrodes,” Nature, 261, 403-404 (1976).
[23] B. Miller and A. Heller, “Semiconductor liquid junction solar cells based on anodic sulphide films,” Nature, 262, 680-681 (1976).
[24] J. Gobrecht, H. Tributsch, and H. Gerischer, “Performance of synthetical n-MoSe2 in electrochemical solar cells,” J. Electrochem. Soc., 125, 2085-2086 (1978).
[25] A. J. Bard, “Photoelectrochemistry,” Science, 207, 139-144 (1980).
[26] N. S. Lewis, “Artificial photosynthesis,” Am. Sci., 83, 534-541 (1995).
[27] A. J. Bard, Integrated Chemical Systems: A Chemical Approach to Nanotechnology, John Wiley & Sons, New York (1994).
[28] M. Fujihira, Y. Satoh, and T. Osa, “Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2,” Nature, 293, 206-208 (1981).
[29] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev., 95, 69-96 (1995).
[30] G. N. Schrauzer and T. D. Guth, “Photolysis of water and photoreduction of nitrogen on titanium dioxide,” J. Am. Chem. Soc., 99, 7189-7193 (1977).
[31] M. Sharon, P. Veluchamy, C. Natarajan and D. Kumar, “Solar rechargeable battery- principle and materials,” Electrochim. Acta, 36, 1107-1126 (1991).
[32] B. J. Tufts, I. L. Abrahams, P. G. Santangelo, G. N. Ryba, L. G. Casagrande, and N. S. Lewis, “Chemical modification of n-GaAs electrodes with Os3+ gives a 15% efficient solar cell,” Nature, 326, 861-862 (1987).
[33] H. Meier, “Photosensitization of inorganic solids,” Photochem. Photobiol., 16, 219-241 (1972).
[34] K. Kalyanasundaram and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices,” Coord. Chem. Rev., 77, 347-414 (1998).
[35] S. Namba and Y. Hishiki, “Color sensitization of zinc oxide with cyanine dyes,” J. Phys. Chem., 69, 774-779 (1965).
[36] J. Desilvestro, M. Grätzel, L. Kavan, J. Moser, and J. Augustynski, “Highly efficient sensitization of titanium dioxide,” J. Am. Chem. Soc., 107, 2988-2990 (1985).
[37] N. Vlachopoulos, P. Liska, J. Augustynski, and M. Grätzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films,” J. Am. Chem. Soc., 110, 1216-1220 (1988)
[38] A. Hagfeldt and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems,” Chem. Rev., 95, 49-68 (1995).
[39] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, and S.-E. Lindquist, “High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes,” J. Phys. Chem. B, 101, 2598-2601 (1997).
[40] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda and V. P. S. Perera, “An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc,” Chem. Commun., 15-16 (1999).
[41] R. Vogel, P. Hoyer, and H. Weller, “Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors,” J. Phys. Chem. B, 98, 3183-3188 (1994).
[42] L. Spanhel and M. A. Anderson, “Synthesis of porous quantum-size CdS membranes: photoluminescence phase shift and demodulation measurements,” J. Am. Chem. Soc., 112, 2278-2284 (1990).
[43] M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. C: Photochem. Rev., 4, 145-153 (2003).
[44] B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353, 737-740 (1991).
[45] A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Acc. Chem. Res., 33, 269-277 (2000).
[46] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye- sensitized solar cells,” J. Photochem. Photobiol. A: Chem., 164, 3-14 (2004).
[47] N. Papageorgiou, W. F. Maier, and M. Grätzel, “An iodine/triiodide reduction electrocatalyst for aqueous and organic media,” J. Electrochem. Soc., 144, 876-884 (1997).
[48] Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, “I-/I3- redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye- sensitized solar cells,” J. Photochem. Photobiol. A: Chem., 164, 153-157 (2004).
[49] T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, and E. Abe, “Properties of several types of novel counter electrodes for dye-sensitized solar cells,” J. Electroanal. Chem., 574, 77-83 (2004).
[50] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes,” J. Am. Chem. Soc., 115, 6382-6390 (1993).
[51] C. J. Barbé, F. Arendse P. Comte M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc., 80, 3157-3171 (1997).
[52] Y. Li, J. Hagen, W. Schaffrath, P. Otschik, and D. Haarer, “Titanium dioxide films for photovoltaic cells derived from a sol-gel process,” Sol. Energy Mater. Sol. Cells, 56, 167-174 (1999).
[53] A. Zaban, S. T. Aruna, S. Tirosh, B. A. B. A. Gregg, and Y. Mastai, “The effect of the preparation condition of TiO2 colloids on their surface structures,” J. Phys. Chem. B, 104, 4130-4133 (2000).
[54] K. Srikanth, Md. M. Rahman, H. Tanaka, K. M. Krishna, T. Soga, M. K. Mishra, T. Jimbo, and M. Umeno, “ Investigation of the effect of sol processing parameters on the photoelectrical properties of dye-sensitized TiO2 solar cells,” Sol. Energy Mater. Sol. Cells, 65, 171-177 (2001).
[55] A. Fillinger, D. Soltz, and B. A. Parkinson, “Dye sensitization of natural anatase crystals with a ruthenium-based dye,” J. Electrochem. Soc., 149, A1146-A1156 (2002).
[56] Z.-S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev., 248, 1381-1389 (2004).
[57] A. F. Nogueira, C. Longo, and M. A. De Paoli, “Polymers in dye sensitized solar cells: overview and perspectives,” Coord. Chem. Rev., 248, 1455-1468 (2004).
[58] H. Nusbaumer, J.-E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Grätzel, “CoII(dbbip)22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells,” J. Phys. Chem. B, 105, 10461-10464 (2001).
[59] G. Oskam, B. V. Bergeron, G. J. Meyer, and P. C. Searson, “Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells,” J. Phys. Chem. B, 105, 6867-6873 (2001).
[60] H. Nusbaumer, S. M. Zakeeruddin, J.-E. Moser, and M. Grätzel, “An alternative efficient redox couple for the dye-sensitized solar cell system” Chem. Eur. J., 9, 3756-3763 (2003).
[61] F. Cao, G. Oskam, and P. C. Searson, “A solid state, dye sensitized photoelectrochemical cell,” J. Phys. Chem., 99, 17071-17073 (1995).
[62] E. Stathatos, P. Lianos, U. Lavrencic-Stangar, and B. Orel, “A high-performance solid-state dye-sensitized photoelectrochemical cell employing a nanocomposite gel electrolyte made by the sol-gel route,” Adv. Mater., 14, 354-357 (2002).
[63] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, K. G. U. Wijayantha and V. P. S. Perera, “A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex,” J. Phys. D: Appl. Phys., 31, 1492-1496 (1998).
[64] B. O’Regan and D. T. Schwartz, “Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL'NCS/CuSCN: initiation and potential mechanisms,” Chem. Mater., 10, 1501-1509 (1998).
[65] R. Kawano, H. Matsui, C. Matsuyama, A. Sato, Md. A. B. H. Susan, N. Tanabe, and M. Watanabe, “High performance dye-sensitized solar cells using ionic liquids as their electrolytes,” J. Photochem. Photobiol. A: Chem., 164, 87-92 (2004).
[66] P. Wang, S. M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker, and M. Grätzel, “A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells” J. Am. Chem. Soc., 126, 7164-7165 (2004).
[67] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies,” Nature, 395, 583-585 (1998)
[68] Y. Saito, N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada, and S. Yanagida, “Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor,” Electrochem. Commun., 6, 71-74 (2004).
[69] L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, and M. Grätzel, “Organic dye for highly efficient solid-state dye-sensitized solar cells,” Adv. Mater., 17, 813-815 (2005).
[70] A. S. Polo, M. K. Itokazu, and N. Y. Murakami Iha, “Metal complex sensitizers in dye-sensitized solar cells,” Coord. Chem. Rev., 248, 1343-1361 (2004).
[71] E. Galoppini, “Linkers for anchoring sensitizers to semiconductor nanoparticles,” Coord. Chem. Rev., 248, 1283-1297 (2004).
[72] S. Ruile, O. Kohle, C. Klemenz, P. Péchy, and M. Grätzel, “Novel sensitisers for photovoltaic cells. Structural variations of Ru(II) complexes containing 2,6-bis (1-methylbenzimidazol-2-yl)pyridine,” Inorg. Chim. Acta, 261, 129-140 (1997).
[73] A. Islam, H. Sugohara, and H. Arakawa, “Molecular design of ruthenium(II) polypyridyl photosensitizers for efficient nanocrystalline TiO2 solar cells,” J. Photochem. Photobiol. A: Chem., 158, 131–138 (2003).
[74] Z.-S. Wang, C.-H Huang, Y.-Y. Huang, B.-W. Zhang, P.-H. Xie, Y.-J. Hou, K. Ibrahim, H.-J. Qian, and F.-Q. Liu, “Photoelectric behavior of nanocrystalline TiO2 electrode with a novel terpyridyl ruthenium complex,” Sol. Energy Mater. Sol. Cells, 71, 261-271 (2002).
[75] R. Argazzi, N. Y. Murakami Iha, H. Zabri, F. Odobel, and C. A. Bignozzi, “Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors,” Coord. Chem. Rev., 248, 1299-1316 (2004).
[76] K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, “Molecular design of coumarin dyes for dye efficient dye-sensitized solar cells,” J. Phys. Chem. B, 107, 597-606 (2003).
[77] S. Ferrere and B. A. Gregg, “New perylenes for dye sensitization of TiO2,” New J. Chem., 26, 1155-1160 (2002).
[78] K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, “Novel polyene dyes for highly efficient dye-sensitized solar cells,” Chem. Comm., 252-253 (2003).
[79] T. Horiuchi, H. Miura, and S. Uchida, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells,” Chem. Comm., 3036-3037 (2003).
[80] G. Ramakrishna and H.N. Ghosh, “Emission from the charge transfer state of xanthene dye-sensitized TiO2 nanoparticles: a new approach to determining back electron transfer rate and verifying the Marcus inverted regime,” J. Phys. Chem. B, 105, 7000-7008 (2001).
[81] J. Liu, E. N. Kadnikova, Y. Liu, M. D. McGehee, and J. M. J. Fréchet, “Polythiophene containing thermally removable solubilizing groups enhances the interface and the performance of polymer-titania hybrid solar cells,” J. Am. Chem. Soc., 126, 9486-9487 (2004).
[82] A. Ehret, L. Stuhl, and M. T. Spitler, “Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine Dyes,” J. Phys. Chem. B, 105, 9960-9965 (2001).
[83] Q.-H. Yao, F.-S. Meng, F.-Y. Li, H. Tian, and C.-H. Huang, “Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode,” J. Mater. Chem., 13, 1363-1379 (2004).
[84] W. M. Campbell, A. K. Burrell, D. L. Officer, and K. W. Jolley, “Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell,” Coord. Chem. Rev., 248, 1363-1379 (2004).
[85] J. He, G. Benkö, F. Korodi, T. Polívka, R. Lomoth, B. Åkermark, L. Sun, A. Hagfeldt, and V. Sundström, “Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode,” J. Am. Chem. Soc., 124, 4922-4932 (2002).
[86] A. Dhanabalan, K. J. van Duren, P. A. van Hal, J. L. J. Dongen, and R. A. J. Janssen, “Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells,” Adv. Funct. Mater., 11, 255-262 (2001).
[87] C. J. Brabec, C. Winder, N. S. Sacriciftic, J. C. Hummeden, A. Dhanabalan, P. A. van Hal, and R. A. J. Janssen, “A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes,” Adv. Funct. Mater., 12, 709-712 (2002).
[88] C. Longo, A. F. Nogueira, M.-A. De Paoli, and H. Cachet, “Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy,” J. Phys. Chem. B, 106, 5925–5930 (2002).
[89] C. Longo, J. Freitas, and M.-A. De Paoli, “Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte,” J. Photochem. Photobiol. A: Chem., 159, 33-39 (2003).
[90] T. Asano, T. Kubo, and Y. Nishikitani, “Electrochemical properties of dye-sensitized solar cells fabricated with PVDF-type polymeric solid electrolytes,” J. Photochem. Photobiol. A: Chem., 164, 111–115 (2004).
[91] M. Grätzel, Heterogeneous Photochemical Electron Transfer, CRC Press, Inc., Florida (1989).
[92] W. C. Dickinson and P. N. Cheremisinoff ed., Solar Energy Technology Handbook: Part A Engineering Fundamentals, Marcel Dekker Inc., New York (1980).
[93] Annual Book of ASTM Standard, G490-00a Standard solar constant and zero air mass solar spectral irradiance tables, Vol. 15.03 (2003).
[94] Annual Book of ASTM Standard, G159-98 Standard tables for references solar spectral irradiance at air mass 1.5: direct normal and hemispherical for a 37° tilted surface, Vol. 14.04 (2003).
[95] G. P. Smestad, Optoelectronics of Solar Cells, SPIE press, Washington (2002).
[96] A. Goetzberger and C. Hebling, “Photovoltaic materials, past, present, future,” Sol. Energy Mater. Sol. Cells, 62, 1-19 (2000).
[97] J. J. Loferski, “Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion,” J. Appl. Phys., 27, 777-784 (1956).
[98] W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys., 32, 510-519 (1961).
[99] G. Smestad, “Testing of dye sensitized TiO2 solar cells II: theoretical voltage output and photoluminescence efficiencies,” Sol. Energy Mater. Sol. Cells, 32, 273-288 (1994).
[100] A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, New York (1992).
[101] P. Baruch, A. De Vos, P. T. Landsberg, and J. E. Parrott, “On some thermodynamic aspects of photovoltaic solar energy conversion,” Sol. Energy Mater. Sol. Cells, 36, 201-222 (1995).
[102] Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, “Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films,” J. Phys. Chem., 100, 20056-20062 (1996).
[103] B. O’Regan, J. Moser, M. Anderson, and M. Grätzel, “Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation,” J. Phys. Chem., 94, 8720-8726 (1990).
[104] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamental and Applications, 2nd ed., John Wiley & Sons, New York (2001).
[105] J. R. Macdonald ed., Impedance Spectroscopy, John Wiley & Sons, New York (1987).
[106] C. M. A. Brett and A. M. O. Brett, Electrochemistry: Principle, Methods, and Applications, Oxford University Press Inc., New York (1994).
[107] R. D. Giglia and S. Y. Huang, U.S. Pat., 4,375,318 (1983).
[108] Y.-C. Hsu, H.-G. Zheng, J. T. Lin, and K.-C. Ho, “Structural variations of Ru(II) complexes for photovoltaic cells,” Sol. Energy Mater. Sol. Cells, 87, 357-367 (2005).
[109] M. Velusamy, K. R. J. Thomas, J. T. Lin, Y.-C. Hsu, and K.-C. Ho, “Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells,” Org. Lett., 7, 1899-1902 (2005).
[110] H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures, 2nd ed., John Wiley & Sons, New York (1974).
[111] E. M. Levin and H. F. McMurdie, Phase Diagrams for Ceramists, 76, Figure 4258, The American Ceramic Society, Inc., U.S.A. (1975).
[112] S. Ngamsinlapasathian, T. Sreethawong, Yoshikazu, and S. Yoshikawa, “Single- and double-layered mesoporous TiO2/P25 TiO2 electrode for dye-sensitized solar cell,” Sol. Energy Mater. Sol. Cells, 86, 269-282 (2005).
[113] N.-G. Park, J. van de Lagemaat, and A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells,” J. Phys. Chem. B, 104, 8989-8994 (2000).
[114] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, and T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity,” Pure Appl. Chem., 57, 603-619 (1985).
[115] R.-B. Lin and S- M. Shih, “Characterization of Ca(OH)2/fly ash sorbents for flue gas desulfurization,” Powder Technol., 131, 212-222 (2003).
[116] U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep., 48, 53-229 (2003).
[117] V. Shklover, M.-K. Nazeeruddin, S. M. Zakeeruddin, C. Barbé, A. Kay, T. Haibach, W. Steurer, R. Hermann, H.-U. Nissen, and M. Grätzel, “Structure of nanocrystalline TiO2 powders and precursor to their highly efficient photosensitizer,” Chem. Mater., 9, 430-439 (1997).
[118] S. D. Burnside, V. Shklover, C. Barbé, P. Comte, F. Arendse, K. Brooks, and M. Grätzel, “Self-organization of TiO2 nanoparticles in thin films,” Chem. Mater., 10, 2419-2425 (1998).
[119] JCPDS, Powder Diffraction File, Card No. 21-1272, International Centre for Diffraction Data, Philadelphia, U.S.A. (1980).
[120] JCPDS, Powder Diffraction File, Card No. 21-1276, International Centre for Diffraction Data, Philadelphia, U.S.A. (1980).
[121] JCPDS, Powder Diffraction File, Card No. 21-1250, International Centre for Diffraction Data, Philadelphia, U.S.A. (1980).
[122] JCPDS, Powder Diffraction File, Card No. 4-0802, International Centre for Diffraction Data, Philadelphia, U.S.A. (1974).
[123] G. Kron, U. Rau, M. Dürr, T. Miteva, G. Nelles, A. Yasuda, and J. H. Werner, “Diffusion limitations to I3-/I- electrolyte transport through nanoporous TiO2 networks,” Electrochem. Solid-State Lett., 6, E11-E14 (2003).
[124] G. P. Smestad and M. Grätzel, “Demonstrating electron transfer and nanotechnology: a nature dye-sensitized nanocrystalline energy converter,” J. Chem. Educ., 75, 752-756 (1998).
[125] O. Kohle, M. Grätzel, A. F. Meyer, and T. B. Meyer, “The photovoltaic stability of bis(isothiocyanato)ruthenium(II)-bis-2,2'-bipyridine-4,4'-dicarboxylic acid and related sensitizers,” Adv. Mater., 9, 904-906 (1997).
[126] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Transport-Limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B, 107, 11307-11315 (2003).
[127] A. Solbrand, A. Henningsson, S. Södergren, H. Lindström, A. Hagfeldt, and S.-E. Lindquist, “Charge transport properties in dye-sensitized nanostructured TiO2 thin film electrodes studied by photoinduced current transients,” J. Phys. Chem. B, 103, 1078-1083 (1999).
[128] J. van de Lagemaat and A. J. Frank, “Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies,” J. Phys. Chem. B, 105, 11194-11205 (2001).
[129] K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A. J. Frank, “Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells,” J. Phys. Chem. B, 107, 7759-7767 (2003).
[130] L. Han, N. Koide, Y. Chiba, and T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells,” Appl. Phys. Lett., 84, 2433-2435 (2004).
[131] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte,” Nat. Mater., 2, 402-407 (2003).
[132] S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B, 101, 2576-2582 (1997).
[133] S. Södergren, A. Hagfeldt, J. Olsson, and S.-E. Lindquist, “Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells,” J. Phys. Chem., 98, 5552-5556 (1994).
[134] K. Itaya, I. Uchida, and V. D. Neff, “Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues,” Acc. Chem. Res., 19, 162-168 (1986).
[135] P. J. Kulesza and M. Faszynska, “Indium(III)-hexacyanoferrate as a novel polynuclear mixed-valent inorganic material for preparation of thin zeolitic films on conducting substrates,” J. Electroanal. Chem., 252, 461-466 (1988).
[136] Z. Jin and S. Dong, “Spectroelectrochemical studies of indium hexacyanoferrate film modified electrodes,” Electrochim. Acta, 35, 1057-1060 (1990).
[137] K.-C. Ho and J.-C. Chen, “Spectroelectrochemical studies of indium hexacyanoferrate electrodes prepared by the sacrificial anode method,” J. Electrochem. Soc., 145, 2334-2340 (1998).
[138] L.-C. Chen, K.-S. Tseng, and K.-C. Ho, “Enhanced electrodeposition of indium hexacyanoferrate thin films through improved plating solution stability,” J. Solid State Electrochem., 7, 1-5 (2002).
[139] M. A. Malik, G. Horanyi, P. J. Kulesza, G. Inzelt, V. Kertesz, R. Schmidt, and E. Czirok, “Microgravimetric monitoring of transport of cations during redox reactions of indium(III) hexacyanoferrate(III,II) radiotracer evidence for the flux of anions in the film,” J. Electroanal. Chem., 452, 57-62 (1998).
[140] L.-C. Chen, K.-S. Tseng, and K.-C. Ho, “Enhanced electrodeposition of indium hexacyanoferrate thin films through improved plating solution stability,” J. Solid State Electrochem., 7, 1-5 (2002).
[141] L.-C. Chen, K.-S. Tseng, Y.-H. Huang, and K.-C. Ho, “Novel electrochromic batteries: II. An InHCF-WO3 cell with a high visual contrast,” J. New Mater. Electrochem. Syst., 5, 213-222 (2002).
[142] V. Malev, V. Kurdakova, V. Kondratiev, and V. Zigel, “Indium hexacyanoferrate films, voltammetric and impedance characterization,” Solid State Ionics, 169, 95-104 (2004).
[143] A. L. Crumbliss, P. S. Lugg, and N. Morosoff, “Alkali metal cation effects in a Prussian blue surface-modified electrode,” Inorg. Chem., 23, 4701-4708 (1984).
[144] M. Jayalakshmi, H. Gomathi, G. P. Rao, “Investigations on the electrochemical behaviour of Prussian blue films in acetonitrile,” Sol. Energy Mater. Sol. Cells, 45, 201-209 (1997).
[145] L. M. Siperko and T. Kuwana, “Electrochemical and spectroscopic studies of metal hexacyanoferrate films. I. Cupric hexacyanoferrate,” J. Electrochem. Soc., 130, 396-402 (1983).
[146] D. Engel and E. W. Grabner, “Copper hexacyanoferrate-modified glassy carbon: a novel type of potassium-selective electrode,” Ber. Bunsenges. Phys. Chem., 89, 982-986 (1985).
[147] C. J. Wen, B. A. Boukamp, R. A. Huggins, and W. Weppner, “Thermodynamic and mass transport properties of LiAl,” J. Electrochem. Soc., 126, 2258-2266 (1979).
[148] D. Aurbach, M. D. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, U. Heider, and L. Heider, “Common electroanalytical behavior of Li intercalation processed into graphite and transition metal oxides,” J. Electrochem. Soc., 145, 3024-3034 (1998).
[149] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. Von Zelewsky, “Ru(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence,” Coord. Chem. Rev., 84, 85-277 (1988).
[150] V. Aranyos, J. Hjelm, A. Hagfeldt, and H. Grennberg, “Electropolymerisable bipyridine ruthenium(II) complexes. Synthesis and electrochemical characterization of 4-(3-methoxystyryl)- and 4,4'-di(3-methoxystyryl)-2,2'- bipyridine ruthenium complexes,” J. Chem. Soc. Dalton Trans., 1319-1325 (2001).
[151] D. A. Gulino and H. G. Drickamer, “High-pressure studies of the dye-sensitized photocurrent spectrum of titanium dioxide,” J. Phys. Chem., 88, 1173-1176 (1984).
[152] G. P. Smestad S. Spiekermann, J. Kowalik; C. D. Grant, A. M. Schwartzberg, J. Zhang, L .M. Tolbert, and E. Moons “A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices,” Sol. Energy Mater. Sol. Cells, 76, 85-105 (2003).
[153] P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin, and M. Grätzel, “Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells,” Adv. Mater., 16, 1806-1811 (2004).
[154] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell,” J. Phys. Chem. B, 107, 8981-8987 (2003).
[155] Q. Zhou, Q. Hou, L. Zheng, X. Deng, G. Yu, and Y. Cao, “Fluorene-based low band-gap copolymers for high performance photovoltaic devices,” Appl. Phys. Lett., 84, 1653-1655 (2004).
[156] K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells,” New J. Chem., 27, 783-785 (2003).
[157] R. Yang, R. Tian, J. Yan, Y. Zhang, J. Yang, Q. Hou, W. Yang, C. Zhang, and Y. Cao, “Deep-red electroluminescent polymers: synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices,” Macromolecules, 38, 244-253 (2005).
[158] R. Yang, R. Tian, Q. Hou, W. Yang, and Y. Cao, “Synthesis and optical and electroluminescent properties of novel conjugated copolymers derived from fluorene and benzoselenadiazole,” Macromolecules, 36, 7453-7460 (2003).
[159] K. R. J. Thomas, J. T. Lin, M. Velusamy, Y.-T. Tao, and C.-H. Chuen, “Color tuning in benzo[1,2,5]thiadiazole-based small molecules by amino conjugation/ deconjugation: bright red-light-emitting diodes,” Adv. Funct. Mater., 14, 83-90 (2004).
[160] H. Ozeki, A. Nomoto, K. Ogawa, Y. Kobuke, M. Murakami, K. Hosoda, M. Ohtani, S. Nakashima, H. Miyasaka, and T. Okada, “Role of the special pair in the charge-separating event in photosynthesis,” Chem. Eur. J., 10, 6393-6401 (2004).
[161] C. A. Kelly, F. Farzad, D. W. Thompson, J. M. Stipkala, and G. J. Meyer, “Cation-controlled interfacial charge injection in sensitized nanocrystalline TiO2,” Langmuir, 15, 7047-7054 (1999).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24162-
dc.description.abstract本論文主要目的是探討固態氧化還原對、釕錯合物以及噻吩有機分子於染料敏化太陽能電池之應用及其性能表現。
首先,以N3為染料進行二氧化鈦染料敏化太陽能電池組裝與測試,並從中歸納出影響元件光電位、光電流以及轉換效率之因素。其中,光電位受光激發注入之電子與光電極界面上電子-碘離子再結合之暗電流的影響。因此,增加注入的電子數與減少界面之再結合可以提升光電位。光電流是由激發光敏染料產生,且受到入射單光光子-電子轉化效率的影響,所以具有較高之近紅外線區吸收係數之染料與較長壽命之光生電子可以得到較高的電流,而電子於二氧化鈦薄膜中之壽命與傳遞性質可以經由暫態光電位與光電流量測估算求得。另外,由等效電路之分析與還原電流之量測,可以推導出光電流-電位之經驗模型,並可定量描述其光電流-電位曲線之行為。
本研究初期選用鐵氰化銦(InHCF)為氧化還原對,以組裝出具有高光電位之固態染料敏化二氧化鈦太陽能電池。因為InHCF之氧化還原反應需要鉀離子的嵌入/遷出,所以選用含飽和鉀離子之poly(2-acrylamido-2-methylpropane-sulfonic acid)(K-PAMPS)高分子電解質。由於N3染料與InHCF之接觸界面不佳且鉀離子擴散速率較低,造成此固態元件效率偏低。若將染料分佈於高分子電解質中,則可以改善此界面性質,使得元件較偏向再生式電池的表現。為了更提升N3染料與InHCF之界面性質與可逆反應,直接將鋰離子摻雜之InHCF或鐵氰化銅(CuHCF)氧化還原對鍍於染料敏化二氧化鈦電極表面上,然而,對電極與光電極之接觸界面性質不佳,使電子轉移阻力過大,造成元件之光電位損失,影響元件性能表現。處於氧化態之染料與InHCF或CuHCF之還原反應太慢也是影響電流與效率的重要因素。此外,CuHCF之電子轉移阻力較大,也使得氧化染料之還原再生反應較慢,元件效率較低。
本研究嘗試以由中研院化學所林建村教授實驗室所製備之具有低pi*軌域的phenanthrenyl(TAPNB)配位基之釕錯合物,進行染料敏化太陽能電池組裝。由光譜與電化學量測,可知錯合物之激發能階位置可以搭配二氧化鈦導電帶。由電池性能量測結果顯示,雖然其開環電位相近,但短路電流卻比含N3染料之元件低一個數量級以上,所以能量轉換效率比較低(1%以下),一方面是因光生電子壽命較N3低,另一方面可能是因為立體障礙而使得錯合物吸附量較少。另外,當硫氰配位基被吡啶置換後,會使得金屬-配位基電荷轉移(Ru(II) → TAPNB)能量增加,造成吸收光譜藍位移,但吸附量卻增加,因此使得效率提升。當分子之羧酸基置換成乙酯基後,會使得錯合物在二氧化鈦表面的吸附量減少且與半導體之作用力亦相對減弱,因而產生較低之光電流與效率。
由中研院化學所林建村教授實驗室所製備之四種以benzothiadiazole與benzoselenadiazole為發色團,並以2-噻吩-2'-氰丙烯酸為anchor之有機染料進行染料敏化太陽能電池之性能量測。當分子中之苯基被噻吩基置換後,會使分子共軛性質增加且結構共平面使得光譜吸收紅位移。然而,由暫態實驗量測,此共平面結構並不能加速電荷分離或抑制染料與電子之再結合反應。當以苯基連接時,效率可顯著的提升至4%,這是因為染料之彎曲非共平面結構,而使得電子之再結合反應可以有效的被抑制。此以二苯胺為施體與噻吩氰丙烯酸為受體,並以benzothiadiazole與benzoselenadiazole為發色團之有機染料,能提供有效的電荷轉移並加速電荷分離,使光能量轉換效率達4%。
zh_TW
dc.description.abstractThe object of this thesis is to investigate the behavior of the solid-state redox couples and the performance of Ru complexes or thienyl molecules used as sensitizers in the dye-sensitized solar cells (DSSCs).
At first the N3 sensitizer is used as a model compound in a TiO2 DSSC to find out the factors that affect the photovoltage, photocurrent, and power conversion efficiency. The photovoltage is influenced by the photoinjected electron and the dark current caused from the recombination of electrons with I3- ions through TiO2/electrolyte and FTO/electrolyte interfaces. Thus, the photovoltage can be raised by increasing the injected electron and decreasing the recombination at the interface. The photocurrent induced from radiant power is affected by the value of incident photon-to-current conversion efficiency (IPCE) that is generated from energetic excitation of the sensitizer. The high absorption coefficient of the sensitizer extending to near infrared and long lifetime of photoinjected electron are necessary to achieve high photocurrent. The lifetime and transport of electrons in the TiO2 film can be estimated by transient photovoltage and photocurrent measurement. From the empirical model for a DSSC derived from the equivalent circuit and the reduction current, the behavior of the photocurrent-voltage curve can be predicted quantitatively.
To fabricate a high-voltage, solid-state TiO2 DSSC, indium hexacyanoferrate (InHCF), was initially chosen as the redox couple. Since redox reaction of InHCF involves the K+ insertion/extraction, the KCl-saturated poly(2-acrylamido 2-methylpropanesulfonic acid) (K-PAMPS), a K+-conducting solid polymer electrolyte (SPE), was also incorporated to the cell. The imperfect N3 dye/InHCF contact by the SPE incorporation and slow solid-state diffusion of K+ in InHCF should be mainly responsible for the poor efficiency. Using a dye-incorporated SPE was found to improve the contact and could attain a regenerative cell. The imperfect dye/redox couple contact can be further improved by directly coating the lithium-doped redox couple, such as InHCF or cupric hexacyanoferrate (CuHCF), onto the dye/TiO2 surface. However, the poor contact between the counter electrode and dye/TiO2 electrode cause the charge-transfer resistance at the interface and voltage loss to enlarge. The slow reductive reaction between oxidized dye and Li ion-doped InHCF or CuHCF also plays an important role in determining photocurrent and efficiency. Besides, large charge-transfer resistance of CuHCF results in a low regenerating rate of oxidized N3 sensitizer and a low efficiency.
Ruthenium(II) complexes with a new low pi* phenanthrenyl ligand (TAPNB) were obtained from Prof. Jiann T’suen Lin in Institute of Chemistry of Academia Sinica. The spectroscopic and electrochemical measurements showed that the excited states of those complexes matched the conduction band of titanium dioxide. The overall power conversion efficiencies of the solar cells utilized these new complexes as sensitizers for TiO2 films were less (under 1%) than that of N3-sensitized cell. Although the open-circuit voltage was similar to that of N3-sensitized cell, the short-circuit current was about one order lower. Such outcome may be attributed to the short lifetime of photoinjected electrons and less amount of dyes adsorbed due to the steric congestion of the complex. When NCS ligand was replaced by pyridyl ligand, the energy of metal-to-ligand charge transfer (Ru(II) → TAPNB) increased and resulted in blue shift of the absorption band. When carboxylic acid anchor was replaced by acetyl ester, the weaker interaction between the semiconductor and the ligand led to diminishing amount of the complex adsorbed and less photocurrent was detected.
Four organic sensitizers based on benzothiadiazole and benzoselenadiazole chromophores with 2-thienyl-2'-cyano acrylic acid anchors were obtained from Prof. Jiann T’suen Lin in Institute of Chemistry of Academia Sinica and incorporated in DSSCs. When the phenylene linker is replaced by a thiophene unit, the improvements in donor property and coplanarity causes a red shift in absorption spectrum. However, the coplanar geometry can neither enhance the charge separation nor decelerate the recombination. The result is proved by the transient measurements. With the phenylene linker, the quantum yield is greatly improved and the cell efficiency approaches 4%. It may be due to the twisted nonplanar structure, which decelerates the recombination of charges. The organic sensitizers that contain diphenylamine donors and cyano acrylic acid acceptors bridged through an aromatic linker and a benzothiadiazole or benzoselenadiazole fragment ensure charge-transfer and facilitate charge separation. The conversion efficiency of a DSSC using the benzothiadiazole dye can reach as high as 4%.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:17:23Z (GMT). No. of bitstreams: 1
ntu-94-F89524023-1.pdf: 3070196 bytes, checksum: 9661bdbf60cfc264568f7fcd7314fb4a (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAcknowledgement I
Chinese abstract III
English abstract V
Table of contents VII
List of tables XII
List of figures XIII
Nomenclatures XX
Chapter 1 Introduction 1
1-1 Solar cells 1
1-1-1 Photovoltaic cells 4
1-1-2 Photoelectrochemical cells 7
1-1-3 Dye-sensitized solar cells 10
1-2 Review on the DSSCs 12
1-2-1 TiO2 based DSSCs 12
1-2-2 The redox couples and mediators 13
1-2-3 The dye sensitizers 15
1-2-4 The characteristic of DSSCs 20
1-3 The motivations of this dissertation 23
1-4 The framework in this research 24
Chapter 2 Theories 27
2-1 Principle of semiconductor 27
2-1-1 Energy band structure 27
2-1-2 Fermi level and the junction 32
2-2 Theoretic power conversion efficiency 35
2-2-1 Solar spectrum 35
2-2-2 Charge transfer and power efficiency 37
2-3 Electron transfer of dye sensitizer 42
2-3-1 Corresponding mechanism in DSSCs 42
2-3-2 Electron injection efficiency 45
2-4 Electrochemical impedance and equivalent circuit analyses 47
2-4-1 Electrochemical impedance spectroscopy 47
2-4-2 Equivalent circuit and model 51
Chapter 3 Experimental 53
3-1 Instruments 53
3-2 Reagents and materials 54
3-3 Experimental procedures 56
3-3-1 Substrates and reagents 56
3-3-2 Preparation of dye-sensitized TiO2 film electrodes 56
3-3-2-1 TiO2 film preparation 56
3-3-2-2 Dye-sensitized TiO2 film preparation 57
3-3-3 Preparation of Pt film electrodes 58
3-3-4 Preparation of mediators 58
3-3-4-1 Liquid electrolyte of lithium iodide and iodine 58
3-3-4-2 Solid-state mediator of metal hexacyanoferrate 58
3-3-5 Preparation of organic dyes 59
3-3-5-1 Ruthenium dyes 59
3-3-5-2 Organic dyes 63
3-3-6 Cell assembling 64
3-4 Transient photovoltage and photocurrent 65
3-5 The properties of the TiO2 film 67
3-5-1 Thermogravimetric analysis 67
3-5-2 X-ray analysis 67
3-5-3 Surface area and pore size distribution analyses 68
3-6 Performance of the DSSCs 68
3-6-1 Experimental setup 68
3-6-2 Photocurrent-voltage (I-V) characteristic 68
3-6-3 Impedance measurement 69
3-6-4 Incident photon-to-current conversion efficiency (IPCE) 69
Chapter 4 Properties of TiO2 film and its application in the N3-based DSSC 70
4-1 Analysis and properties of TiO2 and Pt films 70
4-1-1 Thermogravimetric analysis 70
4-1-2 Surface area and pore size distribution analyses 72
4-1-3 TiO2 crystal and size analyses 75
4-1-4 Properties of sputtering Pt film 77
4-2 DSSCs based on N3 sensitizer 79
4-2-1 Power efficiency 79
4-2-2 IPCE measurement 81
4-2-3 Dye adsorption 83
4-2-4 Transient photovoltage and photocurrent 85
4-3 Equivalent circuit of the DSSCs 88
4-3-1 Equivalent circuit 88
4-3-2 Empirical model for I-V curve 91
Chapter 5 Solid-state mediators with high redox potential incorporated in DSSCs 95
5-1 Indium hexacyanoferrate redox couple 95
5-1-1 Electrochemical properties 95
5-1-2 Cell assembling with polymer electrolyte 97
5-1-2-1 Cell configuration 97
5-1-2-2 Cell performance 98
5-1-3 Cell designation 102
5-2 Cells assembling with lithium-doped InHCF and CuHCF films 103
5-2-1 Electrochemical properties in an acetonitrile solution 104
5-2-2 Cell performance 108
5-2-3 Transient photovoltage and photocurrent 111
Chapter 6 Ruthenium complexes designed for the DSSCs 114
6-1 Spectral and energetic properties of ruthenium complexes 114
6-1-1 Spectral properties 114
6-1-2 Energy level analysis 115
6-2 Performances of ruthenium complexes in DSSCs 119
6-2-1 IPCE measurements 119
6-2-2 Transient photovoltage and photocurrent 123
6-2-3 Power efficiencies 124
Chapter 7 Organic dyes incorporated with a thienyl anchor for the DSSCs 129
7-1 Spectral and energetic properties of organic dyes 129
7-1-1 Spectral properties 129
7-1-2 Energy level analysis 130
7-2 Performances of organic dyes in DSSCs 132
7-2-1 IPCE measurements 132
7-2-2 Transient photovoltage and photocurrent 134
7-2-3 Power efficiencies 136
Chapter 8 Conclusions and suggestions 141
8-1 Conclusions 141
8-1-1 N3 and I-/I3- based TiO2 DSSCs 141
8-1-2 Solid-state redox couples 141
8-1-3 Organic dyes 142
8-2 Suggestions 143
8-2-1 The TiO2 film electrode 143
8-2-2 The mediator 143
8-2-3 The sensitizer 144
Chapter 9 References 145
Appendix A Solar and experimental spectra 159
Appendix B Curriculum vitae 160
dc.language.isoen
dc.title染料敏化二氧化鈦太陽電池―氧化還原對、釕錯合物以及噻吩染料之研究zh_TW
dc.titleDye-Sensitized Titanium Dioxide Solar Cells ― Studies on Redox Couples, Ruthenium and Thienyl Dyesen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree博士
dc.contributor.oralexamcommittee王釿鋊(Jin-Guu Wang),林金全(King-Chuen Lin),顏溪成(Shi-Chem Yen),戴子安(Chi-An Dai)
dc.subject.keywordBenzoselenadiazole,Benzothiadiazole,鐵氰化銅(CuHCF),染料敏化太陽能電池(DSSC),鐵氰化銦(InHCF),K-PAMPS,有機染料,Phenanthrenyl配位基(TAPNB),釕錯合物,固態氧化還原對,二氧化鈦,暫態光電流,暫態光電位,zh_TW
dc.subject.keywordBenzoselenadiazole,Benzothiadiazole,Cupric hexacyanoferrate (CuHCF),Dye-sensitized solar cell (DSSC),Indium hexacyanoferrate (InHCF),K-PAMPS,Organic dye,Phenanthrenyl ligand,Ru complex,Solid-state redox couple,TiO2,Transient photocurrent,Transient photovoltage,en
dc.relation.page162
dc.rights.note未授權
dc.date.accepted2005-10-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved