請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23863
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖秀娟(Vivian Hsiu-Chuan Liao) | |
dc.contributor.author | Yuen-Yi Tseng | en |
dc.contributor.author | 曾月怡 | zh_TW |
dc.date.accessioned | 2021-06-08T05:11:51Z | - |
dc.date.copyright | 2006-07-31 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-20 | |
dc.identifier.citation | Abernathy CO, Liu YP, Longfellow D, Aposhian HV, Beck B, Fowler B, Goyer R, Menzer R, Rossman T, Thompson C, Waalkes M. Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect.1999; 107, 593-597.
Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol.1999; 39, 361-398. Beloin C, Ayora S, Exley R, Hirschbein L, Ogasawara N, Kasahara Y, Alonso JC, Hegarat FL. Characterization of an lrp-like (lrpC) gene from Bacillus subtilis. Mol. Gen. Genet. 1997; 256, 63-71. Bhattacharjee H, Zhou T, Li J, Gatti DL, Walmsley AR, Rosen BP. Structure-function relationships in an anion-translocating ATPase. Biochem. Soc. Trans. 2000; 28, 520-526. Bhattacharjee H, Ho YS, Rosen BP. Genomic organization and chromosomal localization of the Asna1 gene, a mouse homologue of a bacterial arsenic-translocating ATPase gene. Gene. 2001; 272, 291-299. Bhattacharjee H, Rosen BP. Structure-function analysis of the ArsA ATPase: contribution of histidine residues. J. Bioenerg. Biomembr. 2001; 33, 459-468. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974; 77, 71-94. Broeks A, Gerrard B, Allikmets R, Dean M, Plasterk RH. Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans. EMBO J. 1996; 15, 6132-6143. Bun-ya M, Shikata K, Nakade S, Yompakdee C, Harashima S, Oshima Y. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr. Genet. 1996; 29, 344-351. Chen CM, Misra TK, Silver S, Rosen BP. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 1986; 261, 15030-15038. Chen Y, Rosen BP. Metalloregulatory properties of the ArsD repressor. J. Biol. Chem. 1997; 272, 14257-14262. Ching MH, Kaur P, Karkaria CE, Steiner RF, Rosen BP. Substrate-induced dimerization of the ArsA protein, the catalytic component of an anion-translocating ATPase. J. Biol. Chem. 1991; 266, 2327-2332. Coulson AR, Sulston J, Brenner S, Karn J. Toward a physical map of the genome of the nematode C. elegans. Proc. Natl Acad. Sci. USA. 1986; 83, 7821-7825. Cserzo M, Wallin E, Simon I, Heijne GV, Elofsson A. Prediction of transmembrane alpha-helices in procariotic membrane proteins: the Dense Alignment Surface method. Prot. Eng. 1997; 10, 673-676. Culetto E, Sattelle DB. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum. Mol. Genet. 2000; 9, 869-877. Review. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W. Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem. Rev. 2000; 100, 2705-2738. Dey S, Rosen BP. Dual mode of energy coupling by the oxyanion-translocating ArsB protein. J. Bacteriol. 1995; 177, 385-389. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391, 806-811. Gawronski JD, Benson DR. Microtiter assay for glutamine synthetase biosynthetic activity using inorganic phosphate detection. Anal. Biochem. 2004; 327, 114-118. Ghosh M, Shen J, Rosen BP. Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 1999; 96, 5001-5006. Gihring TM, Bond PL, Peters SC, Banfield JF. Arsenic resistance in the archaeon 'Ferroplasma acidarmanus': new insights into the structure and evolution of the ars genes. Extremophiles. 2003; 7, 123-130. Gottesman MM, Pastan I, Ambudkar SV. P-glycoprotein and multidrug resistance. Curr. Opin. Genet. Dev. 1996; 6, 610-617. Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 2000; 40, 519-561. Hrycyna CA, Ramachandra M, Germann UA, Cheng PW, Pastan I, Gottesman MM. Both ATP sites of human P-glycoprotein are essential but not symmetric. Biochemistry. 1999; 38, 13887–13899. Hsu CM, Rosen BP. Characterization of the catalytic subunit of an anion pump. J. Biol. Chem. 1989; 264, 17349-17354. Homolya L, Varadi A, Sarkadi B. Multidrug resistance-associated proteins: Export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors. 2003; 17,103-114. Review. Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK, Matsumoto K. The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev. 2005; 19, 2278-2283. Jensen LT, Ajua-Alemanji M, Culotta VC. The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J. Biol. Chem. 2003; 278, 42036-42040. Ji G, Silver S. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. USA. 1992; 89, 9474-9478. Kamath RS, Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods. 2003; 30, 313-321. Kaur P, Rosen BP. Complementation between nucleotide binding domains in an anion-translocating ATPase. J. Bacteriol. 1993; 175, 351-357. Kitchin KT. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol. Appl. Pharmacol. 2001; 172, 249-261. Review. Koonin EV. A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J. Mol. Biol. 1993; 229, 1165-1174. Kurdi-Haidar B, Aebi S, Heath D, Enns RE, Naredi P, Hom DK, Howell SB. Isolation of the ATP-binding human homolog of the arsA component of the bacterial arsenite transporter. Genomics. 1996; 36, 486-491. Kurdi-Haidar B, Heath D, Aebi S, Howell SB. Biochemical characterization of the human arsenite-stimulated ATPase (hASNA-I). J. Biol. Chem. 1998; 273, 22173-22176. Legare D, Richard D, Mukhopadhyay R, Stierhof YD, Rosen BP, Haimeur A, Papadopoulou B, Ouellette M. The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J. Biol. Chem. 2001; 276, 26301-26307. Leslie EM, Haimeur A, Waalkes MP. Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. J. Biol. Chem. 2004; 279, 32700-32708. Li J, Rosen BP. The linker peptide of the ArsA ATPase. Mol. Microbiol. 2000; 35, 361-367. Liao VH, Freedman JH. Cadmium-regulated genes from the nematode Caenorhabditis elegans. Identification and cloning of new cadmium-responsive genes by differential display. J. Biol. Chem. 1998; 273, 31962-31970. Maeda S. 1994. Safety and environmental effects. In S. Patai (ed.), The chemistry of organic arsenic, antimony and bismuth compounds. Wiley & Sons, Ltd., Chichester, United Kingdom. 725-759. Mello CC, Kramer JM, Stinchcomb D, Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991; 10, 3959-3970. Meng YL, Liu Z, Rosen BP. As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J. Biol. Chem. 2004; 279, 18334-18341. Metz J, Wachter A, Schmidt B, Bujnicki JM, Schwappach B. The yeast Arr4p ATPase binds the chloride transporter Gef1p when copper is available in the cytosol. J. Biol. Chem. 2006; 281, 410-417. Mukhopadhyay R, Shi J, Rosen BP. Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J. Biol. Chem. 2000; 275, 21149-21157. Mukhopadhyay R, Rosen BP, Phung LT, Silver S. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 2002; 26, 311-325. Review. Qi X, Tang J, Pramanik R, Schultz RM, Shirasawa S, Sasazuki T, Han J, Chen G.. p38 MAPK activation selectively induces cell death in K-ras-mutated human colon cancer cells through regulation of vitamin D receptor. J. Biol. Chem. 2004; 279, 22138-22144. Roberts Wl, Berman JD, Rainey PM. In vitro antileishmanial properties of tri- and pentavalent antimonyal poreparations. Antinicrob. Agents Chemother. 1995; 39, 1234-1239. Rosen BP. Families of arsenic transporters. Trends Microbiol. 1999; 7, 207-212. Review. Rosen BP, Bhattacharjee H, Zhou T, Walmsley AR. Mechanism of the ArsA ATPase. Biochim. Biophys. Acta. 1999; 1461, 207-215. Rosen BP. Biochemistry of arsenic detoxification. FEBS Lett. 2002; 529, 86-92. Review. Ruan X, Bhattacharjee H, Rosen BP. Cys-113 and Cys-422 form a high affinity metalloid binding site in the ArsA ATPase. J. Bio.l Chem. 2006; 281, 9925-9934. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987; 4, 406-425. Senior AE, Gros P, Urbatsch IL. Residues in P-glycoprotein catalytic sites that react with the inhibitor 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Arch. Biochem. Biophys. 1998; 357, 121-125. Shen J, Hsu CM, Kang BK, Rosen BP, Bhattacharjee H. The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. Biometals. 2003; 16, 369-378. Shotyk W, Krachler M, Chen B. Anthropogenic impacts on the biogeochemistry and cycling of antimony. Met. Ions. Biol. Syst. 2005; 44, 171-203. Review. Silver S. Genes for all metals-a bacterial view of the periodic table. J. Ind. Microbiol. Biotechnol. 1998; 20, 1-20. Smith AH, Lingas EO, Rahman M. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ. 2000; 78, 1093-1103. Snow ET. Metal carcinogenesis: mechanistic implications. Pharmacol. Ther. 1992; 53, 31-65. Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 1986; 189, 113-130. Sulston, J. 1988. Cell lineage. In Wood, W.B. (ed.), The Nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 123-155. Tamás JM, Luyten K, Sutherland FCW, Hernandez A, Albertyn J, Valadi H, Li H, Prior BA, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol. Microbio. 1999; 31, 1087-1104. Tamás JM, Wysocki R. Mechanisms involved in metalloid transport and tolerance acquisition. Curr. Genet. 2001; 40, 2-12. Timmons L, Fire A. Specific interference by ingested dsRNA. Nature. 1998; 395, 854. Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 2001; 263, 103-112. White JG, Southgate R, Thomson JN, Brenner S. The structure of the nervous system of the nematode C.elegans. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1986; 341, 1-340. Wu J, Tisa LS, Rosen BP. Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase. J. Biol. Chem. 1992; 267, 12570-12576. Wu J, Rosen BP. The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Mol. Microbiol. 1993; 8, 615-623. Wysocki CJ, Dalton P, Brody MJ, Lawley HJ. Acetone odor and irritation thresholds obtained from acetone-exposed factory workers and from control (occupationally unexposed) subjects. Am. Ind. Hyg. Assoc. J. 1997; 58, 704-712. Wysocki R, Clemens S, Augustyniak D, Golik P, Maciaszczyk E, Tamas MJ, Dziadkowiec D. Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p. Biochem. Biophys. Res. Commun. 2003; 304, 293-300. Wysocki R, Fortier PK, Maciaszczyk E, Thorsen M, Leduc A, Odhagen Å, Owsianik G, Ulaszewski S, Ramotar D, Tamás MJ. Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1–like proteins Yap1p and Yap8p. Mol. Biol. Cell. 2004; 15, 2049-2060. Xu C, Zhou T, Kuroda M, Rosen BP. Metalloid resistance mechanisms in prokaryotes. J. Biochem. 1998; 123, 16-23. Review. Yabe T, Suzuki N, Furukawa T, Ishihara T, Katsura I. Multidrug resistance-associated protein MRP-1 regulates dauer diapause by its export activity in Caenorhabditis elegans. Develop. 2005; 132, 3197-3207. Yompakdee C, Ogawa N, Harashima S, Oshima Y. A putative membrane protein, Pho88p, involved in inorganic phosphate transport in Saccharomyces cerevisiae. Mol. Gen. Genet. 1996; 251, 580-590. Zhou T, Rosen BP. Tryptophan fluorescence reports nucleotide-induced conformational changes in a domain of the ArsA ATPase. J. Biol. Chem. 1997; 272, 19731-19737. Zhou T, Rosen BP. Asp45 is a Mg2+ ligand in the ArsA ATPase. J. Biol. Chem. 1999; 274, 13854-13858. Zhou T, Radaev S, Rosen BP, Gatti DL. Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. EMBO J. 2000; 19, 4838-4845. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23863 | - |
dc.description.abstract | 砷是一種毒性物質且是已知的人類致癌物質。在原核生物中,砷的解毒機制有較詳盡的研究,當類金屬進入細胞時,ars operon中的ArsA蛋白受到激發且水解ATP,使三價砷和三價銻化合物轉移到ArsB蛋白運送出細胞。其中,人類中ArsA同源體也被證實具有水解ATP的活性,然而卻只受到三價砷的激發,而酵母菌中的ArsA同源體則是不受任何類金屬的激發。因此,探討Caenorhabditis elegans(C. elegans)中ArsA同源體的功能,能更加了解C. elegans中砷的解毒途徑和獲得演化上間接的證據。
本研究利用生物資訊方法預測出C. elegans中具有兩個ArsA蛋白的同源體,我們發現藉由RNA干擾技術抑制Ce-ArsA蛋白的產生,將會造成C. elegans對三價砷和三價銻的抵抗性降低,顯示Ce-ArsA蛋白扮演了重要抵抗類金屬的角色。此外,Ce-arsA-1上游基因的分析和轉殖C. elegans的實驗,顯示當C. elegans處於不同壓力的情況時,Ce-ArsA-1蛋白的表達量也會相對明顯地增加,推測這些壓力因子活化了Ce-arsA-1的轉錄機制。 本研究利用原核生物系統大量表達和純化Ce-ArsA-1蛋白,並利用呈色法檢測純化過的Ce-ArsA-1蛋白。結果顯示Ce-ArsA-1蛋白的確具有ATPase活性,並且可被三價砷和三價銻分別激發2.2和4.8倍,此實驗結果與原核中ArsA蛋白功能較為相似,並且由研究結果證實C. elegans中Ce-ArsA-1蛋白與原核中ArsA蛋白皆屬於相同類型的ATP水解蛋白。 | zh_TW |
dc.description.abstract | Arsenic is a potent toxin and carcinogen. In prokaryotes, arsenic detoxification is accomplished by chromosomal and plasmid operon-encoded efflux systems. Two Caenorhabditis elegans genes, Ce-arsA-1 and Ce-arsA-2, that are homologous to the Escherichia coli (E. coli) arsA genes were identified and characterized in this study. The level of Ce-arsA-1 transcription was significantly affected by heat, metalloids and heavy metal exposure. When Ce-arsA-1 expression was inhibited using RNA interference (RNAi), lower resistance of arsenite and antimonite were observed. This suggests that Ce-ArsA-1 is required for arsenite and antimonite tolerance in C. elegans.
We expressed and purified Ce-ArsA-1 protein, a nematode homologue of arsA encoding the ATPase component of E. coli arsenite/antimonite transporter. Purified MBP-Ce-ArsA-1 fusion protein was biochemically characterized, and its properties were compared with those of E. coli ArsA. The MBP-Ce-ArsA-1 exhibited a basal level of ATPase activity in the absence of arsenite or antimonite. Antimonite induced a 4.8 fold stimulation of ATPase activity, which was related to an increase in Vmax; arsenite induced 2.2 fold stimulation of ATPase activity. The results indicate that Ce-ArsA-1 is a distinct arsenite and antimonite-stimulated ATPase belonging to the same superfamily of ATPases represented by the E. coli ArsA protein. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:11:51Z (GMT). No. of bitstreams: 1 ntu-95-R93622049-1.pdf: 3430151 bytes, checksum: e8235eb03175c78e936737a156bdfa55 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III Table of Contents IV List of Tables VI List of Figures VII Abbreviations IX CHAPTER 1 INTRODUCTION 1 1.1 Arsenic (As) 1 1.2 Antimony (Sb) 2 1.3 Detoxification Systems of Arsenic and Antimony in Bacteria 3 1.4 ArsA in Prokaryotes 7 1.5 ArsA in Eukaryotes 8 1.6 Caenorhabditis elegans (C. elegans) 11 1.7 Purpose of Study 13 CHAPTER 2 MATERIALS AND METHODS 15 2.1 Chemicals 15 2.2 Strains, Clone, and Culture Condition 15 2.3 RNA Interference (RNAi) 15 2.4 Growth and Isolation of C. elegans 17 2.5 RNA Isolation 17 2.6 Reverse Transcription and Polymerase Chain Reaction (RT-PCR) 18 2.7 Effect of Transgenic C. elegans 18 2.8 Construction of Recombinant Ce-ArsA-1 for Protein Expression 20 2.9 Purification of Maltose Tagged Ce-ArsA-1 Protein 20 2.10 ATPase Activity Assays 21 2.11 Fluorescence Microscope 22 2.12 Statistical Analysis 22 CHAPTER 3 RESULTS 24 3.1 Structure and Organization of The Ce-ArsA-1 24 3.2 RNA Interference 29 3.3 Effect of Various Stressors on Ce-ArsA-1 Transcription 37 3.4 Recombinant Ce-ArsA-1 Protein Expression and Purification 40 3.4.1 Overexpression of Ce-ArsA-1 protein 40 3.4.2 Purification of the Ce-ArsA-1 protein 44 3.5 ATPase Activity Assay of Ce-ArsA-1 44 3.5.1 Effect of enzyme concentration and temperature on ATPase activity 44 3.5.2 Effect of Metal ions on ATPase Activity of Ce-ArsA-1 Protein 46 3.5.3 Affinity of the Ce-ArsA-1 Protein for substrates 50 CHAPTER 4 DISCUSSIONS 53 4.1 Identification and Characterization of the Nematodes Homologue of the Bacterial arsA Gene 53 4.2 Functions of Ce-ArsA-1 in C. elegans 54 4.3 How As(III) and Sb(III) are Exported in C. elegans? 58 CHAPTER 5 CONCLUSION 62 REFERENCE 63 APPENDIX 70 | |
dc.language.iso | en | |
dc.title | Caenorhabditis elegans ArsA同源基因的調控與其功能之探討 | zh_TW |
dc.title | Characterization of ArsA in Caenorhabditis elegans | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李心予(Hsin-Yu Lee),沈偉強(Wei-Chiang Shen) | |
dc.subject.keyword | 砷,銻,Caenorhabditis elegans,Ce-ArsA,ATPase活性, | zh_TW |
dc.subject.keyword | Arsenite,Antimonite,Caenorhabditis elegans,Ce-ArsA,ATPase activity, | en |
dc.relation.page | 71 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2006-07-22 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 3.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。