Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鵬林
dc.contributor.authorWoan-Chyi Janen
dc.contributor.author詹婉琦zh_TW
dc.date.accessioned2021-06-08T05:17:13Z-
dc.date.copyright2006-01-19
dc.date.issued2005
dc.date.submitted2006-01-03
dc.identifier.citation王月華. 2000. 應用蝴蝶蘭癒傷組織進行基因轉殖之研究. 國立台灣 大學園藝學研究所碩士論文.
行政院農委會統計處. 2005. 台灣農業統計年報. 行政院農委會. 臺北. p108.
位國慶、陳文輝. 1998. 溫度與相對濕度對蝴蝶蘭軟腐病發生之影響. 台灣糖業研究所研究彙報 159:43-57.
位國慶. 1991. 蝴蝶蘭軟腐病之發生及其藥劑防治. 台灣糖業研究所研究彙報 133:1-10
李勇毅. 1998. 原生拖鞋蘭胚發育與無菌發芽之研究. 碩士論文. 國立臺灣大學園藝學研究所. p75.
李哖. 1988. 蝴蝶蘭之生長與開花生理. 蝴蝶蘭生產改進研討會專集. 台東改良場印. p13-27.
林雅亭. 1999. 蝴蝶蘭苯基苯乙烯酮合成酶基因轉殖之研究. 國立台灣大學園藝學研究所碩士論文.
陳婷玉. 2000. 六種芭菲爾鞋蘭之組織培養. 國立台灣大學園藝學研究所碩士論文. p55.
陳慧真. 2003. 蝴蝶蘭以農桿菌媒介基因轉殖之研究. 國立高雄師範大學生物科學研究所碩士論文.
陳駿季、廖玉株、蔡瑜卿、蕭吉雄. 2004. 蘭花種苗產業技術平台之分析. 台灣花卉園藝52-59.
麥奮. 1987. 拖鞋蘭-芭菲爾鞋蘭屬. 淑馨出版社. 臺北.
黃萓. 2000. 蝴蝶蘭體胚再生型式與基因轉殖之研究. 國立成功大學生物科技研究所碩士論文.
黃聖佑. 1997. 蝴蝶蘭基因轉殖系統之建立及ACC合成酶反義基因之構築. 國立台灣大學園藝學研究所碩士論文.
董新堂. 1975. 最新蘭花培育法. 淑馨出版社. 臺北.
廖敏卿. 1990. 蝴蝶蘭栽培. 皇甫彩藝印刷股份有限公司. 臺北.
蔡瑜卿. 2005. 93年拖鞋蘭種苗出口與產業現況. 種苗科技專訊 49: 2-5.
謝永祥、許聰耀、黃鵬林. 1995. 應用基因槍法於蝴蝶蘭基因轉殖之研究. 中國園藝41:174-185.
謝永祥、黃鵬林. 1995. 應用花粉管法於蝴蝶蘭基因轉殖之研究. 中國園藝 41:309-324
闕巧梅. 2001. 紫苞舌蘭之組織培養. 國立台灣大學園藝研究所碩士論文.
蘇世珩. 2004. 苦瓜CTR1同源基因之選殖與表現分析. 國立台灣大學園藝學研究所碩士論文.
Abeles, F. B., P. W. Morgan, and M. E. Saltveit. 1992. Ethylene in plant biology, 2nd ed. Academic Press, San Diego, CA.
Arditti, J., and R. Ernst. 1993. Micropropagation of Orchid. John Wiley and Son. New York.
Arencibia, A. D., E. R. Carmona, P. Tellez, M. T. Chan, S. M. Yu, Trujillo, and P. Oramas. 1998. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res. 7:213-222.
Barras, F., F. van Gijsegem, and A. K. Chatterjee. 1994. Extracellular enzymes and pathogenesis of the soft rot Erwinia. Ann. Rev. Phytopathol. 32: 201-234.
Baudouy, J. R., W. Nasser, G. Condemine, S. Reverchon, V. E. Shevchik, and N. H. C. Pattat. 2000. Pectine enzyme of Erwinia chrysanthemi, regulation and role in pathogensis. In: Stacey, G. and N.T. Keen, (eds), Plant-Microbe Interactions, The American Phytopathological Society. USA. p 221-268.
Beaulieu, C., B. Martine, and G. V. Frederique. 1993. Pathogenic behavior of pectinase-defective Erwinia chrysanthemi mutants on different plants. Amer. Phytopathol. Soc. 6:197-202.
Begum, A. A., M. Tamaki, M. Tahara, and S. Kato. 1994. Somatic embryogenesis in Cymbidium through in vitro culture of inner tissue of protocorm-like bodies. J. Jap. Soc. Hort. Sci. 63:419-427.
Belarmino, M. M., and M. Mii. 2000. Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant cell Rep. 19: 435-442.
Bevan, M. W., R. B. Flavell, and M. D.Chilton. 1983. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304: 184-187.
Brad, S., and D. L. Rober 1993. Sorbitol as the primary carbon source for the growth of embryogenic callus of maize. Plant Physiol. 103:1339-1346.
Brugliera, F., G. K. Wright, C. Hyland, L. Webb, S. Herbert, B. Sheehan, and G. J. Mason. 2000. Improvement of Fusarium wilt tolerance in carnatins expressing chitinase. Supplement to Int. Plant Mol. Biol. Rep. 18(2).
Chai, M. L., C. J. Xu, K. K. Senthil, J. Y. Kim, and D. H. Kim. 2002. Stable transformation of protocorm-like bodies in Phalenopsis orchid mediated by Agrobacterium tumefaciens. Sci. Hortic. 96: 213-224.
Chan, Y. L., and M. T. Chan. 2005. Both protein-and RNA-mediated mechanisms involved in the resistance of Phalaenopsis transformed with viral coat protein against Cymbidium mosaic virus. J. Gen. Mol. Biol. 16: 26-39.
Chan, Y. L., K. H. Lin, Sanjaya, L. J. Liao, W. H. Chen, and M. T. Chan. 2005. Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Trans. Res. 14: 279-288.
Chang, C., and W.C. Chang. 2000. Plant regeneration from callus culture of a Paphiopedilum hybrid. Plant Cell Tiss. Organ Cult. 62: 21-25.
Chen, T. Y., J. T. Chen, and W. C. Chang. 2004. Plant regeneration through direct shoot bud formation from leaf cultures of Paphiopedilum orchids. Plant Cell Tiss. Organ Cult. 76: 11-15.
Chen, Y. F., N. Etheridge, and G. E. Schaller. 2005. Ethylene signal transduction. Ann. Bot. 95: 901-915.
Cheng, M., J. E. Fry, S. Pang, H. Zhou, C. M. Hironaka, D. R. Duncan, T. W. Corner, and Y. Wan. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115:971-980.
Christou, P., and T. L. Ford. 1995a. The impact of selection parameters on the phenotype and genotype of transgenic rice callus and plants. Trans. Res. 4: 44-51.
Christou, P., and T. L. Ford. 1995b. Parameters influencing stable transformation of rice immature embryos and recovery of transgenic plants using electric discharge particle acceleration. Ann. Bot. 75: 407-413.
Delepelaire, P., and C. Wandersman. 1990. Protein secretion in Gram-negative bacteria—the extracellular metalloprotease B from Erwinia chrysanthemi contains a C-terminal secretion signal analogous to that of Escherichia coli alpha hemolysin. J. Biol. Chem. 17118-17125.
Dellaporta, S. L., J. Wood, and J. B. Hicks. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19-21.
Ernst, R. 1994. Effects of thidiazuron on in vitro propagation of Phalaenopsis and Doritaenopsis (Orchidaceae). Plant Cell Tiss. Organ Cult. 39: 273-275
Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonucluease fragments to high specific activity. Anal. Biochem. 132: 6-13.
Gelvin, S. B. 2003. Improving plant genetic engineering by manipulating the host. Trends Biotech. 21: 95-98.
Giaquinta, R. T. 1980. Translocation of sucrose of sucrose and oligosaccharides. In: Preiss, J.(ed) Biochemistry of Plants. Vol. Carbohyrates: Structure and Function. Academic Press, Inc. p271-230.
Gilberto, B. K. 1991. In vitro conversion of Cattleya root tip cell into protocorm-like bodies. J. Plant Physiol. 138: 248-251.
Herron, S. R., J. A. E. Benen, R. D. Scavetta, J. Visser, and F. Jurnak. 2000. Structure and function of pectin enzyme: Virulence factors of plant pathogens. Colloquium 97: 8762-8769.
Hess, D., K. Dressler, and R. Nimmrichter. 1990. Transformation experiments by pipetting Agrobacterium the spikelets of wheat (Triticum asetivum L.). Plant Sci. 72: 233-244.
Hiei, Y., S. Ohta, T. Komari, and T. Kumashiro. 1994. Efficient transformation rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271-282.
Hodgson, M., R. Paine, and N. Anderson. 1991. Let guide to orchid of the world. Charles Letts & Co. Ltd., London. p234.
Hsu, H. F., and C. H. Yang. 2002. An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol. 43: 1198-1209.
Huang L. C. 1988. A procedure for asexual multiplication of Paphiopedilum in vitro. Amer. Orchid Soc. Bull. 57: 274-278.
Huang, L. C., C. J. Lin, and C. I. Kuo. 2001. Paphiopedilum cloning in vitro. Sci. Hortic. 91: 111-121.
Ichihashi, S., and M. O. Islam. 1999. Effect of complex organic additives on callus growth in three orchid genera. Phalaenopsis, Doritaenopsis and Neofinetia. J. Jpn. Soc. Hort. Sci. 68: 269-274.
Ishida Y., H. Saito, S. Ohata, Y. Hiei, T. Komari, and T. Kumashiro. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotech. 14: 745-750.
Karen, K. P., J. Hansen, and P. Krogstrup. 1999. Significance of different carbon sources and sterilization methods on callus induction and plant regeneration of Miscanthus x ogiformis Honda ‘Giganteus’. 58: 189-197.
Kendall, E., R. Adama, and K. Kartha. 1990. Trehalose activeity in plant tissue culture. Phytochemistry 29: 2525-2528.
Kieber, J. J., M. Rothenberg, G. Roman, K.A. Feldmann, and J. R. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427-441.
Knapp, J. E., A. P. Kausch, and J. M. Chandlee. 2000. Transformation of three genera of orchid using the bar gene as a selectable marker. Plant Cell Rep. 19: 893-898.
Lahaye, T., and U. Bonas. 2001. Molecular secrets of bacterial type III effector proteins. Trends Plant Sci. 6: 479–485.
LeClerq, J., L. C. Adams-Phillips, H. Zegzouti, B. Jones, A. L. Latche, J. J. Giovannoni, J. C. Pech, and M. Bouzayen. 2002. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Physiol. 130: 1132-1142.
Lee, Y. I. and N. Lee. 2003. Plant regeneration from protocrorm-derived callus of Cyripedium formosanum. In Vitro Cell Dev. Biol. Plant. 39: 475-479.
Liao, L. J., I. C. Pan, Y. L. Chen, Y. H. Hsu, W. H. Chen, and M. T. Chan. 2004. Transgene silencing in Phalaenopsis expressing the coat protein of Cymbidium mosaic virus is a manifestation of RNA-mediated resistance. Mol. Breed. 9: 229-242.
Liau, C. H., J. C. Lu, V. Prasad, H. H. Hsiao, S. J. You, J. T. Lee, N. S. Yang, H. E. Yang, T. Y. Feng, W. H. Chen, and M.T. Chan. 2003. The sweet papper ferredocin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Trans. Res. 12: 329-336.
Lori, A. P., C. Barry, P. Kannan, J. Leclercq, M. Bouzayen, and J. Giovannoni. 2004. Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features. Plant Mol. Biol. 54: 387-404.
Mishiba, K. I., D. P. Chin, and M. Mii. 2005. Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Plant Cell Rep. 24: 297-303.
Murashige T., and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:495-497.
Norgaard, J. V. 1997. Somatic embryo maturation and plantlet regeneration in Abies nordmaniana Lk. Plant Sci. 124: 211-221.
Ouaked, F., W. Rozhon, D. Lecourieux, and H. Hirt. 2003. A MAPK pathway mediates ethylene signaling in plants. EMBO J. 22:1282-1288.
Perombelon, M. C. M., and A. Kelman. 1980. Ecology of the soft rot Erwinias. Ann. Rev. Phytopathol. 18: 361-387.
Salmond, G. P. C. 1994. Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu. Rev. Phytopathol. 32: 181-200.
Schiraldi, C., I. Di Lemia, and M. De Rosa. 2002. Trehalose priduction: exploiting novel approaches. Trends Biotech. 20: 420-425.
Shaw, J. F., H. H. Chen, M. F. Tsai, C. I. Kuo, and L. C. Huang. 2002. Extended flower longevity of Petunia hybrida plants transformated with boers, and a mutated ERS gene of Brassica oleracea. Mol. Breed. 9: 211-216.
Southern, E. M. 1975. Detection of specific sequence among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517.
Stewart J., and J. Button. 1975. Tissue culture studies in Paphiopedilum. Amer. Orchid Soc. Bull. 44: 591-599.
Strickland, S. G., J. W. Nichol, C. M. M. Call, and D. A. Stuart.1987. Effect of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci. 48: 112-121.
Tardy, F., W. Nasser, J. R. Baudouy, and N. C. P. Hugouviewx. 1997. Comparative analysis of the five major Erwinia chrysanthemi pectate lyase:enzyme characteristics and potential inhibitors. J. Bacteriol. 179: 2503-2511.
Tokuhara, K., and M. Mii. 2003. Highly-efficient somatic embryogenesis from cell suspension cultures of Phalaenopsis orchids by adjusting carbohyrate sources. In Vitro Cell Dev. Biol. Plant. 39: 635-639.
Toth, I. K., K. S. Bell, M. C. Holeva, and P. R. J. Birch. 2003. Soft rot Erwinia: From genes to genomes. Mol. Plant Path. 4: 17-30.
Twyman, R. M., E. Stoger, A. Kohli, T. Capell, and P.Christou. 2002. Selectable and screenable markers for rice transformation. In: Molecular Methods of Plant Analysis,Vol. 22 Testing for Genetic Manipulation in Plants Edited by J.F. Jackson, H.F.Linskens, and R.B. Inman
Wegener, C. B. 2002. Induction of defence responses against Erwinia soft rot by an endogenous pectate lyase in potatoes. Physiol. Mol. Plant Path. 60: 91-100.
Wegener, C., S. Bartling, J. Weber, and D. V. Wettstein. 1996. Pectate lyase in transgenic potatoes confers preactivation of defence against Erwinia carotovora. Physiol. Mol. Plant Pathol. 49: 359-376.
Yang, J., H. J. Lee, D. H. Shin, S. K. Oh, J. H. Seon, K. Y. Paek, and K. H. Han. 1999. Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep. 19: 978-984.
Yang, S. H., H. Yu, and C. J. Goh. 2003. Functional characterisation of a cytokinin oxidase gene DSCKX1 in Dendrobium orchid. Plant Mol. Biol. 51: 237–248.
You, S. J., C. H. Liau., H. E. Hung, T. Y. Feng, V. Prasad, H. H. Hsiao, J. C. Lu, and M. T. Chan. 2003. Sweet pepper ferredoxin-like protein (pflp) gene as a novel selection marker for orchid transformation. Planta 217: 60-65.
Yu, H., S. H. Yang, and C. J. Goh. 2001. Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1. Plant Cell Rep. 20: 301-305.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24155-
dc.description.abstract蝴蝶蘭為台灣重要外銷花卉,為提升蝴蝶蘭植株抗軟腐病能力,本研究將蝴蝶蘭軟腐病原之果膠分解酶(pectate lyase)基因PelE-1,以農桿菌為媒介轉殖入蝴蝶蘭癒合組織。轉殖後經抗生素G418篩選存活之癒合組織,持續篩選及純化後,以聚合酶連鎖反應及南方氏雜交分析,確定12個轉殖細胞系含有PelE-1 基因;進一步培養長大之擬轉殖株,經南方氏雜交分析,確定其中8株含有PelE-1 基因。另一方面,為了以生物技術達到延緩花朵老化的目的,將苦瓜乙烯訊息傳導負向調控基因CTR1,以農桿菌媒介法轉殖至蝴蝶蘭癒合組織,經由GUS活性組織化學染色分析,目前已確定11個CTR1擬轉殖細胞系。
在芭菲爾拖鞋蘭(Paphiopedilum rothschildianum)癒合組織之誘導及再生系統建立方面,以含有1 mg/l 2,4-D及1 mg/l TDZ之1/2 MS培養基,為芭菲薾拖鞋蘭根尖誘導癒合組織產生之最適培養基,亦可作為芽體誘導癒合組織之培養基。誘導自根尖之癒合組織以蔗糖、麥芽糖及海藻糖不同醣類進行再生試驗,結果顯示麥芽糖及海藻糖均可促進類原球體生成;蔗糖濃度從3 %降低到1.5 %,則有助於黑暗培養下,自芽體誘導之癒合組織分化成類原球體(protocorm-like body)。
zh_TW
dc.description.abstractTo enhance resistance to a soft-rot disease, pectate lyase gene PelE-1 isolated from Erwinia chrysanthemi was transferred into calli of Phalaenopsis using Agrobacterium-mediated transformation. Twelve putative transgenic cell lines and eight putative transgenic plantlets were confirmed for existence of PelE-1 gene via polymerase chain reaction (PCR) and Southern analysis. On the other hand, in order to prolong longevity of Phalaenopsis flowers, ethylene signal transduction involved gene CTR1 from Mormordica charantia L. was transferred into calli of Phalaenopsis using Agrobacterium-mediated transformation. Eleven CTR1 transgenic lines showed positive GUS activity after histochemical staining analysis.
Totipotent calli of Paphiopedilum rothschildianum, induced from root tips on a 1/2 strength Murashige-Skoog medium plus 1 mg/l 2,4-D and 1 mg/l TDZ, were used for regeneration test. Both maltose and trehalose enhanced the formation of PLB from calli. A decrease in the concentration of sucrose from 3 % to 1.5 % promoted PLB formation from sprouts-derived calli in the dark.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:17:13Z (GMT). No. of bitstreams: 1
ntu-94-R92628138-1.pdf: 1905191 bytes, checksum: e2cf5565e1fe2da5124815b1606e7af7 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents內容目次
中文摘要 1
壹、前言 3
貳、前人研究 5
一、蝴蝶蘭基因轉殖 5
(一)蝴蝶蘭基因轉殖相關之研究 5
(二) 軟腐病 6
(三) 乙烯負向調控因子 CTR1 10
二、拖鞋蘭癒合組織之誘導 12
(一) 生長素 12
(二)醣類 13
參、材料與方法 14
一 、蝴蝶蘭之基因轉殖 14
(一)植物材料 14
(二)農桿菌菌種 14
(三)轉殖流程 14
(四)蝴蝶蘭擬轉殖細胞系之分析 16
二、拖鞋蘭癒合組織誘導培養與植株再生 21
(一)植物材料 21
(二)癒合組織之誘導 21
(三)增殖試驗 21
(四)擬原球體之分化與植株再生 22
肆、結果 23
一、農桿菌媒介法轉殖之pPelE-1擬轉殖細胞系分析 23
(一) 篩選及轉殖效率分析 23
(二) 聚合酶連鎖反應 23
(三) 南方氏雜交分析 24
二、乙烯訊息傳導負向調控蛋白CTR1基因轉殖 34
(一) 抗生素篩選結果分析 34
(二) 擬轉殖細胞系綜合抗性分析及GUS活性組織染色結果 34
三、癒合組織之誘導 .37
四、癒合組織增殖試驗……………………………………………………37
(一)誘導自根尖之癒合組織……………………………………………..37
(二)誘導自芽體之癒合組織……………………………………………..37
五、再生試驗………………………………………………………………46
(一)誘導自根尖癒合組織之再生試驗……………………………….......46
(二) 誘導自根尖癒合組織之再生試驗 47
伍、討論 53
一、蝴蝶蘭之基因轉殖 53
二、蝴蝶蘭抗病基因轉殖 54
三、花卉轉殖乙烯訊息傳導相關基因 55
四、拖鞋蘭癒合組織誘導與植株再生 56
(一)癒合組織之誘導 56
(二)再生系統的建立 57
陸、參考文獻 ...60

圖表目次
表1、蝴蝶蘭(Phalaenopsis Taisuco Kaaladian)與朵麗蝶蘭(Doritaenopsis Taisuco Ladylip)癒合組織培養及植物再生之培養基組成分 .......................20
表2、轉殖質體pPelE-1之蝴蝶蘭擬轉殖細胞系以不同探針進行南方氏雜交分析所得之雜交條帶分佈情形 .......30
表3、轉殖質體pPelE-1之蝴蝶蘭擬轉殖植株以不同探針進行南方氏雜交分析所得之雜交條帶分佈情形 .....................................................33
表4、植物生長調節劑及培植體對芭菲爾拖鞋Paphiopedilum rothschildianum癒合組織誘導之影響 ....................... ......................38
表5、不同植物生長調節劑對誘導自根尖癒合組織增殖之影響 42
表6、不同濃度之蔗糖、2,4-D及TDZ對誘導自芽體癒合組織第一個月增殖培養之影響 43
表7、不同濃度之蔗糖、2,4-D及TDZ對誘導自芽體癒合組織第二個月繼代增殖及擬原球體形成之影響 44
表8、不同蔗糖濃度、2,4-D及TDZ濃度對誘導自芽體癒合組織第三個月繼代增殖及擬原球體形成之影響 45
表9、醣類、2,4-D與TDZ對拖鞋蘭癒合組織再生之影響 49
表10、植物生長調節劑對芽體癒合組織之擬原球體再生的影響 52
圖1、乙烯訊息傳導模式圖......................................................................11圖2、pPelE-1及 Pctrs質體構築圖............................................................15
圖3、轉殖pPelE-1蝴蝶蘭癒合組織及植株再生生長情形......................26
圖4、蝴蝶蘭轉殖pPelE-1細胞系之聚合酶連鎖反應分析......................27
圖5、蝴蝶蘭轉殖pPelE-1細胞系之南方氏雜交分析..............................28
圖6、蝴蝶蘭轉殖pPelE-1轉殖植株之南方氏雜交分析..........................31
圖7、轉殖pGCTRS蝴蝶蘭癒合組織於含有抗生素G418培養基篩選情形.....................................................................................................................35
圖8、蝴蝶蘭轉殖癒合組織GUS活性反應分析........................................36
圖9、植物生長調節劑2,4-D及TDZ對拖鞋蘭 (Paphiopedilum rothschildianum) 根尖癒合組織誘導之情形....................................... .....................................39
圖10、 拖鞋蘭芽體癒合組織繼代培養之擬原球體再生情形...................45
圖11、拖鞋蘭根癒合組織於0.1 mg/l TDZ 、 0.1 mg/l 2,4-D及10 g/l trehalose培養基上之擬原球體分化及植株再生情形.....................................................................................................................49
圖12、癒合組織於含0.1 mg/l TDZ、0.5 mg/l 2,4-D及20 g/l maltose培養基上再生情形.................................................................................................50
圖13、拖鞋蘭芽體癒合組織培養於含2,4-D、TDZ與10g L-1 trehalose培養基之植株再生情形.....................................................................................52
dc.language.isozh-TW
dc.title蝴蝶蘭之基因轉殖及芭菲爾拖鞋蘭癒合組織之誘導與植株再生zh_TW
dc.titleStudies on Genetic Transformation of Phalaenopsis and Plant Regeneration from Callus Culture of Paphiopedilum rothschildianum (Rchb.) Steinen
dc.typeThesis
dc.date.schoolyear94-1
dc.description.degree碩士
dc.contributor.coadvisor杜宜殷
dc.contributor.oralexamcommittee鄭隨和,劉麗飛
dc.subject.keywordPelE,CTR1,拖鞋蘭,zh_TW
dc.subject.keywordPelE,CTR1,Paphiopedilum,en
dc.relation.page68
dc.rights.note未授權
dc.date.accepted2006-01-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
1.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved