Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23959
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張倉榮
dc.contributor.authorChun-Mei Chenen
dc.contributor.author陳均美zh_TW
dc.date.accessioned2021-06-08T05:13:06Z-
dc.date.copyright2006-07-21
dc.date.issued2006
dc.date.submitted2006-07-14
dc.identifier.citation參考文獻
1.白大尹,2000。「自由液面流動之數值模擬」,國立台灣大學生物環境系統工程學研究所碩士論文。
2.莊玉珍,王蕙芳,2001。台灣的濕地,遠足文化。
3.內政部營建署,2004。「營造台灣生態水池調查評估與規劃設計操作手冊」,內政部營建署編印。
4.謝怡芳,2004。「三維度紊流大渦模擬在多區間建築物室內環境風場之應用研究」,國立台灣大學生物環境系統工程學研究所碩士論文。
5.環保署,2005。「水質淨化工程試驗計畫」,台北市,2005年3月。
6.台北市翡翠水庫管理局,2005。「翡翠水庫入庫溪流生態工法水質淨化評估與模型試驗計畫成果發表會」,台北市,2005年5月。
7.林玫珊,2005。「計算生態流體力學在三維度自由液面植栽帶流場之應用研究」,國立台灣大學生物環境系統工程學研究所碩士論文。
8.張倉榮,陳均美,段以利,2005。「生態濕地環境仿生模擬之先期研究」,水域生態與工程研討會,台北市,第63-70頁,2005年12月。
9.Adams, E.W., and Rodi, W., 1990. Modeling flow and mixing in sedimentation tanks. J. of Hydraulic Engineering, 116(7):895-913.
10.Adamsson, A., Stovin, V., and Bergdahl, L., 2003. Bed shear stress boundary condition for storage tank sedimentation. J. of Environmental Eng., 129(7):651-658.
11.Ahmed, F., and Rajaratnam, N., 1998. Flow around bridge pires. J. of Hydraulic Engineering, 124(3):288-300.
12.Chang, T.J., and Yen, B.C., 1998. Gravitational fall velocity of sphere in viscous fluid. J. of Engineering Mech, 124:1193-1199.
13.Chang, T.J., Hsieh, Y.F., and Wu, Y.T., 2005. Simulation of flood detention function for paddy fields. International Conference on Paddy and Water Environment, Taipei, Taiwan, 17-19.
14.Chen, S., Wang, G.T., and Xue, S.K., 1999. Modeling BOD removal in constructed wetlands with mixing cell method. J. of Environmental Engineering, 125(1):64-71.
15.Choi, S.U., 2004. Reynolds stress modeling of vegetated open-channel flows. Journal of Hydraulic Research, 42(1):3-11.
16.Clift, R., Grace, J.R., and Weber, M.E., 1978. Bubbles drops and particles. Academic Press, New York.
17.Faure, J.B., Buil, N., and Gay, B., 2004. 3-D Modeling of unsteady free-surface flow in open channel. J. of Hydraulic Research, 42(3):263-272.
18.Freeman, G.E., Rahmeyer, W.J., and Copeland, R.R., 2000. Determination of resistance due to shrubs and woody vegetation. US Army Corps of Engineers, Engineer Research and Development Center.
19.Jadhav, R.S., and Buchberger, S.G., 1995. Effects of vegetation on flow through free water surface wetlands. Ecological Engineering, 5:481-496.
20.Kadlec, R.H., 2003. Effects of pollutant speciation in treatment wetlands design. Ecological Engineering, 20:1-16.
21.Koskiaho, J., 2003. Flow velocity retardation and sediment retention in two constructed wetland-ponds. Ecological Engineering, 19:325-337.
22.Launder, B.E. and Spalding, D.B., 1974. The numerical computation of turbulent flow. Computer Methods in Applied Mechanics and Engineering, 269-289.
23.Li, A., and Ahmadi, G., 1992. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. J. Aerosol. Sci. Tech., 16:209-226.
24.Liu, W.C., Hsu, M.H., and Wang, C.F., 2003. Modeling of flow resistance in mangrove swamp at mouth of tidal Keelung river, Taiwan. J. of Waterway, Port, Coastal, and Ocean Engineering, 129(2):86-92.
25.Ma, L., Ashworth, P.J., Best, J.L., Elliott, L., Ingham, D.B., Whitcombe, L.J., 2002. Computational fluid dynamics and the physical modeling of an upland urban river. Geomorphology, 44:375-391.
26.Nino, Y., and Garcia, M., 1998. Experiments on saltation of Sand in Water. J. of Hydraulic Engineering, 124(10):1014-1025.
27.Palmer, M.R., Nepf, H.M., and Pettersson T.J.R., 2004. Observations of particle capture on a cylindrical collector: Implications for particle accumulation and removal in aquatic systems. American Society of Limnology and Oceanography, 49(1):76-85.
28.Rao, S.S., 2002. Applied numerical methods for engineers and scientists. Prentice Hall, New Jersey.
29.Salaheldin, T.M., Imran, J., and Chaudhry, M.H., 2004. Numerical modeling of three-dimensional flow field around circular piers. J. of Hydraulic Engineering, 130(2):91-100.
30.Syversen, N., and Bechmann, M., 2004. Vegetative buffer zones as pesticide filters for simulated surface runoff. Ecological Engineering, 22:175-184.
31.Wu, F.C., Shen, H.W., and Chou, Y.J., 1999. Variation of roughness coefficients for unsubmerged and submerged vegetation. J. of Hydraulic Engineering, 125(9):934-942.
32.Wu, Y., Falconer, R.A., and Struve, J., 2001. Mathematical modeling of tidal currents in mangrove forest. Environmental Modelling & softwater, 16:19-29.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23959-
dc.description.abstract本研究主要目的為研析三維度自由液面之人工濕地流場在不同水生植群(Hydrophytic aquatic vegetation)排列影響下的變化情形,並比較多種人工濕地案例,分析濕地水流中懸浮固體(Suspended solids)之傳輸行為及淨化能力。研究中使用 紊流標準模式並搭配體積分率法(VOF)模擬具自由液面之人工濕地,同時引入拉格蘭日(Lagrangian)觀點之微粒軌跡追蹤模式,分析計算三維度濕地之懸浮固體移除效率,探討紊流流場對微粒傳輸行為的影響。
本研究先透過Ahmed等(1998)及Salaheldin等(2004)的水槽實驗,驗證圓柱幾何體前後區域之流速與水位。繼而設計五種人工濕地的案例,藉由不同植物高度、排列方式及植群密度分佈情形,研究其流場流況,並透過懸浮固體傳輸之軌跡,針對沈澱、懸浮、流出、截留等四種不同力學機制,做相互對照比較。
研究結果發現因植群帶阻流影響,使得動量扣除效應增大,水流平均流速減小,其中又以水生植物採加密配置其調節能力最明顯,尖峰出流量與無水生植群之濕地相比減少了24%。此外,無植群之濕地其懸浮固體流出量高達50%,顯示水質澄淨度不盡理想,但加入水生植群模擬條件之後,發現在植群所座落的區域,因為紊流動能降低、流速減緩,使植群帶截留大量懸浮固體,而挺水性植物交錯加密配置之懸浮固體移除率最顯著,其淨水能力達75.6%,而研究結果也顯示若再降低植物高度,將更影響植群淨化能力。從數據統計結果來看,應善用水生植群截留功能,藉由設計植群排列及規劃植群佔地面積,以達到淨化水質、涵養水源之功效。
zh_TW
dc.description.abstractThe main purpose of the research is to investigate 3-D free-surface flows in artificial wetlands, which is influenced by hydrophytic aquatic vegetation. Suspended solids (SS) transport behaviors and clarification efficiency of artificial wetlands are also studied. In the present study, the standard κ-ε turbulence model together with the volume of fluid (VOF) is adopted to simulate flow field of artificial wetlands. The Lagrangian particle tracking technique is used to analyze suspended solids removal efficiency of artificial wetlands.
The present model is verified by comparing through the experiments of the flow around the pier given by Ahmed et al. (1998) and Salahedin et al. (2004). Next, five sets of numerical scenario simulations are conducted to investigate the effects of plant height, plant arrangement and plant density of wetlands on water flows. In addition, suspended solids transport is calculated to demonstrate the relative importance of the four particle transport mechanisms, i.e., sedimentation, suspension, escape, and interception, in artificial wetlands.
The simulated result shows that hydrophytic aquatic vegetation effectively reduces flow velocity so that the peak flow discharge at outlet is decreased. Among the five scenarios, the scenario having the densest vegetation gives 24% reduction of the peak flow, compared to the scenario of a wetland without plantation. Moreover, a wetland without plantation can only remove at most 50% of suspended solids, whereas it can remove 75.6% of suspended solids for the scenario with unsubmerged, staggered and denser vegetation. This is because turbulent kinetic energy and mean velocity are both reduced in the vicinity of plantation area, resulting in large amounts of suspended solids intercepted in this area. On the other hand, the clarification efficiency is decreased if the height of plants is lower. It is concluded that the efficiency of purifying water quality and conserving water resource can be enhanced through planting hydrophytic aquatic vegetation in wetlands.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:13:06Z (GMT). No. of bitstreams: 1
ntu-95-R93622033-1.pdf: 10649134 bytes, checksum: 7f0f086b76181817db7237e005c3d839 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌 謝…………………………..……………………………………i
摘 要…………………………..…………….……………………ii
Abstract…………………………………..……………...…..……iv
目 錄…………...………………………..………………………vi
表 目 錄………………………………..………....…….………ix
圖 目 錄……………………………..………..…………..………x
第一章、緒論…………………………………....................1
1.1前言……………………………………..…...................1
1.2研究動機………………………...………...…………….………2
1.3研究目的……..…………..……………...….……...…………4
第二章、前人研究…….……………………………………….......6
2.1濕地流場研究………………………………….....………………6
2.2自由液面流場模擬………………...…………...…………….…7
2.3懸浮固體釋放機制模擬…………...…………...…………….…8
第三章、濕地流場方程式與微粒軌跡追蹤模式…………………….10
3.1 三維度濕地植群之環境流場模式…………………...........10
3.1.1濕地平均流場控制方程式………………………............10
3.1.2紊流擾動速度介紹………………………………............12
3.1.3自由液面平均流場之控制方程式…………………..........13
3.1.4底床邊界與邊牆函數….………………..………….......…16
3.1.5數值方法與數值模擬架構……………..…………........…17
3.2懸浮固體釋放模式…….…………………….................20
3.2.1三維度拉格蘭日微粒軌跡追蹤模式………………..........20
3.2.2懸浮固體之基本假設……….……………………...........24
3.2.3懸浮固體運動之邊界條件………………………............24
3.2.4數值方法………………………………………..............25
第四章、模式驗證……………………………………………….……28
4.1 模式驗證案例介紹……....…..……………….....…......28
4.2 單棵幾何模型圓柱之周遭流場驗證…………..…...........29
4.3 自由液面仿生模擬對照…………….………………..........30
第五章、模式應用案例………..…………………………….………37
5.1 人工濕地研究案例介紹…………….....…...…….........37
5.2 人工濕地流場流況………………………………...……..…..38
5.3 紊流強度及水位高度呈現……...………………..……..……40
5.4 人工濕地之懸浮固體傳輸模擬…….....…………………..…42
5.5 懸浮固體粒數濃度計算…..……...……………………..……44
第六章、結果與討論……………………..……………...........67
6.1 人工濕地水流阻滯效應比較………………..….............67
6.1.1植群平均速度分佈...……………….………………........67
6.1.2 紊流動能分佈………………..…………………….......…69
6.1.3流量歷線分析………………….………………….........…70
6.2 人工濕地之懸浮固體移除功能比較.......………..........71
6.3懸浮固體移除機制之比較…………..........…………......72
6.4 人工濕地懸浮固體之粒數濃度分佈情形.….…….……......73
6.5 人工濕地懸浮固體之粒數百分比分佈情形..……...........75
第七章、結論與建議……………………………………...........87
7.1 結論…………………………..…….......………..........87
7.2 建議…………………………..……..…….………..........89
參考文獻…………….……………………………..…..………....90
dc.language.isozh-TW
dc.subject截留zh_TW
dc.subject人工濕地zh_TW
dc.subject水生植群zh_TW
dc.subject懸浮固體zh_TW
dc.subject體積分率法zh_TW
dc.subjectArtificial wetlanden
dc.subjectInterceptionen
dc.subjectVolume of fluiden
dc.subjectSuspended solidsen
dc.subjectHydrophytic aquatic vegetationen
dc.title人工濕地對懸浮固體排除機制之數值模擬zh_TW
dc.titleNumerical Investigation on Suspended Solids Removal for Constructed Wetlandsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張文亮,陳主惠,柳文成
dc.subject.keyword人工濕地,水生植群,懸浮固體,體積分率法,截留,zh_TW
dc.subject.keywordArtificial wetland,Hydrophytic aquatic vegetation,Suspended solids,Volume of fluid,Interception,en
dc.relation.page92
dc.rights.note未授權
dc.date.accepted2006-07-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
10.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved