Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23915
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬
dc.contributor.authorShuen-Shian Shiauen
dc.contributor.author蕭舜賢zh_TW
dc.date.accessioned2021-06-08T05:12:28Z-
dc.date.copyright2006-07-24
dc.date.issued2006
dc.date.submitted2006-07-19
dc.identifier.citation水野卓、川合正允 (賴慶亮譯)。1997。菇類的化學生化學。國立編譯館,台北。
王伯徹。1990。藥用真菌系列報導(一)靈芝。食品工業 22: 23-30。
葉增勇、廖雯慧、蕭明熙。2004。從藥理特性看靈芝。科學月刊 35: 862-867。
謝建元。2000。靈芝的功效與栽培方法。生物資源生物技術 2: 18-28。
Azuma, M., Levinson, J. N., Page, N., and Bussey, H. 2002. Saccharomyces cerevisiae Big1p, a putative endoplasmic reticulum membrane protein required for normal levels of cell wall beta-1,6-glucan. Yeast 19: 783-793.
Bacon, J. S. D., Jones, D., Farmer, V. C., and Webley, D. M. 1968. The occurrence of alpha-1,3-glucan in Cryptococcus, Schizosaccharomyces and polyporus species, and its hydrolysis by a Streptomyces culture filtrate lysing cell walls of Cryptococcus. Biochimica et Biophysica Acta 158: 313-315.
Bonifacino, J. S. 2003. Current protocols in cell biology. John Wiley, New York.
Boone, C., Sommer, S. S., Hensel, A., and Bussey, H. 1990. Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. The Journal of Cell Biology 110: 1833-1843.
Borkovich, K. A., Alex, L. A., Yarden, O., Freitag, M., Turner, G. E., Read, N. D., Seiler, S., Bell-Pedersen, D., Paietta, J., Plesofsky, N., Plamann, M., Goodrich-Tanrikulu, M., Schulte, U., Mannhaupt, G., Nargang, F. E., Radford, A., Selitrennikoff, C., Galagan, J. E., Dunlap, J. C., Loros, J. J., Catcheside, D., Inoue, H., Aramayo, R., Polymenis, M., Selker, E. U., Sachs, M. S., Marzluf, G. A., Paulsen, I., Davis, R., Ebbole, D. J., Zelter, A., Kalkman, E. R., O'Rourke, R., Bowring, F., Yeadon, J., Ishii, C., Suzuki, K., Sakai, W., and Pratt, R. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiology Molecular Biology Reviews 68: 1-108.
Brown, J. L., and Bussey, H. 1993. The yeast KRE9 gene encodes an O glycoprotein involved in cell surface beta-glucan assembly. Molecular and Cellular Biology 13: 6346-6356.
Brown, J. L., Kossaczka, Z., Jiang, B., and Bussey, H. 1993. A mutational analysis of killer toxin resistance in Saccharomyces cerevisiae identifies new genes involved in cell wall (1-->6)-beta-glucan synthesis. Genetics 133: 837-849.
Cabib, E., Roh, D. H., Schmidt, M., Crotti, L. B., and Varma, A. 2001. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. The Journal of Biological Chemistry 276: 19679-19682.
Chang, S. T., and Miles, P. G. 2004. Mushrooms : cultivation, nutritional value, medicinal effect, and environmental impact. CRC Press, Boca Raton, Fla, pp.357-372.
de Groot, P. W. J., Ruiz, C., de Aldana, C. R. V., Duenas, E., Cid, V. J., Del Rey, F., Rodriquez-Pena, J. M., Perez, P., Andel, A., Caubin, J., Arroyo, J., Garcia, J. C., Gil, C., Molina, M., Garcia, L. J., Nombela, C., and Klis, F. M. 2001. A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comparative and Functional Genomics 2: 124-142.
Douglas, C. M. 2001. Fungal beta(1,3)-D-glucan synthesis. Medical Mycology 39 Suppl 1: 55-66.
Goodwin, S. B., Drenth, A., and Fry, W. E. 1992. Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans. Current Genetics 22: 107-115.
Griffin, D. H. 1994. Fungal physiology. Wiley-Liss, New York.
Hsu, H. Y., Hua, K. F., Lin, C. C., Lin, C. H., Hsu, J., and Wong, C. H. 2004. Extract of Reishi polysaccharides induces cytokine expression via TLR4-modulated protein kinase signaling pathways. Journal of Immunology 173: 5989-5999.
Hutchins, K., and Bussey, H. (1983) Cell wall receptor for yeast killer toxin: involvement of (1-->6)-beta-D-glucan. Journal of Bacteriology 154: 161-169.
Igual, J. C., Johnson, A. L., and Johnston, L. H. 1996. Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. The EMBO Journal 15: 5001-5013.
Inoue, S. B., Takewaki, N., Takasuka, T., Mio, T., Adachi, M., Fujii, Y., Miyamoto, C., Arisawa, M., Furuichi, Y., and Watanabe, T. 1995. Characterization and gene cloning of 1,3-beta-D-glucan synthase from Saccharomyces cerevisiae. European Journal of Biochemistry 231: 845-854.
Jiang, B., Ram, A. F., Sheraton, J., Klis, F. M., and Bussey, H. 1995. Regulation of cell wall beta-glucan assembly: PTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Molecular & General Genetics 248: 260-269.
Jong, S. C., and Birmingham, J. M. 1992. Medicinal benefits of the mushroom Ganoderma. Advances in Applied Microbiology 37: 101-134.
Kim, J., Huang, W. P., and Klionsky, D. J. 2001. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. Journal of Cell Biology 152: 51-64.
Kollar, R., Reinhold, B. B., Petrakova, E., Yeh, H. J., Ashwell, G., Drgonova, J., Kapteyn, J. C., Klis, F. M., and Cabib, E. 1997. Architecture of the yeast cell wall. Beta(1-->6)-glucan interconnects mannoprotein, beta(1-->)3-glucan, and chitin. The Journal of Biological Chemistry 272: 17762-17775.
Li, H., Page, N., and Bussey, H. 2002. Actin patch assembly proteins Las17p and Sla1p restrict cell wall growth to daughter cells and interact with cis-Golgi protein Kre6p. Yeast 19: 1097-1112.
Lin, Y.L., Liang, Y.C., Lee, S.S., and Chiang, B.L. 2005. Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappaB and p38 mitogen-activated protein kinase pathways. Journal of Leukocyte Biology 78: 533-543.
Magnelli, P., Cipollo, J. F., and Abeijon, C. 2002. A refined method for the determination of Saccharomyces cerevisiae cell wall composition and beta-1,6-glucan fine structure. Analytical Biochemistry 301: 136-150.
Meaden, P., Hill, K., Wagner, J., Slipetz, D., Sommer, S. S., and Bussey, H. 1990. The yeast KRE5 gene encodes a probable endoplasmic reticulum protein required for (1----6)-beta-D-glucan synthesis and normal cell growth. Molecular and Cellular Biology 10: 3013-3019.
Mio, T., Yamada-Okabe, T., Yabe, T., Nakajima, T., Arisawa, M., and Yamada-Okabe, H. 1997. Isolation of the Candida albicans homologs of Saccharomyces cerevisiae KRE6 and SKN1: expression and physiological function. Journal of Bacteriology 179: 2363-2372.
Mizuno, T., Wang, G. Y., Zhang, J., Kawagishi, H., Nishitoba, T., and Li, J. X. 1995. Reishi, Ganoderma lucidum and Ganoderma tsugae Bioactive Substances and Medicinal Effects. Food Reviews International 11: 151-166.
Montijn, R. C., Vink, E., Muller, W. H., Verkleij, A. J., Van Den Ende, H., Henrissat, B., and Klis, F. M. 1999. Localization of synthesis of beta1,6-glucan in Saccharomyces cerevisiae. Journal of Bacteriology 181: 7414-7420.
Peng, L., Kawagoe, Y., Hogan, P., and Delmer, D. 2002. Sitosterol-beta-glucoside as primer for cellulose synthesis in plants. Science 295: 147-150.
Ram, A. F., Wolters, A., Ten Hoopen, R., and Klis, F. M. 1994. A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10: 1019-1030.
Roemer, T., and Bussey, H. 1991. Yeast beta-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc Natl Acad Sci U S A 88: 11295-11299.
Roemer, T., Delaney, S., and Bussey, H. 1993. SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in beta-glucan synthesis. Molecular and Cellular Biology 13: 4039-4048.
Roemer, T., Paravicini, G., Payton, M. A., and Bussey, H. 1994. Characterization of the yeast (1-->6)-beta-glucan biosynthetic components, Kre6p and Skn1p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly. The Journal of Cell Biology 127: 567-579.
Roemer, T., and Bussey, H. 1995. Yeast Kre1p is a cell surface O-glycoprotein. Molecular & General Genetics 249: 209-216.
Ruiz-Herrera, J. 1991. Biosynthesis of beta-glucans in fungi. Antonie Van Leeuwenhoek 60: 73-81.
Ruiz-Herrera, J. 1992. Fungal cell wall : structure, synthesis, and assembly. CRC Press, Boca Raton, pp. 59-88.
Sambrook, J., and Russell, D. W. 2001. Molecular cloning : a laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.
Sasaki, T., Arai, Y., Ikekawa, T., Chihara, G., and Fukuoka, F. 1971. Antitumor polysaccharides from some polyporaceae, Ganoderma applanatum (Pers.) Pat and Phellinus linteus (Berk. et Curt) Aoshima. Chem Pharm Bull (Tokyo) 19: 821-826.
Seo, G. S., and Kirk, P. M. 2000. Ganodermataceae: Nomenclacture and classification, p3-22 In: Flood, J., Bridge, P. D., and Holderness, M. (eds) Ganoderma diseases of perennial crops. Wallingford, Oxon [England] ; New York: CABI.
Shahinian, S., and Bussey, H. 2000. beta-1,6-Glucan synthesis in Saccharomyces cerevisiae. Molecular Microbiology 35: 477-489.
Shiao, M. S. 2003. Natural products of the medicinal fungus Ganoderma lucidum: occurrence, biological activities, and pharmacological functions. Chemical Record 3: 172-180.
Sikorski, R. S., and Hieter, P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
Smits, G. J., van den Ende, H., and Klis, F. M. 2001. Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147: 781-794.
Sone, Y., and Misaki, A. 1985. Structures and Antitumor Activities of the Polysaccharides Isolated from Fruiting Body and the Growing Culture of Mycelium of Ganoderma lucidum. Agricultural and Biological Chemistry 49: 2641-2653.
Spellman, P.T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., and Futcher, B. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of The Cell 9: 3273-3297.
Thevissen, K., Idkowiak-Baldys, J., Im, Y. J., Takemoto, J., Francois, I. E., Ferket, K. K., Aerts, A. M., Meert, E. M., Winderickx, J., Roosen, J., and Cammue, B. P. 2005. SKN1, a novel plant defensin-sensitivity gene in Saccharomyces cerevisiae, is implicated in sphingolipid biosynthesis. FEBS Letters 579: 1973-1977.
Vink, E., Vossen, J. H., Ram, A. F., van den Ende, H., Brekelmans, S., de Nobel, H., and Klis, F. M. 2002. The protein kinase Kic1 affects 1,6-beta-glucan levels in the cell wall of Saccharomyces cerevisiae. Microbiology 148: 4035-4048.
Vink, E., Rodriguez-Suarez, R. J., Gerard-Vincent, M., Ribas, J. C., de Nobel, H., van den Ende, H., Duran, A., Klis, F. M., and Bussey, H. 2004. An in vitro assay for (1 --> 6)-beta-D-glucan synthesis in Saccharomyces cerevisiae. Yeast 21: 1121-1131.
Wang, S. Y., Hsu, M. L., Hsu, H. C., Tzeng, C. H., Lee, S. S., Shiao, M. S., and Ho, C. K. 1997. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. International Journal of Cancer 70: 699-705.
Wasser, S.P. 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology 60: 258-274.
Zekovic, D. B., Kwiatkowski, S., Vrvic, M. M., Jakovljevic, D., and Moran, C. A. 2005. Natural and modified (1 -> 3)-beta-D-glucans in health promotion and disease alleviation. Critical Reviews in Biotechnology 25: 205-230.
Zjawiony, J. K. 2004. Biologically active compounds from Aphyllophorales (polypore) fungi. Journal of Natural Products 67: 300-310.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23915-
dc.description.abstract靈芝(Ganoderma lucidum)在東方國家被視為吉祥寶物和治療百病的靈藥,為中國傳統醫學上重要的藥材。其在分類學上屬於擔子菌綱、無褶菌目、多孔菌科的靈芝屬,可寄生在多種植物鄰近根部的樹幹上,引起木材的白腐朽或根腐。靈芝含有多種化學成分,其中的多醣體、三帖類、腺苷及有機鍺等,被認為具保健療效,多醣體已被證實具有提高免疫能力及抑制腫瘤之活性。靈芝多醣體為細胞壁的主要成分之一,其由β-1,3-D-葡聚醣的主幹加上多個由一、兩個葡萄糖以β-1,6-葡萄糖基鍵結之分支所構成的高分子多醣體。為了探討靈芝多醣生合成之相關機制,利用靈芝基因體網站所提供之序列資料,找尋與酵母菌β-1,6-D-葡聚醣生成基因SKN1之同源性基因序列,本論文針對其中兩個基因分別進行了5’端和3’端的RACE (rapid amplication of cDNA ends),得到全長的cDNA,此兩基因暫命名為Glp4 (Ganoderma lucidum putative β-glucan associated protein 4)和Glp6。以BLAST進行基因序列搜尋之結果顯示,Glp4及Glp6蛋白質與酵母菌Saccharomyces cerevisiae及白色念珠菌Candida albicans之Skn1p及Kre6p有顯著相似性,最相似區域集中在中間區域及C端。北方雜合分析顯示,兩基因在靈芝子實體的不同生長時期及菌絲培養於不同的碳素源,有不同的表現情形。為了進一步證實所得到基因的功能,利用酵母菌系統進行K1毒質測試,將靈芝基因利用載體轉型到具Kre6基因突變酵母菌中,結果證實靈芝的Glp2基因與酵母菌的KRE6應該有相同的功能。zh_TW
dc.description.abstractLingzhi (Ganoderma lucidum) has been treasured and consumed as a health tonic in easten countries. Ganoderma species belong to the kingdom of Fungi, the division of Basidiomycota, the class of Homobasidiomycetes, the order of Aphyllophorales, the family of Polyporaceae (Ganodermataceae) and the genus of Ganoderma. It is a parasite on many palnts and causes white rot symptoms. Lingzhi has many efficacious components such as polysaccharides, triterpenoids, and adenosine, etc. The main functions of polysaccharides extracted from G. lucidum (PS-G) were confirmed to promote immunity and have antitumor activities. PS-G is a branched-β-glucan, which contains a background chain of (1→3)-linked D-glucose residues, attached mainly with one or two (1→6) D-glucosyl units at O-6 and also with a few short (1→4)-linked D-glucosyl units at O-2 positions. In order to understand the biosynthesis pathway of PS-G, we searched yeast SKN1 gene homolog sequences, which possiblely associated with PG-S synthesis based on the information provided by G. lucidum genome project. In this study, two genes, here here are named Glp4 (Ganoderma lucidum putative β-glucan associated protein 4) and Glp6, were cloned by 5’- and 3’-RACE (rapid amplication of cDNA ends). After sequence analysis and use BLAST to search the amino acid sequences from the database, Glp4 and Glp6 proteins revealed significant similarity with Kre6p and Skn1p from Saccharomyces cerevisiae and Candida albicans. The central region and C terminus are highly conserved among these genes and N terminus has high diversity. In Northern analysis, Glp4 and Glp6 mRNA prepared from fruiting body and hyphae growthing in different carbon source showed different density of band. In order to validate the function of SKN1 gene family of Ganoderma lucidum, we used vectors which contain Glp2 to transform yeast Kre6 mutain strain and taken yeast K1 killer toxin system experiment. The result conform that Glp2 gene and yeast KRE6 gene should has the same function.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:12:28Z (GMT). No. of bitstreams: 1
ntu-95-R92633019-1.pdf: 2024634 bytes, checksum: 5633e6d3c8a947127fdb43b40a9478d9 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsAbstract…………………………………………………………………1
中文摘要…………………………………………………………………2
壹、前言…………………………………………………………………3
貳、文獻整理……………………………………………………………3
一、關於靈芝……………………………………………………………3
二、靈芝β-glucan之生物性……………………………………………4
三、真菌細胞壁…………………………………………………………5
四、關於β-glucan………………………………………………………6
五、β-1,6-glucan合成之相關基因…………………………………7
六、SKN1 family之相關研究………………………………………8
七、β-1,6-glucan之合成途徑……………………………………10
叁、材料與方法………………………………………………………12
一、供試菌株之來源與保存…………………………………………12
二、靈芝核酸備………………………………………………………12
(一)、靈芝全核醣核酸(total RNA)之抽取…………………………12
(二)、抽取靈芝poly(A)+ RNA………………………………………13
三、基因全序列之選殖………………………………………………13
(一)、第一股cDNA 之合成……………………………………………13
(二)、5’-及3’- RACE………………………………………………14
(三)、進行nested PCR確定所要的DNA片段…………………………14
(四)、自電泳膠體回收DNA片段………………………………………15
(五)、將PCR擴增產物選殖至T-vector (TA cloning)……………15
(六)、以菌液PCR篩選出帶有insert DNA之菌落……………………16
(七)、質體小量製備(mini-prep)……………………………………16
(八)、核酸定序及序列分析…………………………………………17
(九)、利用RT-PCR進行Glp4及Glp6基因全序列之增幅……………17
四、北方雜合分析(Northern hybridization analysis)…………18
(一)、RNA電泳分析……………………………………………………18
(二)、RNA轉漬…………………………………………………………18
(三)、核酸探針製備…………………………………………………19
(四)、前置雜合反應 ( Prehybridization )………………………19
(五)、雜合反應 ( Hybridization )………………………………19
(六)、標示核酸探針之冷光偵測(Detection of DIG-labeled DNA probe )…………………………………………………………………19
五、基因組南方雜合分析(Genomic southern hybridization)…20
(一)、靈芝genomic DNA之抽取………………………………………20
(二)、Genomic DNA之酵解與瓊脂膠體電泳…………………………21
(三)、DNA毛細管轉漬法(Capillary transfer)……………………21
(四)、核酸探針之製備………………………………………………22
(五)、雜合前置反應(Prehybridization)…………………………22
(六)、雜合反應(Hybridization)……………………………………22
(七)、標示核酸探針之冷光偵測(Detection of DIG-labeled DNA
probe )…………………………………………………………22
六、Glp2基因利用酵母菌系統進行功能性分析……………………23
(一)、酵母菌表現質體的構築………………………………………23
(二)、酵母菌轉殖……………………………………………………23
(三)、以全細胞PCR確認轉型株………………………………………23
(四)、以K1 toxin seed plate方式進行分析………………………24
(五)、螢光顯微鏡的觀察……………………………………………24
肆、結果………………………………………………………………25
一、Glp4和Glp6基因全長度序列選殖結果…………………………25
二、Glp4和Glp6基因全長度序列定序及分析結果………………25
三、Glp4和Glp6基因在靈芝基因組之存在情形…………………26
四、以北方雜合反應分析Glp4和Glp6基因之表現情形…………27
五、Glp2之功能性分析分析…………………………………………27
六、螢光顯微鏡的觀察………………………………………………28
伍、討論………………………………………………………………29
陸、圖表………………………………………………………………34
柒、參考文獻…………………………………………………………47
捌、附錄………………………………………………………………53
dc.language.isozh-TW
dc.subject零芝zh_TW
dc.subjectβ-1zh_TW
dc.subject6-D-葡聚醣生成基因zh_TW
dc.subjectSKN1 geneen
dc.subjectGanoderma lucidumen
dc.title靈芝SKN1基因族成員之選殖與分析zh_TW
dc.titleMolecular Cloning and Characterization the SKN1 gene family of Ganoderma lucidumen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅秀容,曾顯雄,沈偉強
dc.subject.keyword零芝,β-1,6-D-葡聚醣生成基因,zh_TW
dc.subject.keywordGanoderma lucidum,SKN1 gene,en
dc.relation.page55
dc.rights.note未授權
dc.date.accepted2006-07-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved