請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23937完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳昭瑩 | |
| dc.contributor.author | Chien-Jui Huang | en |
| dc.contributor.author | 黃健瑞 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:12:46Z | - |
| dc.date.copyright | 2006-07-19 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-18 | |
| dc.identifier.citation | References
[1] Arora, N., Ahmad, T., Rajagopal, R., and Bhatnagar, R. K. 2003 A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Biochem. Biophy. Res. Commun. 307: 620-625. [2] Barboza-Corona, J. E., Nieto-Mazzocco, E., Velazquez-Robledo, R., Salcedo-Hernandez, R., Bautista, M., Jimenez, B., and Ibarra, J. E. 2003. Cloning, sequencing, and expression of the chitinase gene chiA74 from Bacillus thuringiensis. Appl. Environ. Microbiol. 69: 1023-1029. [3] Blaak, H., Schnellmann, J., Walter, S., Henrissat, B., and Schrempf, H. 1993. Characteristics of an exochitinase from Streptomyces olivaceoviridis, its corresponding gene, putative protein domains and relationship to other chitinases. Eur. J. Biochem. 214: 659-669. [4] Blaak, H. and Schrempf, H. 1995. Binding and substrate specificities of a Streptomyces olivaceoviridis chitinase in comparison with its proteolytically processed form. Eur. J. Biochem. 229: 132-139. [5] Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. [6] Brun, E., Moriaud, F., Gans, P., Blackledge, M. J., Barras, F., and Marion, D. 1997. Solution structure of the cellulose-binding domain of the endoglucanase Z secreted by Erwinia chrysanthemi. Biochemistry 36: 16074-16086. [7] Brunel, B., Perissol, C., Fernandez, M., Boeufgras, J. M., and Le Petit, J. 1994. Occurrence of Bacillus species on evergreen oak leaves. FEMS Microbiol. Ecol. 14: 331-342. [8] Carsolio, C. 1997. Role of the endochitinase Ech42 in the mycoparasitism by Trichoderma harzianum. PhD thesis dissertation. CINVESTAV, Irapuato, Mexico, pp. 42-61. [9] Chastagner, G. A., and Riley, K. I. 1990. Occurrence and control of benzimidazole and dicarboximide resistant Botrytis spp. on bulb crops in Western Washington and Oregon. Acta Hort. 266: 437-445. [10] Chernin, L., Ismailov, Z., Haran, S., and Chet, I. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl. Environ. Microbiol. 61: 1720-1726. [11] Chiou, A. L. and Wu, W. S. 2001. Isolation, identification and evaluation of bacterial antagonists against Botrytis elliptica on lily. J. Phytopathol. 149: 319-324. [12] Chiou, A.L. and Wu, W.S. 2003. Formulation of Bacillus amyloliquefaciens B190 for control of lily grey mould (Botrytis elliptica). J. Phytopathol. 151: 13-18. [13] Chong, S., Montello, G. E., Zhang, A., Cantor, E. J., Liao, W., Xu, M., and Benner, J. 1998. Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. 26: 5109-5115. [14] Cooper, G. M. 1997. The Cell, a Molecular Approach, American Society for Microbiology, Washington, DC. [15] Dian, C., Eshaghi, S., Urbig, T., McSweeney, S., Heijbel, A., Salbert, G., and Birse, D. 2002. Strategies for the purification and on-column cleavage of glutathione-Stransferase fusion target proteins. J. Chromatogr. B. 769: 133-144. [16] Doss, R. P., Chastagner, G. A., and Riley, K. L. 1984. Techniques for inoculum production and inoculation of lily leaves with Botrytis elliptica. Plant Dis. 68: 854-856. [17] Elad, Y. 1996. Mechanisms involved in the biological control of Botrytis cinerea incited diseases. Eur. J. Plant Pathol. 102: 719-732. [18] Emmert, E. A. B. and Handelsman, J. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171: 1-9. [19] Flach, J., Pilet, P. E., and Jolles, P. 1992. What’s new in chitinase research? Experientia 48: 701-716. [20] Freeman S., Minz O., Kolesnik I., Barbul O., Zveibil A., Maymon M., Nitzani Y., Kirshner B., Rav-David D., Bilu A., Dag A., Shafir S., and Elad Y. 2004. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur. J. Plant Pathol. 110: 361-370. [21] Goldstein, M. A., Takagi, M., Hashida, S., Shoseyov, O., Doi, R. H., and Segel, I. H. 1993. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A. J. Bacteriol. 175:5762-5768. [22] Gould, A. B., Kobayashi, D. Y., and Bergen, M. S. 1996. Identification of bacteria for biological control of Botrytis cinerea on petunia using a petal disk assay. Plant Dis. 80: 1029-1033. [23] Henrissat, B. and Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781-788. [24] Hsieh, T. F. and Huang, J. W. 1998. Factors affecting disease development of Botrytis leaf blight of lily caused by Botrytis elliptica. Plant Pathol. Bull. 40: 227-240. [25] Huang, C. J., Wang, T. K., Chung, S. C., and Chen, C. Y. 2004. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J. Biochem. Mol. Biol. 38: 82-88. [26] Huang, C. J. and Chen, C. Y. 2004. Gene cloning and biochemical characterization of chitinase CH from Bacillus cereus 28-9. Ann. Microbiol. 54: 289-297. [27] Huang, C. J. and Chen, C. Y. 2005. High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli. Biochem. Biophy. Res. Commun. 327: 8-17. [28] Imoto, T. and Yogishita, K. 1971. A simple activity measurement of lysozyme. Agric. Biol. Chem. 35: 1154-1156. [29] Kaomek, M., Mizuno, K., Fujimura, T., Sriyotha, P., and Cairns, J. R. K. 2003. Cloning, expression, and characterization of an antifungal chitinase from Leucaena leucocephala de Wit. Biosci. Biotechnol. Biochem. 67: 667-676. [30] Keim, P., Kalif, A., Schupp, J., Hill, K., Travis, S. E., Richmond, K., Adair, D. M., Hugh-Jones, M., Kuske, C. R., and Jackson, P. 1997. Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J. Bacteriol. 179: 818-824. [31] Kim, W. S., Salm, H., and Geider, K. 2004. Expression of bacteriophage Ea1h lysozyme in Escherichia coli and its activity in growth inhibition of Erwinia amylovora. Microbiology 150: 2707-2714. [32] Kobayashi, D. Y., Reedy, R. M., Bick, J. A., and Oudemans, P. V. 2002. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl. Environ. Microbiol. 68: 1047-1054. [33] Kong, H., Shimosaka, M., Ando, Y., Nishiyama, K., Fujii, T., and Miyashita, K. 2001. Species-specific distribution of a modular family 19 chitinase gene in Burkholderia gladioli. FEMS Microbiol. Ecol. 37: 135-141. [34] Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. [35] Lin, Y. and Xiong, G. 2004. Molecular cloning and sequence analysis of the chitinase gene from Bacillus thuringiensis serovar alesti. Biotechnol. Lett. 26: 635639. [36] Mabuchi, N. and Araki, Y. 2001. Cloning and sequencing of two genes encoding chitinases A and B from Bacillus cereus CH. Can. J. Microbiol. 47: 895-902. [37] Mabuchi, N., Hashizume, I., and Araki, Y. 2000. Characterization of chitinases excreted by Bacillus cereus CH. Can. J. Microbiol. 46: 370-375. [38] Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512-538. [39] Manoil, C. and Beckwith, J. A genetic approach to analyzing membrane protein topology. Science 233: 1403-1408. [40] Martinez, C., Michaud, M., Belanger, R. R., and Tweddell, R. J. 2002. Identification of soils suppressive against Helminthosporium solani, the causal agent of potato silver scurf. Soil Biol. Biochem. 34: 1861-1868. [41] Migheli, Q., Aloi, C., and Gullino, M. L. 1990. Resistance of Botrytis elliptica to fungicides. Acta Hort. 266: 429-436. [42] Nilsson, J., Stahl, S., Lundeberg, J., Uhlen, M., and Nygren, P. 1997. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Exp. Purif. 11: 1-6. [43] Okazaki, K., Yamashita, Y., Noda, M., Sueyoshi, N., Kameshita, I., and Hayakawa, S. 2004. Molecular cloning and expression of the gene encoding family 19 chitinase from Streptomyces sp. J-13-3. Biosci. Biotechnol. Biochem. 68: 341-351. [44] Orikoshi, H., Nakayama, S., Miyamoto, K., Hanato, C., Yasuda, M., Inamori, Y., and Tsujibo, H. 2005. Roles of four chitinases (chia, chib, chic, and chid) in the chitin degradation system of marine bacterium Alteromonas sp. strain O-7. Appl. Environ. Microbiol. 71: 1811-1815. [45] Perlman, D. and Halvorson, H. O. 1983. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J. Mol. Biol. 167: 391-409. [46] Perrakis, A., Tews, I., Dauter, Z., Oppenheim, A. B., Chet, I., Wilson, K. S., and Vorgias, C. E. 1994. Crystal structure of a bacterial chitinase at 2.3 A resolution. Structure 2: 1169-1180. [47] Pleban, S., Chernin, L., and Chet, I. 1997. Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett. Appl. Microbiol. 25: 284-288. [48] Saito A. and Schrempf, H. 2004. Mutational analysis of the binding affinity and transport activity for N-acetylglucosamine of the novel ABC transporter Ngc in the chitin-degrader Streptomyces olivaceoviridis. Mol Genet Genomics 271: 545-553. [49] Schagger, H. and von Jagow, G. 1987. Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. [50] Schnellmann, J., Zeltins, A., Blaak, H., and Schrempf, H., 1994. The novel lectin- like protein CHB1 is encoded by a chitin-inducible Streptomyces olivaceoviridis gene and binds specifically to crystalline α-chitin of fungi and other organisms. Mol. Microbiol. 13: 807-819. [51] Schrempf, H. 1999. Chitin-binding proteins in streptomycetes. EXS 87: 99-108. [52] Schrempf, H. 2000. Recognition and degradation of chitin by streptomycetes. Antonie Van Leeuwenhoek 79: 285-289. [53] Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J., and Handelsman, J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60: 2023-2030. [54] Simpson, H. and Barras, F. 1999. Functional Analysis of the Carbohydrate-Binding Domains of Erwinia chrysanthemi Cel5 (Endoglucanase Z) and an Escherichia coli Putative Chitinase. Appl. Environ. Microbiol. 181: 4611-4616. [55] Tanaka, T., Fujiwara, S., Nishikori, S., Fukui, T., Takagi, M., and Imanaka, T. 1999. A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Appl. Environ. Microbiol. 65: 5338-5344. [56] Tanaka, T., Fukui, T., Atomi, H., and Inamori, T. 2003. Characterization of an exo- beta-D-glucosaminidase involved in a novel chitinolytic pathway from the hyperthermophlic archaeon Thermococcus kodakaraensis KOD1. J. Bacteriol. 185: 5175-5181. [57] Tanaka, T., Fukui, T., Fujiwara, S., Atomi, H., and Inamori, T. 2004. Concerted action of diacetylchitobiose deacetylase and exo-beta-D-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Biol. Chem. 279: 30021-30027. [58] Tanaka, T., Fukui, T., and Imanaka, T. 2001. Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Biol. Chem. 276: 33629-33635. [59] Tantimavanich, S., Pantuwatana, S., Bhumiratana, A., and Panbangred, W. 1998. Multiple chitinase enzymes from a single gene of Bacillus licheniformis TP-1. J. Ferment. Bioeng. 85: 259-265. [60] Thamthiankul, S., Suan-Ngay, S., Tantimavanich, S., and Panbangred, W. 2001. Chitinase from Bacillus thuringiensis subsp. pakistani. Appl. Microbiol. Biotechnol. 56: 395-401. [61] Tronsmo, A. and Harman, G. E. 1993. Detection and quantification of N-acetyl-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels. Anal. Biochem. 208: 74-79. [62] Trudel, J. and Asselin, A. 1989. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178: 362-366. [63] Tsujibo, H., Okamoto, T., Hatano, N., Miyamoto, L., Watanabe, T., Mitsutomi, M., and Inamori, Y. 2000. Family 19 chitinases from Streptomyces thermoviolaceus OPC-520: molecular cloning and characterization. Biosci. Biotechnol. Biochem. 64: 2445-2453. [64] Wang, F., Xiao, X., Saito, A., and Schrempf, H. 2002. Streptomyces olivaceoviridis possesses a phophotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine. Mol. Genet. Genomics 268: 344-351. [65] Wang, F. P., Li, Q., Zhou, Y., Li, M. G., and Xiao, X. 2003. The C-terminal module of Chi1 from Aeromonas caviae CB101 has a function in substrate binding and hydrolysis. Proteins 53: 908-916. [66] Wang, S. Y., Moyne, A. L., Thottappilly, G., Wu, S. J., Locy, R. D., and Singh, N. K. 2001. Purification and characterization of a Bacillus cereus exochitinase. Enzyme Microbial Technol. 28: 492-498. [67] Watanabe, T., Ito, Y., Yamada, T., Hashimoto, M., Sekine, S., and Tanaka, H. 1994. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176: 4465-4472. [68] Watanabe, T., Kobori, K., Miyashita, K., Fujii, T., Sakai, H., Uchida, M., and Tanaka, H. 1993. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J. Biol. Chem. 268: 18567-18572. [69] Watanabe, T., Oyanagi, W., Suzuki, K., Ohnishi, K., and Tanaka, H. 1992. Structure of the gene encoding chitinase D of Bacillus circulans WL-12 and possible homology of the enzyme to other prokaryotic chitinases and class III plant chitinases. J. Bacteriol. 174: 408-414. [70] Watanabe, T., Oyanagi, W., Suzuki, K., and Tanaka, H. 1990a. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 172: 4017-4022. [71] Watanabe, T., Suzuki, K., Oyanagi, W., Ohnishi, K., and Tanaka, H. 1990b. Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin. J. Biol. Chem. 265: 15659-15665. [72] Xiao, X., Wang, F., Saito, A., Majka, J., Schlosser, A., and Schrempf, H. 2002. The novel Streptomyces olivaceoviridis ABC transporter Ngc mediates uptake of N-acetylglucosamine and N, N’-diacetylchitobiose. Mol. Genet. Genomics 267: 429-439. [73] Xu, G. Y., Ong, E., Gilkes, N. R., Kilburn, D. G., Muhandiram, D. R., Harris-Brendts, M., Carver, J. P., Kay, L. E., and Harvey, T. S. 1995. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry 34: 6993-7009. [74] Yamada, S., Ohashi, E., Agata, N., and Venkateswaran, K. 1999. Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice. Appl. Environ. Microbiol. 65: 1483-1490. [75] Zeltins, A., and Schrempf, H. 1995. Visualization of α-chitin with a specific chitin- binding protein (CHB1) from Streptomyces olivaceoviridis. Anal. Biochem. 231: 287-294. [76] Zeltins, A., and Schrempf, H. 1997. Specific interaction of the Streptomyces chitin- binding protein CHB1 with α-chitin: the role of individual tryptophan residues. Eur. J. Biochem. 246: 557-564. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23937 | - |
| dc.description.abstract | 利用幾丁質培養基自百合根圈土壤分離出一幾丁質分解性臘狀芽胞桿菌菌株28-9,經對峙培養、切離葉等防治試驗得知此菌株具有防治百合灰黴病的潛力。為了解幾丁質水解能力與拮抗百合灰黴病菌的關係,分別從蛋白質與基因組方向進行,得到兩個幾丁質水解酵素基因,命名為chiCH及chiCW。其演譯之蛋白質除訊息序列外,ChiCH具有一催化功能區,ChiCW則具一催化功能區,一fibronectin type III相似功能區及一幾丁質結合功能區。分別自大腸桿菌表現及純化出ChiCH和ChiCW兩蛋白質,經抑菌試驗分析得知ChiCH僅輕微地抑制百合灰黴病菌分生孢子萌芽,而ChiCW可有效地抑制百合灰黴病菌分生孢子萌芽,推測ChiCW是菌株28-9拮抗百合灰黴病菌之重要因子。此外,本研究亦發展出利用融合glutathione-S-transferase的重組幾丁質水解酵素可在大腸桿菌中大量表現幾丁質水解酵素,經動力學、水解產物及基質結合力分析可知ChiCW為內切型而ChiCH為外切型幾丁質水解酵素。最後,本研究對ChiCW的C端區域在酵素功能上的影響進行分析,相對於ChiCW,在高溫及高酸鹼值的條件下,
ChiCWΔFC對醣酐幾丁質有較高之活性,動力學分析結果則顯示ChiCW較ChiCWΔFC容易水解寡分子及聚分子基質,推測菌株28-9將ChiCW修飾成ChiCWΔFC可以提升自身在不同環境下分解幾丁質的效率,效地將大分子基質水解成更小的寡分子基質。 | zh_TW |
| dc.description.abstract | Bacillus cereus 28-9 is a chitinolytic bacterium isolated from rhizosphere of lilies. This bacterium showed antagonistic effect against Botrytis elliptica, the pathogen of lily leaf blight, by detached leaf assays. To investigate the involvement of the chitinolytic activity in
antagonism, two chitinase-encoding genes, chiCH and chiCW, have been cloned. ChiCH consists of a signal peptide followed by a catalytic domain. ChiCW consists of a signal peptide, a catalytic domain, a fibronectin type III-like domain, and a chitin-binding domain. ChiCH and ChiCW are slightly and effectively inhibitory to conidial germination of B. elliptica, respectively, indicating that ChiCW may contribute to the antagonistic activity of B. cereus 28-9 against B. elliptica. In addition, an ideal method for high-level expression of chitinases in E. coli as glutathione-S-transferase fusion proteins was established in this study. According to the results of kinetics, hydrolysis products, and binding activities, ChiCW is an endo-chitinase and ChiCH is an exo-chitinase. Finally, the functions of the C-terminal region on ChiCW activity were investigated. Compared with ChiCW, ChiCWΔFC exhibited higher activity at high temperature and pH although both enzymes had the same optimal temperature and pH for enzyme activities. The kinetic properties of ChiCW and ChiCWΔFC indicate that ChiCW hydrolyzes oligomeric and polymeric substrates more efficiently than ChiCWΔFC. Based on the results, we suggest that B. cereus 28-9 proteolytically modifying ChiCW to ChiCWΔFC could improve efficiency of chitin degradation in different environments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:12:46Z (GMT). No. of bitstreams: 1 ntu-95-F89633001-1.pdf: 2574473 bytes, checksum: 50b8744a98b0d3cf4d122c03d0d46b72 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目 錄
中文摘要 1 ABSTRACT 2 CHAPTER 1: GENE CLONING AND BIOCHEMICAL CHARACTERIZATION OF CHITINASE CH FROM BACILLUS CEREUS 28-9 3 ABSTRACT 3 INTRODUCTION 4 MATERIALS AND METHODS 5 Identification of a bacterial strain 5 Chitinase activity measurements 5 Purification of chitinase CH from the culture supernatnat of B. cereus 28-9 5 SDS-PAGE and zymogram analysis 6 Peptide N-terminal sequencing 6 Cloning of ChiCH-encoding gene 7 Expression and purification of ChiCH from E. coli cells 8 Biochemical characterization of ChiCH 8 Antifungal assay of ChiCH 9 Nucleotide sequence accession number 9 RESULTS AND DISCUSSION 10 Purification and N-terminal sequence of ChiCH 10 ChiCH-encoding gene 10 Analysis and comparison of the amino acid sequence of ChiCH with other chitinases 11 Biochemical properties of ChiCH 13 Inhibition by ChiCH on conidial germination of B. elliptica 13 Figure 1. SDS-PAGE and zymogram analysis. 15 Figure 2. Southern blot analysis of the genomic DNA of B. cereus 28-9. 16 Figure 3. Nucleotide and the deduced amino acid sequences of chiCH. 17 Figure 4. Sequence comparison of three chitinases from B. cereus strains. 18 Figure 5. Effects of pH on the chitinase activity and stability of ChiCH. 19 Figure 6. Effects of temperature on the chitinase activity and stability of ChiCH. 20 CHAPTER 2: IDENTIFICATION OF AN ANTIFUNGAL CHITINASE FROM A POTENTIAL BIOCONTROL AGENT, BACILLUS CEREUS 28-9 21 ABSTRACT 21 INTRODUCTION 22 MATERIALS AND METHODS 23 Bacterial strains and culture conditions 23 Preparation of colloidal chitin 23 Expression and purification of chitinase ChiCW from recombinant E. coli cells 23 Southern blot analysis 24 SDS-PAGE and zymogram analysis 25 Chitinase activity measurements 25 Antifungal assay of ChiCW 26 Nucleotide sequence accession number 26 RESULTS 27 Sequence anlysis of ChiCW-encoding gene 27 Expression and purification of ChiCW from recombinant E. coli 27 Analysis and comparison of the amino acid sequence of ChiCW with other chitinases 28 Inhibition by ChiCW on conidial germination of B. elliptica 29 DISCUSSION 31 Table 1. Purification of ChiCW from periplasmic fraction of E. coli DH5 (pNTU55) 33 Table 2. Effect of ChiCW on conidial germination of B. elliptica 34 Figure. 1. Nucleotide sequence of the chiCW gene of B. cereus 28-9 and the deduced amino acid sequence of the gene product. 36 Figure 2. Southern blot analysis of the genomic DNA of B. cereus 28-9. 37 Figure 3. SDS-PAGE and in-gel activity assay. 38 Figure 4. Alignment of the peptide sequences of the catalytic domains of chitinases from different Bacillus spp. 39 Figure 5. Alignment of the peptide sequences of the fibronectin type III-like domains of chitinases from different Bacillus spp. 40 Figure 6. Alignment of the peptide sequences of the chitin- and cellulose-binding domains of chitinases from different Bacillus spp. 41 Figure 7. Effect of ChiCW on conidial germination of B. elliptica. 42 CHAPTER 3: HIGH-LEVEL EXPRESSION AND CHARACTERIZATION OF TWO CHITINASES, CHICH AND CHICW, OF BACILLUS CEREUS 28-9 IN ESCHERICHIA COLI 43 ABSTRACT 43 INTRODUCTION 44 MATERIALS AND METHODS 46 Bacterial strains, plasmid, and media 46 Construction of expression vectors 46 Bacterial expression of recombinant chitinases 46 Purification of recombinant chitinases 47 PreScission protease cleavage of GST-chitinases 48 SDS-PAGE and chitinolytic zymography assay 48 Chitinase activity measurements and protein concentration determination 49 Kinetic properties characterization 49 Thin-layer chromatography 50 Substrate-binding assay 50 Affinity electrophoresis 51 RESULTS 52 Vector Construction and expression of GST-chitinase fusion proteins in E. coli 52 Purification of recombinant chitinases 52 Kinetics of chitinases 53 Hydrolysis products of chitinases 54 Binding activity of chitinases to polysaccharides 54 DISCUSSION 56 Table 1. Primers used 62 Table 2. Purification of GST-chitinase fusion proteins 63 Table 3. Kinetics of chitinases and GST-chitinase fusion proteins 64 Figure 1. Schematic diagrams of constructed plasmids, pGW59 (A) and pGH60 (B), for overexpression of ChiCW and ChiCH. 65 Figure 2. Expression of GST-ChiCH fusion protein in E. coli cells. 66 Figure 3. Purification of GST-ChiCH and recombinant ChiCH after cleavage by PreScission protease. 67 Figure 4. Purification of GST-ChiCW and recombinant ChiCW after cleavage by PreScission protease. 68 Figure 5. Thin- layer chromatography of hydrolytic products from various N-acetylchitooligosaccharides. 69 Figure 6. Domain structures of ChiCH and ChiCW from B. cereus 28-9 70 Figure 7. Affinity electrophoresis of chitinases in the presence (+) and absence (-) of glycol chitin (A), CM-cellulose (B), and laminarin (C). 71 CHAPTER 4: FUNCTIONS OF THE C-TERMINAL REGION OF CHITINASE CHICW FROM BACILLUS CEREUS 28-9 IN SUBSTRATE-BINDING AND HYDROLYSIS OF CHITIN 72 ABSTRACT 72 INTRODUCTION 73 MATERIALS AND METHODS 74 Bacterial strains, plasmid, and media 74 Construction of expression vectors 74 Bacterial expression of truncated chitinases 74 Purification of ChiCW FC 75 SDS-PAGE and chitinolytic zymography assay 75 Chitinase activity measurement and protein concentration determination 76 Optimal condition for enzyme activity 76 Substrate specificity and binding assay 76 Kinetic properties characterization 77 RESULTS 78 Expression of ChiCW derivatives 78 Purification of ChiCW FC 78 Optimal conditions for enzyme activity 78 Substrate specificity and binding activity 79 Kinetics of ChiCW and ChiCW FC 80 DISCUSSION 81 Table 1. Primers used in this study 85 Table 2. Purification of ChiCW FC 86 Table 3. Substrate specificity of ChiCW and ChiCW FC 87 Table 4. Kinetics of ChiCW and ChiCW FC 88 Figure 1. Schematic diagram of the domain structures of ChiCW and two derivatives. 89 Figure 2. Elution profile of ChiCW FC purification by anion exchange chromatography. 90 Figure 3. SDS-PAGE and zymography assay of ChiCW and ChiCW FC. 91 Figure 4. Effect of temperature on the chitinase activity of ChiCW and ChiCW FC. 92 Figure 5. Effect of pH on the chitinase activity of ChiCW and ChiCW FC. 93 Figure 6. Insoluble substrate binding ability of ChiCW and ChiCW FC. 94 FUTURE ASPECT 95 | |
| dc.language.iso | en | |
| dc.subject | 蛋白質大量表現 | zh_TW |
| dc.subject | 幾丁質水解酵素 | zh_TW |
| dc.subject | 臘狀芽胞桿菌 | zh_TW |
| dc.subject | 百合灰黴病菌 | zh_TW |
| dc.subject | Protein overexpression | en |
| dc.subject | Chitinase | en |
| dc.subject | Bacillus cereus | en |
| dc.subject | Botrytis elliptica | en |
| dc.title | 拮抗性臘狀芽孢桿菌菌株28-9幾丁質水解酵素系統研究 | zh_TW |
| dc.title | Chitinase system of antagonistic Bacillus cereus 28-9 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉世東,蔡珊珊,徐源泰,吳蕙芬,賴吉永 | |
| dc.subject.keyword | 幾丁質水解酵素,臘狀芽胞桿菌,百合灰黴病菌,蛋白質大量表現, | zh_TW |
| dc.subject.keyword | Chitinase,Bacillus cereus,Botrytis elliptica,Protein overexpression, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2006-07-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
