Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23944
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 顧記華 | |
dc.contributor.author | Ying-Cheng Chen | en |
dc.contributor.author | 陳依呈 | zh_TW |
dc.date.accessioned | 2021-06-08T05:12:52Z | - |
dc.date.copyright | 2006-08-03 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-17 | |
dc.identifier.citation | 1. Parkin,D.M., Bray,F.I., Devesa,S.S. (2001) Cancer burden in the year 2000. The global picture. Eur. J. Cancer, 37 Suppl 8, S4-66.
2. Potosky,A.L., Feuer,E.J., Levin,D.L. (2001) Impact of screening on incidence and mortality of prostate cancer in the United States. Epidemiol. Rev., 23, 181-186. 3. Daskivich,T.J., Oh,W.K. (2006) Recent progress in hormonal therapy for advanced prostate cancer. Curr. Opin. Urol., 16, 173-178. 4. Stephenson,A.J., Eastham,J.A. (2005) Role of salvage radical prostatectomy for recurrent prostate cancer after radiation therapy. J. Clin. Oncol., 23, 8198-8203. 5. Macvicar,G.R., Hussain,M. (2005) Chemotherapy for prostate cancer: implementing early systemic therapy to improve outcomes. Cancer Chemother. Pharmacol., 56 Suppl 1, 69-77. 6. Zheng,Y., Jung,M.K., Oakley,B.R. (1991) Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell, 65, 817-823. 7. Chang,P., Stearns,T. (2000) Delta-tubulin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nat. Cell Biol., 2, 30-35. 8. Mogilner,A., Wollman,R., Civelekoglu-Scholey,G., Scholey,J. (2006) Modeling mitosis. Trends Cell Biol., 16, 88-96. 9. Wittmann,T., Hyman,A., Desai,A. (2001) The spindle: a dynamic assembly of microtubules and motors. Nat. Cell Biol., 3, E28-E34. 10. Jordan,M.A., Wilson,L. (2004) Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 4, 253-265. 11. Pellegrini,F., Budman,D.R. (2005) Review: tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest, 23, 264-273. 12. Zhou,J., Giannakakou,P. (2005) Targeting microtubules for cancer chemotherapy. Curr. Med. Chem. Anticancer Agents, 5, 65-71. 13. Sullivan,K.F. (1988) Structure and utilization of tubulin isotypes. Annu. Rev. Cell Biol., 4, 687-716. 14. MacRae,T.H. (1997) Tubulin post-translational modifications--enzymes and their mechanisms of action. Eur. J. Biochem., 244, 265-278. 15. Schwarz,P.M., Liggins,J.R., Luduena,R.F. (1998) beta-tubulin isotypes purified from bovine brain have different relative stabilities. Biochemistry, 37, 4687-4692. 16. Panda,D., Miller,H.P., Banerjee,A., Luduena,R.F., Wilson,L. (1994) Microtubule dynamics in vitro are regulated by the tubulin isotype composition. Proc. Natl. Acad. Sci. U. S. A, 91, 11358-11362. 17. Banerjee,A., Luduena,R.F. (1992) Kinetics of colchicine binding to purified beta-tubulin isotypes from bovine brain. J. Biol. Chem., 267, 13335-13339. 18. Derry,W.B., Wilson,L., Khan,I.A., Luduena,R.F., Jordan,M.A. (1997) Taxol differentially modulates the dynamics of microtubules assembled from unfractionated and purified beta-tubulin isotypes. Biochemistry, 36, 3554-3562. 19. Orr,G.A., Verdier-Pinard,P., McDaid,H., Horwitz,S.B. (2003) Mechanisms of Taxol resistance related to microtubules. Oncogene, 22, 7280-7295. 20. Kavallaris,M., Kuo,D.Y., Burkhart,C.A., Regl,D.L., Norris,M.D., Haber,M., Horwitz,S.B. (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J. Clin. Invest, 100, 1282-1293. 21. Blade,K., Menick,D.R., Cabral,F. (1999) Overexpression of class I, II or IVb beta-tubulin isotypes in CHO cells is insufficient to confer resistance to paclitaxel. J. Cell Sci., 112 ( Pt 13), 2213-2221. 22. Ferguson,R.E., Taylor,C., Stanley,A., Butler,E., Joyce,A., Harnden,P., Patel,P.M., Selby,P.J., Banks,R.E. (2005) Resistance to the tubulin-binding agents in renal cell carcinoma: no mutations in the class I beta-tubulin gene but changes in tubulin isotype protein expression. Clin. Cancer Res., 11, 3439-3445. 23. Mozzetti,S., Ferlini,C., Concolino,P., Filippetti,F., Raspaglio,G., Prislei,S., Gallo,D., Martinelli,E., Ranelletti,F.O., Ferrandina,G., Scambia,G. (2005) Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin. Cancer Res., 11, 298-305. 24. Hari,M., Yang,H., Zeng,C., Canizales,M., Cabral,F. (2003) Expression of class III beta-tubulin reduces microtubule assembly and confers resistance to paclitaxel. Cell Motil. Cytoskeleton, 56, 45-56. 25. Kamath,K., Wilson,L., Cabral,F., Jordan,M.A. (2005) BetaIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J. Biol. Chem., 280, 12902-12907. 26. Ranganathan,S., Dexter,D.W., Benetatos,C.A., Chapman,A.E., Tew,K.D., Hudes,G.R. (1996) Increase of beta(III)- and beta(IVa)-tubulin isotopes in human prostate carcinoma cells as a result of estramustine resistance. Cancer Res., 56, 2584-2589. 27. Katsetos,C.D., Herman,M.M., Mork,S.J. (2003) Class III beta-tubulin in human development and cancer. Cell Motil. Cytoskeleton, 55, 77-96. 28. Schiff,P.B., Horwitz,S.B. (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. U. S. A, 77, 1561-1565. 29. Budman,D.R. (1992) New vinca alkaloids and related compounds. Semin. Oncol., 19, 639-645. 30. Dustin,P. (1989) [The centennial of the discovery of the antimitotic properties of colchicine]. Rev. Med. Brux., 10, 385-390. 31. Dhamodharan,R., Jordan,M.A., Thrower,D., Wilson,L., Wadsworth,P. (1995) Vinblastine suppresses dynamics of individual microtubules in living interphase cells. Mol. Biol. Cell, 6, 1215-1229. 32. Yvon,A.M., Wadsworth,P., Jordan,M.A. (1999) Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell, 10, 947-959. 33. Yeung,T.K., Germond,C., Chen,X., Wang,Z. (1999) The mode of action of taxol: apoptosis at low concentration and necrosis at high concentration. Biochem. Biophys. Res. Commun., 263, 398-404. 34. Jordan,M.A., Wendell,K., Gardiner,S., Derry,W.B., Copp,H., Wilson,L. (1996) Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res., 56, 816-825. 35. Jordan,M.A., Toso,R.J., Thrower,D., Wilson,L. (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. U. S. A, 90, 9552-9556. 36. Castedo,M., Kroemer,G. (2004) [Mitotic catastrophe: a special case of apoptosis]. J. Soc. Biol., 198, 97-103. 37. Castedo,M., Perfettini,J.L., Roumier,T., Yakushijin,K., Horne,D., Medema,R., Kroemer,G. (2004) The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene, 23, 4353-4361. 38. Castedo,M., Perfettini,J.L., Roumier,T., Andreau,K., Medema,R., Kroemer,G. (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene, 23, 2825-2837. 39. Kerr,J.F., Wyllie,A.H., Currie,A.R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 26, 239-257. 40. Okada,H., Mak,T.W. (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer, 4, 592-603. 41. Salvesen,G.S., Dixit,V.M. (1997) Caspases: intracellular signaling by proteolysis. Cell, 91, 443-446. 42. Budihardjo,I., Oliver,H., Lutter,M., Luo,X., Wang,X. (1999) Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol., 15, 269-290. 43. Shi,Y. (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell, 9, 459-470. 44. Fan,T.J., Han,L.H., Cong,R.S., Liang,J. (2005) Caspase family proteases and apoptosis. Acta Biochim. Biophys. Sin. (Shanghai), 37, 719-727. 45. Riedl,S.J., Shi,Y. (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol., 5, 897-907. 46. Salvesen,G.S. (2002) Caspases and apoptosis. Essays Biochem., 38, 9-19. 47. Deveraux,Q.L., Leo,E., Stennicke,H.R., Welsh,K., Salvesen,G.S., Reed,J.C. (1999) Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J., 18, 5242-5251. 48. Deveraux,Q.L., Reed,J.C. (1999) IAP family proteins--suppressors of apoptosis. Genes Dev., 13, 239-252. 49. Salvesen,G.S., Duckett,C.S. (2002) IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol., 3, 401-410. 50. Altieri,D.C. (2001) The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol. Med., 7, 542-547. 51. Altieri,D.C. (2003) Survivin and apoptosis control. Adv. Cancer Res., 88, 31-52. 52. Shin,S., Sung,B.J., Cho,Y.S., Kim,H.J., Ha,N.C., Hwang,J.I., Chung,C.W., Jung,Y.K., Oh,B.H. (2001) An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry, 40, 1117-1123. 53. Wall,N.R., O'Connor,D.S., Plescia,J., Pommier,Y., Altieri,D.C. (2003) Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res., 63, 230-235. 54. Fortugno,P., Wall,N.R., Giodini,A., O'Connor,D.S., Plescia,J., Padgett,K.M., Tognin,S., Marchisio,P.C., Altieri,D.C. (2002) Survivin exists in immunochemically distinct subcellular pools and is involved in spindle microtubule function. J. Cell Sci., 115, 575-585. 55. Jiang,X., Wilford,C., Duensing,S., Munger,K., Jones,G., Jones,D. (2001) Participation of Survivin in mitotic and apoptotic activities of normal and tumor-derived cells. J. Cell Biochem., 83, 342-354. 56. Sampath,S.C., Ohi,R., Leismann,O., Salic,A., Pozniakovski,A., Funabiki,H. (2004) The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell, 118, 187-202. 57. Lens,S.M., Wolthuis,R.M., Klompmaker,R., Kauw,J., Agami,R., Brummelkamp,T., Kops,G., Medema,R.H. (2003) Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J., 22, 2934-2947. 58. Li,F., Ambrosini,G., Chu,E.Y., Plescia,J., Tognin,S., Marchisio,P.C., Altieri,D.C. (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 396, 580-584. 59. Li,F., Ackermann,E.J., Bennett,C.F., Rothermel,A.L., Plescia,J., Tognin,S., Villa,A., Marchisio,P.C., Altieri,D.C. (1999) Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat. Cell Biol., 1, 461-466. 60. Giodini,A., Kallio,M.J., Wall,N.R., Gorbsky,G.J., Tognin,S., Marchisio,P.C., Symons,M., Altieri,D.C. (2002) Regulation of microtubule stability and mitotic progression by survivin. Cancer Res., 62, 2462-2467. 61. Hengartner,M.O. (2000) The biochemistry of apoptosis. Nature, 407, 770-776. 62. Schmitz,I., Kirchhoff,S., Krammer,P.H. (2000) Regulation of death receptor-mediated apoptosis pathways. International Journal of Biochemistry & Cell Biology, 32, 1123-1136. 63. Salvesen,G.S., Renatus,M. (2002) Apoptosome: the seven-spoked death machine. Dev. Cell, 2, 256-257. 64. Cande,C., Cohen,I., Daugas,E., Ravagnan,L., Larochette,N., Zamzami,N., Kroemer,G. (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie, 84, 215-222. 65. Verhagen,A.M., Vaux,D.L. (2002) Cell death regulation by the mammalian IAP antagonist Diablo/Smac. Apoptosis, 7, 163-166. 66. Letai,A., Bassik,M.C., Walensky,L.D., Sorcinelli,M.D., Weiler,S., Korsmeyer,S.J. (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2, 183-192. 67. Eskes,R., Desagher,S., Antonsson,B., Martinou,J.C. (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell Biol., 20, 929-935. 68. Troy,C.M., Shelanski,M.L. (2003) Caspase-2 redux. Cell Death. Differ., 10, 101-107. 69. Zhivotovsky,B., Orrenius,S. (2005) Caspase-2 function in response to DNA damage. Biochem. Biophys. Res. Commun., 331, 859-867. 70. Shin,S., Lee,Y., Kim,W., Ko,H., Choi,H., Kim,K. (2005) Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J., 24, 3532-3542. 71. Gao,Z., Shao,Y., Jiang,X. (2005) Essential roles of the Bcl-2 family of proteins in caspase-2-induced apoptosis. J. Biol. Chem., 280, 38271-38275. 72. Breckenridge,D.G., Xue,D. (2004) Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr. Opin. Cell Biol., 16, 647-652. 73. Kuwana,T., Newmeyer,D.D. (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr. Opin. Cell Biol., 15, 691-699. 74. Sharpe,J.C., Arnoult,D., Youle,R.J. (2004) Control of mitochondrial permeability by Bcl-2 family members. Biochim. Biophys. Acta, 1644, 107-113. 75. Antonsson,B., Martinou,J.C. (2000) The Bcl-2 protein family. Exp. Cell Res., 256, 50-57. 76. Bouillet,P., Strasser,A. (2002) BH3-only proteins - evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J. Cell Sci., 115, 1567-1574. 77. Nigg,E.A. (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol., 2, 21-32. 78. Wheatley,S.P., Hinchcliffe,E.H., Glotzer,M., Hyman,A.A., Sluder,G., Wang,Y. (1997) CDK1 inactivation regulates anaphase spindle dynamics and cytokinesis in vivo. J. Cell Biol., 138, 385-393. 79. Castedo,M., Perfettini,J.L., Roumier,T., Kroemer,G. (2002) Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ., 9, 1287-1293. 80. Harvey,K.J., Lukovic,D., Ucker,D.S. (2000) Caspase-dependent Cdk activity is a requisite effector of apoptotic death events. J. Cell Biol., 148, 59-72. 81. Hsu,S.L., Yin,S.C., Liu,M.C., Reichert,U., Ho,W.L. (1999) Involvement of cyclin-dependent kinase activities in CD437-induced apoptosis. Exp. Cell Res., 252, 332-341. 82. Knockaert,M., Greengard,P., Meijer,L. (2002) Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol. Sci., 23, 417-425. 83. Konishi,Y., Lehtinen,M., Donovan,N., Bonni,A. (2002) Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery. Mol. Cell, 9, 1005-1016. 84. Perfettini,J.L., Kroemer,R.T., Kroemer,G. (2004) Fatal liaisons of p53 with Bax and Bak. Nat. Cell Biol., 6, 386-388. 85. O'Connor,D.S., Grossman,D., Plescia,J., Li,F., Zhang,H., Villa,A., Tognin,S., Marchisio,P.C., Altieri,D.C. (2000) Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc. Natl. Acad. Sci. U. S. A, 97, 13103-13107. 86. Hahntow,I.N., Schneller,F., Oelsner,M., Weick,K., Ringshausen,I., Fend,F., Peschel,C., Decker,T. (2004) Cyclin-dependent kinase inhibitor Roscovitine induces apoptosis in chronic lymphocytic leukemia cells. Leukemia, 18, 747-755. 87. Lane,M.E., Yu,B., Rice,A., Lipson,K.E., Liang,C., Sun,L., Tang,C., McMahon,G., Pestell,R.G., Wadler,S. (2001) A novel cdk2-selective inhibitor, SU9516, induces apoptosis in colon carcinoma cells. Cancer Res., 61, 6170-6177. 88. Mihara,M., Shintani,S., Nakashiro,K., Hamakawa,H. (2003) Flavopiridol, a cyclin dependent kinase (CDK) inhibitor, induces apoptosis by regulating Bcl-x in oral cancer cells. Oral Oncol., 39, 49-55. 89. Park,D.S., Farinelli,S.E., Greene,L.A. (1996) Inhibitors of cyclin-dependent kinases promote survival of post-mitotic neuronally differentiated PC12 cells and sympathetic neurons. J. Biol. Chem., 271, 8161-8169. 90. Adams,M., Wube,A.A., Bucar,F., Bauer,R., Kunert,O., Haslinger,E. (2005) Quinolone alkaloids from Evodia rutaecarpa: a potent new group of antimycobacterial compounds. Int. J. Antimicrob. Agents, 26, 262-264. 91. Adams,M., Kunert,O., Haslinger,E., Bauer,R. (2004) Inhibition of leukotriene biosynthesis by quinolone alkaloids from the fruits of Evodia rutaecarpa. Planta Med., 70, 904-908. 92. Lee,M.K., Hwang,B.Y., Lee,S.A., Oh,G.J., Choi,W.H., Hong,S.S., Lee,K.S., Ro,J.S. (2003) 1-methyl-2-undecyl-4(1H)-quinolone as an irreversible and selective inhibitor of type B monoamine oxidase. Chem. Pharm. Bull. (Tokyo), 51, 409-411. 93. Kuo,S.C., Lee,H.Z., Juang,J.P., Lin,Y.T., Wu,T.S., Chang,J.J., Lednicer,D., Paull,K.D., Lin,C.M., Hamel,E., . (1993) Synthesis and cytotoxicity of 1,6,7,8-substituted 2-(4'-substituted phenyl)-4-quinolones and related compounds: identification as antimitotic agents interacting with tubulin. J. Med. Chem., 36, 1146-1156. 94. Jordan,M.A., Wilson,L. (2004) Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 4, 253-265. 95. Jordan,M.A., Thrower,D., Wilson,L. (1992) Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J. Cell Sci., 102 ( Pt 3), 401-416. 96. Jordan,M.A., Thrower,D., Wilson,L. (1991) Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res., 51, 2212-2222. 97. Wittmann,T., Hyman,A., Desai,A. (2001) The spindle: a dynamic assembly of microtubules and motors. Nat. Cell Biol., 3, E28-E34. 98. Abal,M., Souto,A.A., mat-Guerri,F., Acuna,A.U., Andreu,J.M., Barasoain,I. (2001) Centrosome and spindle pole microtubules are main targets of a fluorescent taxoid inducing cell death. Cell Motil. Cytoskeleton, 49, 1-15. 99. Carre,M., Andre,N., Carles,G., Borghi,H., Brichese,L., Briand,C., Braguer,D. (2002) Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J. Biol. Chem., 277, 33664-33669. 100. Jordan,M.A., Toso,R.J., Thrower,D., Wilson,L. (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. U. S. A, 90, 9552-9556. 101. Haldar,S., Chintapalli,J., Croce,C.M. (1996) Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res., 56, 1253-1255. 102. Condorelli,F., Salomoni,P., Cotteret,S., Cesi,V., Srinivasula,S.M., Alnemri,E.S., Calabretta,B. (2001) Caspase cleavage enhances the apoptosis-inducing effects of BAD. Mol. Cell Biol., 21, 3025-3036. 103. Cregan,S.P., Dawson,V.L., Slack,R.S. (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene, 23, 2785-2796. 104. Zheng,T.S., Hunot,S., Kuida,K., Momoi,T., Srinivasan,A., Nicholson,D.W., Lazebnik,Y., Flavell,R.A. (2000) Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat. Med., 6, 1241-1247. 105. Donaldson,K.L., Goolsby,G.L., Kiener,P.A., Wahl,A.F. (1994) Activation of p34cdc2 coincident with taxol-induced apoptosis. Cell Growth Differ., 5, 1041-1050. 106. Shen,S.C., Huang,T.S., Jee,S.H., Kuo,M.L. (1998) Taxol-induced p34cdc2 kinase activation and apoptosis inhibited by 12-O-tetradecanoylphorbol-13-acetate in human breast MCF-7 carcinoma cells. Cell Growth Differ., 9, 23-29. 107. Castedo,M., Perfettini,J.L., Roumier,T., Yakushijin,K., Horne,D., Medema,R., Kroemer,G. (2004) The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene, 23, 4353-4361. 108. Castedo,M., Perfettini,J.L., Roumier,T., Andreau,K., Medema,R., Kroemer,G. (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene, 23, 2825-2837. 109. Lerga,A., Richard,C., Delgado,M.D., Canelles,M., Frade,P., Cuadrado,M.A., Leon,J. (1999) Apoptosis and mitotic arrest are two independent effects of the protein phosphatases inhibitor okadaic acid in K562 leukemia cells. Biochem. Biophys. Res. Commun., 260, 256-264. 110. Ibrado,A.M., Kim,C.N., Bhalla,K. (1998) Temporal relationship of CDK1 activation and mitotic arrest to cytosolic accumulation of cytochrome C and caspase-3 activity during Taxol-induced apoptosis of human AML HL-60 cells. Leukemia, 12, 1930-1936 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23944 | - |
dc.description.abstract | 經由干擾微小管功能的化療藥物,已廣泛地使用在對抗腫瘤。在本論文的實驗,我們探討了2-phenyl-4-quinolone化合物(2P4Q),其在人類荷爾蒙不依賴型前列腺癌細胞的抗癌作用機轉。經由SRB細胞生長測定方法發現,2P4Q對人類荷爾蒙不依賴型前列腺癌細胞PC-3有抑制生長的作用(IC50=1.3 μM),且其作用濃度與抑制腫瘤細胞生長的比例呈正向關係。此外,對於人類多重抗藥性乳癌細胞NCI/ADR-RES (P-glycoprotein-rich的細胞株)也有類似的生長抑制效果 (IC50=1.8 μM),顯示2P4Q沒有微小管藥物常見的抗藥性問題。以流氏細胞儀觀察到,2P4Q會先造成細胞週期中G2/M期細胞的累積,而之後subG1期 (細胞凋亡)的增加;且由TUNEL測定法發現,2P4Q確實會引起細胞凋亡。由共軛焦螢光顯微鏡觀察到,2P4Q對好幾種tubulin isotypes (α、βI、βII、βIII、βIV)會造成聚集現象,且以monopolar、bipolar、multipolar各種方式呈現;此外,使用胞內微小管聚合實驗也發現,2P4Q有促進α、βI、βII、βIII、βIV-tubulin的聚合作用,此與共軛焦顯微鏡所觀察到的現象符合。接著我們以西方墨點法觀察各種與細胞凋亡相關的蛋白質表現,發現2P4Q會造成Bcl-2和Bcl-xL磷酸化現象、Mcl-1表現量下降及Bad的裂解現象;而且,由共軛焦螢光顯微鏡可觀測到cytochrome c及AIF有釋放的情形;此外,2P4Q也會造成多種caspase的活化,包括有:caspase-2、caspase-8、caspase-3、caspase-7,但caspase-9並沒有活化現象發生,且Apaf-1及pro-caspase-9間交互作用並無改變。我們也觀察到survivin會分佈到細胞核內且有表現量增加的情形,這現象與調控細胞週期及對抗細胞凋亡的功能有關,這也可以解釋caspase-9無法活化的現象。由於2P4Q會造成G2/M週期停滯的現象,我們也觀察了一些調控G2/M週期的蛋白表現,結果發現在2P4Q作用下,在Cdk1的Tyr-15位置有去磷酸化作用,而Cdc25C在Ser-216的位置也有去磷酸化情形發生;此外,也偵測到大量的MPM2產生。由這些情形推知,在2P4Q作用之下,Cdk1是呈現活化狀態且細胞會被停滯在有絲分裂週期 (mitosis)。綜合上述結果推論,2P4Q的作用機轉為:經由影響與tubulin之間的作用而干擾紡錘體 (mitotic spindle)的正常功能,導致細胞停滯在有絲分裂週期,進而啟動細胞凋亡的一連串訊息傳遞。 | zh_TW |
dc.description.abstract | Cancer chemotherapeutic agents that interfere with tubulin/microtubule function are in extensive use against both hematological malignancies and solid tumors. In this study, we have identified the anti-tumor mechanisms of 2-phenyl-4-quinolone (2P4Q) in androgen-independent prostate cancer cell line. By sulforhodamine B (SRB) assays, we found that 2P4Q induced an anti-proliferative effect in human hormone-resistant prostate cancer PC-3 cells in a dose-dependent manner with an IC50 of 1.3 μM. 2P4Q also displayed a similar anti-tumor effect in human breast cancer NCI/ADR-RES cells (P-glycoprotein-rich) with an IC50 of 1.8 μM, revealing that 2P4Q was not the substrate of P-glycoprotein. By FACScan flow cytometric analysis, 2P4Q caused an arrest of the cell cycle in G2/M phase, and a subsequent increase in hypodiploid phase (apoptosis). The apoptotic cell death induced by 2P4Q was also identified by TUNEL reaction technique. The immuno-histochemical examination by confocal microscopy showed that 2P4Q induced the assembly of several tubulin isotypes, including α, βI, βII, βIII, and βIV tubulin, with characteristics of monopolar, bipolar, and multipolar microtubule assembly. Using in vivo tubulin polymerization assay, we found that 2P4Q promoted the polymerization of α, βI, βII, βIII, and βIV tubulin, which is corresponsive with the confocal data. We used Western blot analysis to detect the expression of some apoptosis-related proteins and found that 2P4Q was able to induce phosphorylation of Bcl-2 and Bcl-xL, downregulation of Mcl-1, and proteolysis of Bad. The immuno-histochemical detection by confocal microscopic examination showed that 2P4Q induced release reaction of cytochrome c and AIF. Additionally, 2P4Q also induced the activation of several caspases, including caspase-2, -8, -3 and -7. However, neither the association of pro-caspase-9 with Apaf-1 was monitored, nor the caspase-9 was activated by 2P4Q. Our data also showed that survivin was significantly up-regulated and was translocated into the nucleus in cells responsive to 2P4Q, revealing that survivin played a role in the regulation of cell cycle progression and the anti-apoptotic function. This effect also explained the inability of caspase-9 activation in 2P4Q-treated cells. Since 2P4Q induced G2/M arrest of the cell cycle, a further experiment on the relevant proteins was conducted. The data showed that a 24-h treatment with 2P4Q caused the dephosphorylation on inhibitory Tyr-15 of Cdk1 and Ser-216 of Cdc25c. The data together with a significant induction of MPM2 expression suggested that Cdk1 was activated and the cells were arrested in the mitotic phase after an insult by 2P4Q. In summary, it is suggested that the mechanism of action of 2P4Q involves an interaction with tubulin resulting in disturbance of regular function of mitotic spindles, leading to mitotic arrest and activation of apoptotic signaling cascades. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:12:52Z (GMT). No. of bitstreams: 1 ntu-95-R93423016-1.pdf: 1877776 bytes, checksum: 1e9937df935f208a106f690f806c1c73 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 縮寫表...................................................I
中文摘要.................................................Ⅲ 英文摘要.................................................Ⅴ 前言.....................................................1 材料方法.................................................11 ㄧ、實驗材料.............................................11 二、細胞培養............................................11 三、實驗方法............................................12 1.細胞計數..............................................12 2.細胞生長的測定(SRB偵測法) ............................12 3.流氏細胞儀(flow cytometry)測定細胞週期................13 4.TUNEL測定法(檢測DNA的斷裂) ...........................13 5. 使用共軛焦顯微鏡的tubulin免疫染色偵測................14 6. 胞內微小管聚合實驗(in vivo tubulin polymerization assay) ..............14 7. 西方墨點法............................................15 8. Survivin在細胞內分佈之螢光免疫染色....................17 9. Cytochrome c、AIF釋放作用之螢光免疫偵測...............18 10. 共同免疫沉澱法(Co-immunoprecipitation)...............18 11. 資料分析.............................................19 結果.....................................................20 討論.....................................................26 結論.....................................................35 附表、圖.................................................36 參考文獻.................................................59 | |
dc.language.iso | zh-TW | |
dc.title | 2-Phenyl-4-Quinolone在人類雄激素不依賴型前列腺癌細胞的抗癌作用機轉探討 | zh_TW |
dc.title | Investigation of the Anti-Tumor Mechanism of 2-Phenyl-4-Quinolone in Human Androgen-Independent Prostate Cancer Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳志中,劉怡文,黃聰龍,潘秀玲 | |
dc.subject.keyword | 前列腺癌, | zh_TW |
dc.subject.keyword | 2-phenyl-4-quinolone-anti-cancer, | en |
dc.relation.page | 68 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2006-07-18 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
Appears in Collections: | 藥學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-95-1.pdf Restricted Access | 1.83 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.