Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23955
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江簡富(Jean-Fu Kiang)
dc.contributor.authorYu-Ming Wangen
dc.contributor.author王裕閔zh_TW
dc.date.accessioned2021-06-08T05:13:02Z-
dc.date.copyright2006-07-25
dc.date.issued2006
dc.date.submitted2006-07-16
dc.identifier.citation82, no. 11, pp. 2078-2083,
Aug. 1982.
59
[8] G. Likourezos, “Jan. 28, 1958: A laser is born,” IEEE Spectrum, vol. 29, no. 5, pp. 43,
Aug. 1992.
[9] T. E. Bell, “Light that acts like ‘natural bits’,” IEEE Spectrum, vol. 27, no. 8, pp.
56-57, Aug. 1990.
[10] A. H. Gnauck, “High-speed lightwave systems,” IEEE Int. Conf. Commun. vol. 2, pp.
733-737, June 1992.
[11] S. Wielandy and M. Fishteyn, “A simple nonlinear optical performance monitor for
high-speed lightwave systems,” IEEE Lasers Electro-Optics Soc., vol. 2, pp. 913-914,
June. 2003.
[12] L. Bernstein and C. M. Yuhas, “Managing the last mile [access network],” IEEE Commun.
Mag., vol. 35, no. 10, pp. 72-76, Jun. 1997.
[13] L. Cloetens, “Broadband access: The last mile,” IEEE Solid-State Circuits Conf., vol.
3, pp. 18-21, Feb. 2001.
[14] E. Leitgeb, J. Bregenzer, P. Fasser, and M. Gebhart, “Free space optics - extension to
fiber-networks for the “last mile”,” IEEE Lasers Electro Optics Soc., vol. 2, pp. 459-460,
Nov. 2001.
[15] S. M. Cherry, “The wireless last mile,” IEEE Spectrum, vol. 40, no. 9, pp. 18-21, Sep.
2003.
[16] R. Low, “Last mile, light speed,” IEEE Commun. Engineer, vol 2. no. 4, pp. 36-39,
Aug. 2004.
60
[17] P. E. Green, “Fiber to the home: The next big broadband thing,” IEEE Commun.
Mag., vol 42. no. 9, pp. 100-106, Sep. 2004.
[18] A. Acampora and D. Leiying, “Free-space-optical networks: Some capacity considerations,”
IEEE LEOS Summer Topical Meetings, pp. 33-44, July. 2005.
[19] M. Schwartz, Information Transmission, Modulation, and Noise, 4th ed., McGraw Hill,
1990.
[20] X. Zhu and J. M. Kahn, “Free space optical communication through atmospheric turbulence
channels,” IEEE Trans. Commun., vol. 50, pp. 1293-1300, Aug. 2002.
[21] T. G. Giallorenzi, “Optical communications research and technology: Fiber optics,”
Proc. IEEE, vol. 66, no. 7, pp. 744-780, July 1978.
[22] R. Ballart and Y. C. Ching, “SONET: Now it’s the standard optical network,” IEEE
Commun. Mag., vol.27, no. 3, pp. 8-15, March 1989.
[23] G. Cariolaro, and G. Iudicello, “Signal theory for SONET STM-1,” IEEE Telecommun.
Symp., pp. 26-32, Sept. 1990.
[24] R. J. Boehm, “Progress in standardization of SONET,” IEEE LCS, vol. 1, no. 2, pp.
8-16, May 1990.
[25] M. J. Sexton, “Synchronous networking-SONET and the SDH,” IEE Changing Face of
Telecommun., pp. 611-627, Jan. 1989.
[26] T. C. Wright, “The synchronous digital hierarchy standard,” IEE Telecommun., pp.
297-302, Apr. 1989.
61
[27] Hewlett Packard, IBM and Sharp, “Infrared data association serial infrared physical
layer specification,” version 1.3, Oct. 1998.
[28] S. Bloom, “The physics of free-space optics,” AirFiber Inc., May. 2002.
[29] I. I. Kim and E. Korevaar, “Availability of free space optics (FSO) and hybrid FSO/RF
systems,” Proc. SPIE, vol. 4530, pp. 84-95, 2001.
[30] B. C. Richmond, “Wavelength selection for optical wireless communications systems,”
Proc. SPIE, fSONA communication Corp., Feb. 2001.
[31] I . Kim et al., “Wireless optical transmission of fast ethernet, FDDI, ATM, and ESCON
protocol data using the TerraLink laser communication system,” Opt. Eng., vol. 37,
pp. 3143-55, Dec. 1998.
[32] “Building code, typical load,” The Standards Institution of Israel Standard I. C. 412,
1992.
[33] “Building code, wind load,” The Standards Institution of Israel Standard I.C. 414, 1982.
[34] S. Arnon, Optical wireless Communication in Encyclopedia of Optical Engineering
(EOE), Marcel Dekker, New York, 2003.
[35] H.Weichel, “Laser beam propagation in the atmosphere,” Proc. SPIE, Bellingham,WA,
1990.
[36] H. Manor and S. Arnon, “Performance of an optical wireless communication system as
a function of wavelength,” Applied Optics, vol.42, no. 21, pp. 4285-4294, July 2003.
62
[37] D. Burhuev. D. Kedar, and S. Arnon, “Analyzing performance of nano-satellite cluster
detector array receiver laser communication,” IEEE/OSA J. Lightwave Tech., vol.21,
no. 2, pp. 447-455, Feb. 2003.
[38] M. Ahronovich and S. Arnon, “Performance improvement of optical wireless communication
through fog with a decision feedback equalizer,” OSA J. Lightwave Tech., vol 22,
pp. 1646-1654, Aug. 2005.
[39] R. K. Tvron, “Bit error rate for free space adaptive optics laser communication,” OSA
J., vol.19, no. 4, pp. 753-758, April 2002.
[40] A. Acampora, S. H. Bloom, and S. Krishnamurthy, “UniNet: A hybrid approach for
universal broadband access using small radio cells interconnected by free-space optical
links,” IEEE J. Select. Areas Commun., vol. 16, pp. 973-987, Aug. 1998.
[41] B. R. Strickland, M. J. Lavan, E. Woodbridge, and V. Chan, “Effects of fog on the
bit-error rate of a free-space laser communication system,” Applied Optics, vol.8, no. 3,
pp. 424-431, 1999.
[42] J. Zhang, “Proposal of free space optical mesh network architecture for broadband
access,” IEEE Int. Conf. Commun., vol. 4, pp. 2142-2145, April 2002.
[43] F. Capasso, et al., “ Quantum cascade lasers: ultrahigh-speed operation, optical wireless
communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum
Electron., vol. 38, pp. 511-532, June 2002.
[44] X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence
channels,” IEEE Trans. Commun., vol. 50, pp. 1293-1300, Aug. 2002.
63
[45] “Building code, steel structure,” The Standards Institution of Israel Standard I.C. 1225,
1998.
[46] D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main
challenges and possible solutions,” IEEE Commun. Mag., vol. 42, no. 5, pp. S2 - S7,
May 2004.
[47] S. Arnon, “Optimization of urban optical wireless communication systems,” IEEE
Trans. Wireless Commun., vol. 2, no. 4, pp. 626-629, July 2003.
[48] A. Polishuk and S. Arnon, “Optical wireless communication network with adaptive
transmitter array,” Electrical and Electronics Engineers in Israel, pp. 293-295, Dec.
2002.
[49] A. Polishuk and S. Arnon, “Communication performance analysis of microsatellites
using an optical phased array antenna,” Opt. Eng., vol.42, no. 7, pp. 2015-2024, 2003.
[50] W. M. Neubert et al., “Experimental demonstration of an optical phased array antenna
for laser space communications,” Applied Optics, vol.33, no. 18, pp. 3820-3830, 1994.
[51] G. D. Gregory, “North American and IEC standards for circuit breakers,” IEEE Industry
Appl. Mag., vol. 7, no. 1, pp: 64-71, Feb. 2001.
[52] J. Chavanelle, A. Pousse, L. Fagot, M. Parmentier, and B. Kastler, “Scintillator crystal
optimization by Monte Carlo simulation for photodiode matrix detector,” IEEE Nuclear
Science Symp., vol. 3, pp. 16-19, Oct. 2000.
64
[53] S. Enguehard and B. Hatfield, “Phasing optical phased arrays using an exact solution
for adaptive optics,” IEEE Aerospace Conf., vol. 3, pp. 1423-1428, 2002.
[54] A. C. Boucouvalas and P. Barker, “IrLAP protocol performance analysis of IrDA wireless
communications,” IEEE Electron. Lett., vol.34, no. 25, pp. 2380-2381, Dec. 1998.
[55] D. Dack, C. I’Anson, and G. Proudler, “Use of 115 kb/s infra-red interface for mobile
multimedia,” IEEE Int. Symp., vol.3, pp. 980-985, Sep. 1994.
[56] S. Tarucha, H. Iwamura, H. Kobayaski, Y. Horikoshi, and H. Okamoto, “IIIA-2 optical
properties of GaAs-AlGaAs multi-quantum-well lasers/waveguides,” IEEE Trans.
Electron Devices, vol.30, no. 11, pp. 1575-1576, Nov. 1983.
[57] G. P. Agrawal, Fiber-Optical Communication Systems, 3th ed., John Wiley, 2005.
[58] D. J. T. Heartley, D. R. Wisely, I. Neild, and P. Cochrance, “Optical wireless: The
story so far,” IEEE Commun. Mag., vol. 4, pp. 72-74, 79-82, Dec. 1998.
[59] D. C. O’Brien, et al., “Experimental characterization of integrated optical wireless components,”
IEEE Photon. Tech. Lett., vol. 18, no. 8, pp. 977-979, April 2006.
[60] S. Remington, “High pergormance temperature control in laser diode test application,”
Application note 21 , Dec. 2000.
[61] K. P. Pipe and R. J. Ram, “Comprehensive heat exchange model for a semiconductor
laser diode,” IEEE Photon. Tech. Let., vol. 15, no. 4, pp. 504-506, April 2003.
[62] W. M. Pritchard, “The coefficient of performance of thermoelectric cooling devices,”
Prod. IEEE vol. 52, no. 4, pp. 442-443, April 1964.
65
[63] W. Fan, C. K. Wong, Y. M. Tan, K. M. Chua, B. Freeman, and H. J. Jiang, “Design
and fabrication of micro thermoelectric cooler on LTCC substrate,” Elect. Packaging
Tech. Conf., pp. 76-80, 2004.
[64] A. D. Reich, Unpublished work documented in internal reports to the Borg-Warner
Research Center, 1960.
[65] J. Williams, “A thermoelectric cooler temperature controller for fiber optical lasers”,
Linear technology application note, Note 89, April 1996.
[66] L. A. Johnson, “Controlling temperatures of diode lasers detectors thermoelectrically,”
Linear technology application note, Note 1, Oct. 2003.
[67] R. J. Buist and P. G. Lau, “Theoretical analysis of thermoelectric cooling performance
enhancement via thermal and electrical pulsing,” IEEE Thermoelectrics Int. Conf., pp.
234-237, March 1996.
[68] P. O. Box, “Laser diode technical data”, Thorlabs inc.
[69] E. I. Ackerman and C.H. Cox, “RF fiber-optic link performance,” IEEE Microwave
Mag., vol. 2, no. 4, pp. 50-58, Dec. 2001.
[70] T. Tsujimura, T. Yano, and K. Yoshida, “Transmission laser beam control method for
ubiquitous free space optics,” IEEE SICE Ann. Conf., vol. 1, pp. 599-604, Aug. 2004.
[71] T. Luftner, C. Kropl, R. Hagelauer, M. Huemer, R. Weigel, and J. Hausner, “Wireless
infrared communications with edge position modulation for mobile devices,” IEEE
Wireless Commun., vol. 10, no. 2, pp. 15-21, April 2003.
66
[72] P. Withington, H. Fluhler, and S. Nag, “Enhancing homeland security with advanced
UWB sensors,” IEEE Microwave Mag., vol. 4, no. 3, pp. 51-58, Sep. 2003.
[73] D. C. O’Brien, et al.,“High speed integrated optical wireless transceivers for in-building
optical LANs,” Optical Wireless Commun., pp.104-115, 2000.
[74] C. Singh, J. John, Y. N. Singh, and K. K. Tripathi, A Review on Indoor Optical Wireless
Systems, 1999.
[75] Texas Instruments Inc., “TMS320C6416T fixed-point digital signal processor,”
SPRS226H, Aug. 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23955-
dc.description.abstract無線光通訊具有易架設、高傳輸速度、不易竊聽、不需經過頻譜申請等優點。本論文設計一個光收發模組來展示無線光通訊的鏈結。光收發模組包含一個發射器以及一個接收器,發射器是由雷射驅動電路、Thorlabs 850 nm 10mW 的雷射光源以及對準器所組成,接收器是由GaAs PIN 感光二極體、轉阻放大器和取決電路所組成。在傳送端,數位訊號經由電腦的編碼再經由類比數位轉換器的轉換來調變雷射光源。在接收端,光訊號由GaAs PIN 感光二極體所接收再經由類比數位轉換器的處理以還原傳送資訊。
本論文提出一個修正的調變及編碼方式來改善傳輸效能。利用前置位元以及漢明碼來達成同步與錯誤更正以改善位元串的正確性以及可靠性。本論文使用德州儀器定點TMS320C6416T 的數位訊號處理器以及高速數位類比轉換器AED-101提供80 Msps 的取樣率。本論文以紅外線通訊協定為基礎,距離一公尺、資料發射率1.152 Mbps,展示一無線光通訊的觀念。
zh_TW
dc.description.abstractThere are several advantages with optical communications in free space such as high data rate, dedicated communication and being difficult to eavesdrop. Free-space optical communications is an alterative to short-distance communcations. In this work, optical transceiver modules are designed to demonstrate an optical communications link. An optical transceiver module consists of a tansmitter and a receiver. The transmitter is composed of a driver circuit
and a Thorlabs L850P010 850 nm 10 mW diode laser with a monitor-diode feedback loop and focused by an external collimation tube. The receiver is composed of a TMC-8D41-000
GaAs PIN plus pre-amplifier photodiode and decision circuits. Digital signals from PC are encoded and sent to a digital-to-analog converter (DAC) to modulate the diode laser. At the receiver side, the light is received by the GaAs PIN photodiode, then sent to an analog-todigital
converter (ADC) for post processing. We propose a revised protocol to improve the performance in the conventional encoding scheme. The revised protocol has the capability
of synchronization and error correction. The preamble code and Hamming encoding scheme are used to improve the accuracy and reliability of the bit stream. The TI TMS320C6416T fixed-point digital signal processor (DSK) with an analog expansion daughterboard (AED-101) are used to provide maximum sampling rate up to 80 Msps. In this work, IrDA data rate of 1.152 Mbps is chosen as a reference for a communications link over one meter.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:13:02Z (GMT). No. of bitstreams: 1
ntu-95-R93942069-1.pdf: 20027905 bytes, checksum: d6710311bb6c7e11cad97ba73efb42cf (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsAbstract i
Table of Contents ii
List of Figures iv
1 Introduction 1
1.1 Lightwave Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Optical Communication Systems . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Issues of Free-Space Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Optical System 18
2.1 Laser Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Transmitter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Properties of PIN Photodiodes . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 ReceiverDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3 Digital Signal Processing 38
3.1 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Conventional Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Revised Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4 Demonstration 53
5 Conclusions 58
dc.language.isoen
dc.subject比轉換器zh_TW
dc.subject無線光通訊zh_TW
dc.subject紅外線通訊協定zh_TW
dc.subject位訊號處理zh_TW
dc.subject器zh_TW
dc.subject及高速&#63849zh_TW
dc.subject位類zh_TW
dc.subjectFree space opticsen
dc.subjectAED-101en
dc.subjectDigital signal processorsen
dc.subjectIrDAen
dc.title以數位訊號處理器實現無線光通訊系統zh_TW
dc.titleA Free-Space Optical Communication System using Digital Signal Processorsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許博文(Powen Hsu),吳宗霖(Tzong-Lin Wu)
dc.subject.keyword無線光通訊,紅外線通訊協定,&#63849,位訊號處理,器,及高速&#63849,位類,比轉換器,zh_TW
dc.subject.keywordFree space optics,IrDA,Digital signal processors,AED-101,en
dc.relation.page68
dc.rights.note未授權
dc.date.accepted2006-07-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
19.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved