Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23899
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡懷楨
dc.contributor.authorYen-Ting Laien
dc.contributor.author賴彥廷zh_TW
dc.date.accessioned2021-06-08T05:12:14Z-
dc.date.copyright2006-07-25
dc.date.issued2006
dc.date.submitted2006-07-19
dc.identifier.citationEichmann A, Le Noble F, Autiero M, Carmeliet P. (2005) Guidance of vascular and neural network formation. Curr Opin Neurobiol 15: 108–115.

Arevalo JC, Chao MV. (2005) Axonal growth: where neurotrophins meet Wnts. Curr Opin Cell Biol 17:112-115.

Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376(6536):167-70.
Bijur GN, Jope RS. (2003) Glycogen synthase kinase-3b is highly activated in nuclei and mitochondria. Neuro Report 14: 2415–2419.

Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard JC, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D'Amore PA, Shima DT. (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5:495-502.

Chen E, Hermanson S, Ekker SC. (2004) Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood 103(5):1710-1719.
Cheng CW, Smith SK, Charnock-Jones DS. (2003) Wnt-1 signaling inhibits human umbilical vein endothelial cell proliferation and alters cell morphology. Exp Cell Res 291: 415–425.

Cleaver O, Krieg P. (1999) Molecular mechanisms of vascular development. In: Heart Development (Harvey RP, Rosenthal N. eds) 221–252. Academic Press. 24-28 Oval Road, London NW1 7DX, UK.

Cross DA, Alessi DR, Vandenheede JR, McDowell HE, Hundal HS, Cohen P. (1994) The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem J 303: 21-26.

Eichmann A, Le Noble F, Autiero M, Carmeliet P. (2005) Guidance of vascular and neural network formation. Curr Opin Neurobiol 15: 108-115.

Ekker SC, Larson JD. (2001) Morphant technology in model developmental systems. Genesis 30(3):89-93. Review.
Fouquet B, Weinstein BM, Serluca FC, Fishman MC. (1997) Vessel patterning in the embryo of the zebrafish: guidance by notochord. Dev Biol 183:37–48.

Frame S, Cohen P. (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359: 1–16.

Goode N, Hughes K, Woodgett JR, Parker PJ. (1992) Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. J Biol Chem 267:16878-16882.

Grimes CA, Jope RS. (2001) The multifaceted roles of glycogen synthase kinase 3b in cellular signaling. Prog Neurobiol 65: 391–426.

Habeck H, Odenthal J, Walderich B, Maischein H, Schulte-Merker S; Tubingen 2000 screen consortium. (2002) Analysis of a zebrafish VEGF receptor mutant reveals specific disruption of angiogenesis. Curr Biol 12(16):1405-1412.
Hardt SE, Sadoshima J. (2002)Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ Res 90(10):1055-1063. Review.
Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. (2000) Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 406(6791):86-90.
Inoue H, Nojima H, Okayama H. (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96(1):23-8.
Kim HS, Skurk C, Thomas SR, Bialik A, Suhara T, Kureishi Y, Birnbaum M, Keaney JF Jr, Walsh K. (2002) Regulation of angiogenesis by glycogen synthase kinase-3beta. J Biol Chem 277(44):41888-41896.
Jope RS, Johnson GV. (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29(2):95-102. Review.
Kim HS, Skurk C, Thomas SR, Bialik A, Suhara T, Kureishi Y, Birnbaum M, Keaney JF Jr, Walsh K. (2002) Regulation of Angiogenesis by Glycogen Synthase Kinase-3. J Biol Chem 277:41888-41896.

Larson JD, Wadman SA, Chen E, Kerley L, Clark KJ, Eide M, Lippert S, Nasevicius A, Ekker SC, Hackett PB, Essner JJ. (2004) Expression of VE-cadherin in zebrafish embryos: a new tool to evaluate vascular development. Dev Dyn 231(1):204-213.
Lawson, ND, Scheer, N, Pham, VN, Kim, CH, Chitnis, AB, Campos‐Ortega, JA, and Weinstein, BM. (2001) Notch signaling is required for arterial‐venous diVerentiation during embryonic vascular development. Development 128:3675–3683.
Lawson, ND., and Weinstein, BM. (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318.
Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM. (1999) Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 284(5412):321-5
Liang D, Chang JR, Chin AJ, Smith A, Kelly C, Weinberg ES, Ge R. (2001) The role of vascular endothelial growth factor (VEGF) in vasculogenesis, angiogenesis, and hematopoiesis in zebrafish development. Mech Dev 108:29–43.
Logan CY, Nusse R. The Wnt signaling pathway in development and disease. (2004) Annu Rev Cell Dev Biol 20:781-810. Review.
Nasevicius A, Larson J, Ekker SC. (2000) Distinct requirements for zebrafish angiogenesis revealed by a VEGF-A morphant. Yeast 17:294–301.
Parker LH, Schmidt M, Jin SW, Gray AM, Beis D, Pham T, Frantz G, Palmieri S, Hillan K, Stainier DY, De Sauvage FJ, Ye W. (2004) The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 428(6984):754-758.
Patterson LJ, Gering M, Patient R. (2005) Scl is required for dorsal aorta as well as blood formation in zebrafish embryos. Blood 105(9):3502-11.
Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR. (1992) Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim. Biophys. Acta 1114:147–162.
Risau W, and Flamme I. (1995). Vasculogenesis. Annu Rev Cell Dev Biol 11:73.
Shaw KM, Castranova DA, Pham VN, Kamei M, Kidd KR, Lo BD, Torres-Vasquez J, Ruby A, Weinstein BM. (2006) fused-somites-like mutants exhibit defects in trunk vessel patterning. Dev Dyn [Epub ahead of print]
Skurk C, Maatz H, Rocnik E, Bialik A, Force T, Walsh K. (2005). Glycogen-Synthase Kinase3ß/ß-Catenin Axis Promotes Angiogenesis Through Activation of Vascular Endothelial Growth Factor Signaling in Endothelial Cells. Circ Res 96: 308-318.
Smithers L, Haddon C, Jiang YJ, Lewis J. (2000) Sequence and embryonic expression of deltaC in the zebrafish. Mech Dev 90(1):119-23.
Sumoy L, Keasey JB, Dittman TD, Kimelman D. (1997) A role for notochord in axial vascular development revealed by analysis of phenotype and the expression of VEGR-2 in zebrafish flh and ntl mutant embryos. Mech Dev 63:15–27.

Sutherland C, Leighton IA, Cohen P. (1993) Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 296:15-19.

Tanji C, Yamamoto H, Yorioka N, Kohno N, Kikuchi K, Kikuchi A. (2002) A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3beta (GSK-3beta ) and mediates protein kinase A-dependent inhibition of GSK-3beta. J Biol Chem 277:36955-36961.
Thompson MA, Ransom DG, Pratt SJ, MacLennan H, Kieran MW, Detrich HW , Vail B, Huber TL, Paw B, Brownlie AJ, Oates AC, Fritz A, Gates MA, Amores A, Bahary N, Talbot WS, Her H, Beier DR, Postlethwait JH, Zon LI. (1998 ) The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev Biol. 197:248-269.
Torres-Vazquez J, Gitler AD, Fraser SD, Berk JD, Van N Pham, Fishman MC, Childs S, Epstein JA, Weinstein BM. (2004) Semaphorin-plexin signaling guides patterning of the developing vasculature.
Dev Cell. Jul; 7(1):117-123.
Tsai JN, Lee CH, Jeng H, Chi WK, Chang WC. (2000) Differential expression of glycogen synthase kinase 3 genes during zebrafish embryogenesis. Mech Dev 91(1-2):387-391.
Westerfield, M. (1995) The Zebrafish Book. University of Oregon Press,
Eugene, OR.
Woodgett, JR. (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9:2431-2438.
Zhong TP. (2005) Zebrafish genetics and formation of embryonic vasculature. Curr Top Dev Biol 71:53-81.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23899-
dc.description.abstract肝醣生成酵素激酶(Glycogen synthase kinase-3β; GSK3β)是參與在Wnt/β-catenin signaling pathway中非常重要的調控因子,對於細胞分化及軸向發育都十分的重要。雖然在許多細胞培養的實驗當中都顯示GSK3β能調控小血管的新生(angiogenesis),然而在胚胎時期中GSK3β對於血管發育的影響及分子機制仍然不清楚。為了回答這個問題,我們利用基因抑制劑(morpholino antisense oligonucleiotides;MO) 注射到一細胞時期血管綠螢光的基因轉殖魚Tg(fli1:EGFP) 來抑制GSK3β的表現,再藉由觀察基因轉殖魚的綠螢光血管探討GSK3β對血管發育的影響。在28hpf時觀察MO注射的個體intersegmental vessels (ISV) 較短且無法延伸至背部形成dorsal longitudinal vessels (DLAV),在48-72 hpf ISV依然不完整且生長也失去方向性而parachordal vessels (PAV)的生長也受到影響。Sub-intestinal venous vessels (SIV)也無法正常發育,甚至完全消失,而尾部的venous plexus也變得較膨大。此外,尾鰭部份的微血管叢也完全無法生長。因此我們認為GSK3β確實能調控血管的發育。然而注射MO的個體中動脈(deltaC, notch3)、靜脈(flt4, ephb4)專一基因的mRNA表現與對照組卻沒有顯著的差異,暗示著動靜脈的分化似乎不受影響。此外觀察體節雖然能形成但myod卻異位性地表現在somite boundary。總結以上幾點,我們認為GSK3β確實能調控angiogenesis但不影響vasculogenesis。此外,ISV的缺失可能是由於體節缺失所造成的。zh_TW
dc.description.abstractGlycogen synthase kinase-3β (GSK3β) is involved in the canonical Wnt/β-catenin signaling pathway and essential for cell differentiation and axis formation. Although many in vitro researches indicated GSK3β may modulate the angiogenesis, the molecular mechanism of GSK3β that plays roles on vascular development in embryonic development remains unknown. To address this issue, we microinjected the morpholino antisense oligonucleiotides (MOs) which specifically inhibits the translation of GSK3β into the one-celled embryos derived from the fli1:EGFP transgenic zebrafish expressing GFP in all blood vessels. At 28-hpf, the gsk3β morphants exhibited shorten intersegmental vessels (ISV) and the discontinued dorsal longitudinal vessels (DLAV). At 48-72 hpf, the ISV remained a shortened form and even disoriented migration and the sub-intestinal venous vessels (SIVs) were reduced or even completely lost. The venous plexus became less complex compared to control embryos. Moreover, the capillary of tail fin were all defective. We propose GSK3β plays important roles in angiogenesis of zebrafish. Unexpectedly, the patterns showing by the artery specific (deltaC, notch3) and the venous specific (flt4, ephb4) markers in gsk3β morphants were indistinguishable from those of control embryos, suggesting the artery-venous differentiation was unperturbed. Although the somite boundary still existed, myod was ectopically expressed in somite boundary in gsk3β morphants. Taken together, these results indicate GSK3β functions in angiogenesis, but not in vasculogenesis. Furthermore, the ISV defect in trunk may be due to somite malformation and vessel defect.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:12:14Z (GMT). No. of bitstreams: 1
ntu-95-R93b43015-1.pdf: 8726784 bytes, checksum: b796e3846509650403736f67398440d4 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要--------------------------------------------- 1
英文摘要--------------------------------------------- 3
前言------------------------------------------------- 4
實驗材料與方法--------------------------------------- 10
結果------------------------------------------------- 19
討論------------------------------------------------- 26
參考資料--------------------------------------------- 34
圖表------------------------------------------------- 41
附錄------------------------------------------------- 50
dc.language.isozh-TW
dc.subject血管zh_TW
dc.subject體節zh_TW
dc.subject斑馬魚zh_TW
dc.subject-3βzh_TW
dc.subject肝醣生成酵素激&#37238zh_TW
dc.subject胚胎zh_TW
dc.subject發育zh_TW
dc.subjectvasculogenesisen
dc.subjectzebrafishen
dc.subjectsomiteen
dc.subjectWnt/β-catenin signaling pathwayen
dc.subjectGSK3βen
dc.subjectangiogenesisen
dc.title肝醣生成酵素激酶-3β對斑馬魚血管發育的影響zh_TW
dc.titleTHE EFFECT OF GLYCOGEN SYNTHASE KINASE-3β ON THE VASCULAR DEVELOPMENT IN ZEBRAFISHen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭邑荃,蔡振寧,游麗如,陳炯年
dc.subject.keyword血管,發育,胚胎,肝醣生成酵素激&#37238,-3β,斑馬魚,體節,zh_TW
dc.subject.keywordangiogenesis,vasculogenesis,GSK3β,Wnt/β-catenin signaling pathway,somite,zebrafish,en
dc.relation.page54
dc.rights.note未授權
dc.date.accepted2006-07-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
8.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved