Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24018
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳基旺
dc.contributor.authorRAHUL SUBHASH TALEKARen
dc.contributor.author塔立卡zh_TW
dc.date.accessioned2021-06-08T05:14:13Z-
dc.date.copyright2006-09-18
dc.date.issued2006
dc.date.submitted2006-07-07
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24018-
dc.description.abstractThe aim of this dissertation is to design, synthesis and biological evaluation of quinoline analogues of medicinal interest. Quinoline or 8-quinolinol heterocycles are considered as ideal leads for further optimization in search for novel compounds of medicinal interest. In Chapter 1, we developed novel 8-quinolinols, 8-methoxyquinolines substituted at C2 position with long carbon chain (C9-C13) alcohols, long chain alkyl bromides or long chain fatty acetates. In this study, we designed a skeleton, which might serve as Zn++ metal ions chelator and nerve growth stimulator. It is interesting to note that, these compounds are free of cytotoxicity, making them as ideal candidate for AD. In addition, several compounds demonstrated intense fluorescence under UV light. Therefore, they might serve as efficient candidate for studying the activity in living cells. In Chapter 2, series of antitumor quinoline analogues (nonhalogenated 10-15 and halogenated 18-80 styrylquinolines) and halogenated amide quinolines 91-96 were prepared. Many styryl analogues demonstrated potent antitumor activity with GI50 in the submicromolar range against HepG2 tumor cells. The best compounds 2-[2-(4-Acetyl-oxyphenyl)vinyl]-5-chloro-7-iodo-8-methoxyquinoline (50), 2-[2-(4-Hydroxyphenyl)vinyl]-5-chloro-7-iodo-8-met-hoxyquinoline (67) in this series showed GI50 of 20 nM and caused S-phase arrest. The detail SAR study showed that presence of 8-hydroxy or 8-acetoxy group and polar substituents on styryl phenyl ring are required for potent anticancer activity. Replacement of styryl bond with amide or substitution of 8-methoxy group results in loss of anticancer potency. In Chapter 3, we describe nonreductive method of selective deiodination. In the presence of tertiary amine and catalytic amount of water several iodinated compounds underwent deiodination of ortho-iodo group. The prominent future of this reaction that it selectively removes ortho-iodo group without any effect on para-iodo group and other halogens. Absence of reducing agent and short reaction times are the additional future of this reaction. In Chapter 4, we report novel styrylquinolines as novel candidate for small molecule based organic light emitting diodes (SMOLED). Compounds DCSQM and DCSQA based on donor-conjugated-acceptor architecture (D-π-A) showed different emission pattern in solvents of varying polarity. Both compounds exhibited excellent thermal and electrochemical properties. Device fabricated using DCSQM showed blue emission thus making itself as ideal candidate for OLED device.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:14:13Z (GMT). No. of bitstreams: 1
ntu-95-D90423003-1.pdf: 5188807 bytes, checksum: f5f0b71da873d211d9b111cb43cab192 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsDedication......................................................................................................................I
Acknowledgements………………………………………………………………….II
Table of Contents…………………………………...………………………………III
List of Figures………………………………………………………………………IV
List of Tables………………………………………………………………….........VI
List of Schemes………………………………………………………………….VII
Abstract………………………………………………………………………………1
Introduction…………………………………………………………………………..2
Chapter
1. Design, Synthesis and Effects of Quinoline Substituted Long Chain Fatty Alcohols on Neurite Outgrowth for the Treatment of Alzheimer’s Disease…………………..12
Introduction……………………………………………………………………13
Result and discussion………………………………………………….………20
Summary…………………………………………………………………….33
Experimental…………………………………………………………………..34
References……………………………………………………………………..47
2. Design and Synthesis of Quinoline Derivatives as Potent Anticancer Agents…….50
Introduction…………………………………………………………………...51
Result and discussion………………………………………..………………...58
Biological activity……………………………………………………………73
Summary…………………………………………………………………101
Experimental…………………………………………………………………100
References……………………………………………………………………141
3. Nonreductive Deiodination of ortho-Iodophenols Using Tertiary Amines……….146
Introduction………………………………………………………………...147
Result and discussion………………………………………………………...148
Summary…………………………………………………………………152
Experimental………………………………………………………………153
References……………………………………………………………………158
4. Design, Synthesis, and Electrochemical Properties of 8-Substituted 5,7-Dichloro-2- Styrylquinolines as Potential Light Emitters……………………………………..160
Introduction…………………………………………………………………161
Result and discussion……………………………………………………...…162
Summary………………………………………………………………….179
Experimental……………………………………………………………….180
References………………………………………………………………….183
Conclusion……………………………………………………………………………18

List of Figures
Figure 1-1. Research phases toward realizing therapeutics for neurological disease……13
Figure 1-2. Proteolytic processing of the amyloid precursor protein (APP)……………15
Figure 1-3. Zinc induced accumulation of Aβ results in nerve damage…………………16
Figure 1-4. Chemical structure of Clioquinol……………………………………………17
Figure 1-5. Chemical structure of neurotrophic long chain fatty alcohols………………19
Figure 1-6. Retrosynthesis of designed compound………………………………………20
Figure 1-7. Modified retrosynthesis of designed compound…………………………….28
Figure 2-1. The mammalian cell cycle…………………………………………………..52
Figure 2-2. A schematic overview of some essential steps in cell cycle regulation……54
Figure 2-3. Structure of resveratrol, trans-retinobenzoic acid, trans-combretastatin…...56
Figure 2-4. Structure of 2-Styrylquinazolin-4(3H)-one and its derivatives……………57
Figure 2-5. Structure of camptothecin, elipticine, podophyllotoxin analogues…………57
Figure 2-6. Design of heterocycle-conjugated styrene derivatives as anticancer agents. 58
Figure 2-7. Design of novel styrene quinoline derivatives as anticancer agents………58
Figure 2-8. Design of halogenated styrene quinoline derivatives as anticancer agents.61
Figure 2-9. Design of halogenated amide quinoline derivatives as anticancer agents...70
Figure 2-10. Flow cytometric analysis of HepG2 cells treated with 2 and 6 ………...….85
Figure 2-11. Effect of compound 2 and 6 on HepG2 cell cycle progression…………..86
Figure 2-12. Flow cytometric analysis of HepG2 cells treated with 3 and 7 ……………86
Figure 2-13. Effect of compound 3 and 7 on HepG2 cell cycle progression…………….87
Figure 2-14. Flow cytometric analysis of HepG2 cells treated with 3 and 7 …………....87
Figure 2-15. Flow cytometric analysis of AGS cells treated with 3 and 7 ………….…..88
Figure 2-16. Flow cytometric analysis of A-549 cells treated with 3 and 7 ………….....88
Figure 2-17. Flow cytometric analysis of HepG2 cells treated with 49 and 67 ………....89
Figure 2-18. Flow cytometric analysis of Hep2 cells treated with 74 and 75 ………......90
Figure 2-19. Flow cytometric analysis of AGS cells treated with 74 and 75 ………...…91
Figure 2-20. Flow cytometric analysis of A-549 cells treated with 74 and 75 ……….....91
Figure 2-21. Flow cytometric analysis of A-549 cells treated with 74 and 75 ……….…92
Figure 2-22. Flow cytometric analysis of HT-29 cells treated with 74 and 75 ………….93
Figure 2-23. Flow Cytometric analysis of HepG2 cells treated with 98 ………….…….93
Figure 2-24. Fluorescence microscopy images showing appearance of HepG2 cells following drug treatment for 16 h.………………………………………….94
Figure 2-25. Western blot study ………...……………………………………………….95
Figure 4-1. Absorption and normalized solution photoluminescence (PL) spectra for 2, 3, DCSQM, and DCSQA in CHCl3…………………………………….165
Figure 4-2a. Absorption spectra for 2 x 10-5 M of DCSQM in different solvents……...166
Figure 4-2b. Absorption spectra for 2 x 10-5 M of DCSQA in different solvents………166
Figure 4-2c. Normalized photoluminescence spectra for 2 x 10-5 M of DCSQM and
DCSQA in different solvents……………………………………………...167
Figure 4-3. Absorption spectra for 2 x 10-5 M of DCSQM in different solvents……....178
Figure 4-4. Emission of DCSQM and DCSQA in solvents of varying polarity at
wavelength………………………………………………………………....168
Figure 4-5. Single X-ray crystal structure of DSQA…………………………………...170
Figure 4-6. Molecular packing diagram of DCSQA showing extensive π-π interactions……............................................................................................170
Figure 4-7. The optimized structures of DCSQM (4a) and DCSQA (5a) at the B3LYP/6-31G* level…….............................................................................................174
Figure 4-8. The HOMO and LUMO for DCSQM and DCSQA………………………..175
Figure 4-9. Comparison of reduction cyclic voltammograms of DCSQM (red) and
DCSQA (blue)…….......................................................................................177
Figure 4-10. Electroluminescence spectrum of a film of DCSQM…………………….178
Figure 4-11. Current density-voltage-luminescence characteristics of an EL device using DCSQM……............................................................................178
List of Tables
Table 2-1. Cyclin-CDK complexes are activated at specific points of the cell cycle. CAK, CDK activating kinase…………………………….……………53
Table 2-2. Cytotoxic activity of styrylquinolines (2-15)………………………………..75
Table 2-3. Cytotoxic activity of styrylquinolines (18-26)………………………………76
Table 2-4. Cytotoxic activity of styrylquinolines (27-33)………………………………77
Table 2-5. Cytotoxic activity of styrylquinolines (35-42)………………………………78
Table 2-6. Cytotoxic activity of styrylquinolines (45-65)………………………………79
Table 2-7. Cytotoxic activity of styrylquinolines (66-72)………………………………80
Table 2-8. Cytotoxic activity of styrylquinolines (73-75)………………………………81
Table 2-9. Cytotoxic activity of styrylquinolines (78-87)………………………………82
Table 2-10. Cytotoxic activity of styrylquinolines (91-100)……………………………83
Table 3-1. Deiodination of o-iodo-hydroxylated arenes in the presence of tertiary amines……………………………….………………………………151
Table 4-1. Absorption and Emission for DCSQM and DCSQA in Different Solvents..165
Table 4-2. Crystal Data and Structure Refinements for DCSQA………………………171
Table 4-3. Bond lengths (Å) and angles (o) for DCSQA……………………………….172
Table 4-4. Estimated Experimental and Theoretical HOMO and LUMO Energy Levels…………………………………………………………...173
Table 4-5. Photophysical, Thermal, and Electrochemical Properties of DCSQM
and DCSQA…………………………………………………………………175
List of Schemes
Scheme 1-1...................................................................................................................21
Scheme 1-2. .................................................................................................................22
Scheme 1-3. .................................................................................................................23
Scheme 1-4. .................................................................................................................24
Scheme 1-5. .................................................................................. ... ... ......................25
Scheme 1-6. ..............................................................................................................25
Scheme 1-7. ................................................................................................................26
Scheme 1-8. ................................................................. ... ... .......................................27
Scheme 1-9. .................................................................................................................28
Scheme 1-10. ...............................................................................................................29
Scheme 1-11. ...............................................................................................................29
Scheme 1-12. ............................................................................................................30
Scheme 1-13. ...............................................................................................................30
Scheme 1-14. ..............................................................................................................31
Scheme 1-15. ..............................................................................................................32
Scheme 2-1................................................................................................................59
Scheme 2-2...................................................................................................................59
Scheme2-3................................................................................................................60
Scheme 2-4.................................................................................................................60
Scheme 2-5................................................................................................................62
Scheme 2-6.................................................................................................................63
Scheme 2-7...................................................................................................................64
Scheme 2-8...............................................................................................................65
Scheme 2-9................................................................................................................66
Scheme 2-10..........................................................................................................67
Scheme 2-11...........................................................................................................68
Scheme 2-12..............................................................................................................68
Scheme 2-13.......................................................................................................69
Scheme 2-14............................................................................................................71
Scheme 2-15..........................................................................................................71
Scheme 2-16...........................................................................................................72
Scheme 2-17......................................................................................................72
Scheme 3-1………………………………………………………………………..146
Scheme 3-2……………………………………………………………………..147
Scheme 3-3……………………………………………………………………..150
Scheme 3-4……………………………………………………………………..150
Scheme 4-1…………………………………………………………………….163
dc.language.isoen
dc.subject奎寧zh_TW
dc.subjectQuinolineen
dc.titleQuinoline 衍生物之設計、合成與生物活性評估zh_TW
dc.titleDesign,Synthesis and Biological Evaluation of Quinoline Analoguesen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee王光昭,李安榮,曾誠齊,忻凌偉,陳香惠,孔繁璐,顧記華
dc.subject.keyword奎寧,zh_TW
dc.subject.keywordQuinoline,en
dc.relation.page193
dc.rights.note未授權
dc.date.accepted2006-07-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
5.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved