Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23930
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡懷楨(Huai-Jen Tsai)
dc.contributor.authorHao-Seong Hoien
dc.contributor.author許巧雙zh_TW
dc.date.accessioned2021-06-08T05:12:40Z-
dc.date.copyright2006-07-25
dc.date.issued2006
dc.date.submitted2006-07-18
dc.identifier.citationAmbros V, Lee RC, Lavanway A, Williams PT, Jewell D. 2003. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol.13:807-18.
Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116:281-97.
Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. 2003. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 113:25-36.
Chang S, Johnston RJ Jr, Frokjaer-Jensen C, Lockery S, Hobert O. 2004. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature. 430:785-9.
Chen YH, Lee WC, Liu CF, Tsai HJ. 2001. Molecular structure, dynamic expression, and promoter analysis of zebrafish (Danio rerio) myf-5 gene. Genesis. 29:22-35.
Chen YH, Tsai HJ. 2002. Treatment with Myf5-morpholino results in somite patterning and brain formation defects in zebrafish. Differentiation. 70:447-56.
Chen YH, Lee HC, Liu CF, Lin CY, Tsai HJ. 2003. Novel regulatory sequence -82/-62 functions as a key element to drive the somite-specificity of zebrafish myf-5. Dev Dyn. 228:41-50.
Clement JQ, Qian L, Kaplinsky N, Wilkinson MF. 1999. The stability and fate of a spliced intron from vertebrate cells. RNA. 5:206-20.
Cossu G, Borello U. 1999. Wnt signaling and the activation of myogenesis in mammals. EMBO J.18:6867-72.
Costa FF. 2005. Non-coding RNAs: new players in eukaryotic biology. Gene. 357:83-94.
Currie PD, Ingham PW. 1998. The generation and interpretation of positional information within the vertebrate myotome. Mech Dev. 73:3-21.
Dosch R, Gawantka V, Delius H, Blumenstock C, Niehrs C. 1997. Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development.124:2325-34.
Edmondson DG, Olson EN. 1993. Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem. 268:755-8.
Funk WD, Ouellette M, Wright WE, 1991. Molecular biology of myogenic regulatory factors. Mol Biol Med. 8:185-95.
Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF. 2006. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 312:75-9.
Gustafsson MK, Pan H, Pinney DF, Liu Y, Lewandowski A, Epstein DJ, Emerson CP Jr. 2002. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev. 16:114-26.
Johnston RJ, Hobert O. 2003. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature. 426:845-9.
Kim VN, Nam JW. 2006. Genomics of microRNA. Trends Genet. 22:165-73.
Kleinjan DA, Seawright A, Childs AJ, van Heyningen V. 2004. Conserved elements in Pax6 intron 7 involved in (auto)regulation and alternative transcription. Dev Biol.265:462-77.
Kuersten S, Goodwin EB. 2003. The power of the 3' UTR: translational control and development. Nat Rev Genet. 4:626-37.
Lai EC. 2002. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 30:363-4.
Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. 2003. New microRNAs from mouse and human. RNA. 9:175-9.
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051-60.
Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843-54.
Lee HC, Huang HY, Lin CY, Chen YH, Tsai HJ. 2006. Foxd3 mediates zebrafish myf5 expression during early somitogenesis. Dev Biol. 290:359-72.
Lin CY, Chen YH, Lee HC, Tsai HJ. 2004. Novel cis-element in intron 1 represses somite expression of zebrafish myf-5. Gene. 2004. 334:63-72.
Lin SL, Chang D, Wu DY, Ying SY. 2003. A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun. 310:754-60.
Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. 2004. Nuclear export of microRNA precursors. Science. 303:95-8.
Mattick JS. 2004. RNA regulation: a new genetics? Nat Rev Genet. 5:316-23.
Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A, Farzan-Kashani R, Zuker M, Pasquinelli AE, Ruvkun G, Sharp PA, Tabin CJ, McManus MT. 2004. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet. 36:1079-83.
Mei W, Yang J, Tao Q, Geng X, Rupp RA, Ding X. 2001. An interferon regulatory factor-like binding element restricts Xmyf-5 expression in the posterior somites during Xenopus myogenesis. FEBS Lett. 505:47-52.
Miller JB, Schaefer L, Dominov JA. 1999. Seeking muscle stem cells. Curr Top Dev Biol. 43:191-219.
Ott MO, Bober E, Lyons G, Arnold H, Buckingham M. 1991. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development. 11:1097-107.
Pownall ME, Gustafsson MK, Emerson CP Jr. 2002. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol. 18:747-83.
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 403:901-6.
Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A.. 2004. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14:1902-10.
Summerbell D, Ashby PR, Coutelle O, Cox D, Yee S, Rigby PW. 2000. The expression of Myf5 in the developing mouse embryo is controlled by discrete and dispersed enhancers specific for particular populations of skeletal muscle precursors. Development. 127:3745-57.
Stark A, Brennecke J, Russell RB, Cohen SM. 2003. Identification of Drosophilia MicroRNA targets. PLos Biol. 1:397-408
Yang J, Mei W, Otto A, Xiao L, Tao Q, Geng X, Rupp RA, Ding X. 2002. Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm. Mech Dev. 115:79-89.
Yekta S, Shih IH, Bartel DP. 2004. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 304:594-6.
Ying SY, Lin SL. 2004. Intron-derived microRNAs--fine tuning of gene functions. Gene. 342:25-8.
Ying SY, Lin SL.2005. Current perspectives in intronic micro RNAs (miRNAs). Biomed Sci.13:5-15.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23930-
dc.description.abstractMyf5 是屬於MRFs(myogenesis regulatory factors)的其中一員,在肌肉細胞的特化與分化都扮演著十分重要的角色。myf5 的活化與抑制受到嚴密的調控,因此造成myf5於體節的表現具有時間與位置的特異性。研究發現斑馬魚 myf5 的intron I (+502/+835, I300)具有抑制myf5表現的能力,然而其機制目前還不清楚。在本論文中我們發現正向的I300 RNA具有抑制myf5 promoter活性的能力,然而反向的I300 RNA則無明顯效果。並且I300 RNA所導致的抑制作用具有promoter 的專一性,僅myf5 promoter活性受到抑制,而其他promoter如myod,cytomegalovirus 和thymidine kinase 則沒有受到影響。因此我們認為I300調控是透過RNA的層次。利用生物資訊以及Northern blotting實驗,我們在I300 RNA中找到一段intronic microRNA (miR-In, +610/+632)的序列。為了研究miR-In 的功能,我們在luciferase 的3’UTR接入miR-In的target sequence,並與I300 RNA共同顯微注射到斑馬魚胚胎中,結果顯示,I300 RNA 能抑制具有target sequence 的mRNA表現,使luciferase 活性下降至25 %。大量表達I300也會影響胚胎的發育,造成個體頭部與軀幹部位發育的不正常。在whole-mount in situ 實驗中,24-hpf的斑馬魚胚胎已形成的體節myf5已經消失表現,但miR-In卻仍然存在,顯示了miR-In存在可能抑制myf5在已形成體節的表現。綜合以上證據,我們認為存在於I300的miR-In 具有抑制myf5 表現的能力,並透過抑制myf5的表現達到調控肌肉的發育。zh_TW
dc.description.abstractMyf5 is one of myogenesis regulatory factors (MRFs), which plays roles in the specification and differentiation of muscular cells during myogenesis. The expression of myf5 is in a somite- and stage-specific manner under a fine-tuned control mechanism. However, the molecular mechanism of repression of myf5 is still unknown, although repressive element within intron I (+502/+835, I300) of zebrafish myf5 was reported. In this study, we microinjected the upstream region (-6300 / -1) of zebrafish myf5 fused to a luciferase reporter gene and a sense RNA corresponding for I300 into the fertilized embryos, resulting the luciferase activity was down-regulated by sense I300 RNA, but was not affected by anti-sense I300 RNA. In addition, the I300-mediated repression was promoter-specific because only myf5 promoter activity was repressed, but not for other promoters, such as myod, cytomegalovirus and thymidine kinase. These evidences demonstrate that the zebrafish myf5 repression modulated by I300 was controlled at RNA level. Using bioinformatics and Northern blotting, we identified an intronic microRNA motif (miR-In, +610/+632) within I300 fragment. In order to study the function of miR-In, we microinjected a DNA construct in which the luciferase reporter fused with 5 copies of miR-In complementary sequences at its 3’UTR region, resulting the target mRNA expression was down-regulated by sense I300 RNA: the luciferase activity was reduced down to 25 % of control. Over-expression of I300 resulted in the morphological defect of brain and somites, which photocopied the embryos injected with myf5 morpholino, a myf5-specific translation inhibitor. In 24-hpf zebrafish embryos, the myf5 transcripts were abolished at the older formed somites, but miR-In was detected prominently at these somites, indicating that miR-In played an important role in repression of myf5 during somitogenesis. Based on these evidences, we propose that miR-In is involved in muscle development through repressing the expression of myf5.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:12:40Z (GMT). No. of bitstreams: 1
ntu-95-R93b43003-1.pdf: 1548402 bytes, checksum: 8569bfed4c0dde1be46c33fca21ac207 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要 ----------------------------------------------- 1
英文摘要 ----------------------------------------------- 3
前言 -------------------------------------------------- 5
材料與方法 --------------------------------------------- 13
結果 -------------------------------------------------- 24
討論 -------------------------------------------------- 30
參考資料 ----------------------------------------------- 38
圖表 -------------------------------------------------- 42
附錄 -------------------------------------------------- 48
dc.language.isozh-TW
dc.title斑馬魚myf5 intron I 內含之microRNA 具有專一抑制myf5 表現之能力zh_TW
dc.titlemicroRNA within myf5 intron I represses myf5
expression in zebrafish (Danio rerio)
en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李娟,姚孟肇,孫以瀚,鄭邑荃
dc.subject.keyword斑馬魚,zh_TW
dc.subject.keywordintron I,en
dc.relation.page52
dc.rights.note未授權
dc.date.accepted2006-07-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
Appears in Collections:分子與細胞生物學研究所

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
1.51 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved