請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23827完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳靜雄(Jingshown Wu) | |
| dc.contributor.author | Shin-Pin Tseng | en |
| dc.contributor.author | 曾信賓 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:10:41Z | - |
| dc.date.copyright | 2011-07-26 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-11 | |
| dc.identifier.citation | [1] G. Keiser, Optical fiber communications, 3rd ed. New York: McGraw-Hill, 2000.
[2] K. C. Kao and G. A. Hockham, “Dielectric-fiber surface waveguides for optical frequencies,” Proc. IEE, vol. 133, no. 7, pp. 1151-1158, July 1966. [3] K. C. Kao and T. W. Davies, “Spectrophotometric studies of ultra low loss optical glasses I: single beam method,” J. Phys. E: Sci. Instrum, vol. 1, no. 11, pp. 1063-1068, Nov. 1968. [4] G. C. Yang and W. C. Kwong, Prime codes with applications to CDMA optical and wireless networks, 1st ed. Boston, MA: Artech House, 2002. [5] R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications--a tutorial,” IEEE Trans. Commun., vol. 30, no. 5, pp. 855-884, May 1982. [6] S. Haykin, Communication systems, 4th ed. New York: John Wiley & Sons, 2001. [7] M. A. Abu-Rgheff, Introduction to CDMA wireless communications, 1st ed. London: Academic Press, 2007. [8] K. Fazel and S. Kaiser, Multi-carrier and spread spectrum systems: from OFDM and MC-CDMA to LTE and WiMAX, 2nd ed. John Wiley & Sons, 2008. [9] A. S. Tanebaum, Computer network, 4th ed. New Jersey: Prentice Hall, 2003. [10] P. R. Prucnal, Optical code division multiple access: fundamentals and applications, 1st ed. New York: CRC Press, 2006. [11] P. R. Prucnal, M. A. Santoro, and T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightw. Technol., vol. 4, no. 5, pp. 547-554, May 1986. [12] J. A. Salehi, “Code division multiple-access techniques in optical fiber networks-Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824-833, Aug. 1989. [13] J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks-Part II: Systems performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834-842, Aug. 1989. [14] F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis, and applications,” IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 595-604, May 1989. [15] W. C. Kwong, P. A. Perrier, and P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, no. 11, pp. 1625-1634, Nov. 1991. [16] C. S. Weng and J. Wu, “Perfect difference codes for synchronous fiber-optic CDMA communication systems,” J. Lightw. Technol., vol. 19, no. 2, pp. 186-194, Feb. 2001. [17] H. Fathallah, L. A. Rusch, and S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” J. Lightw. Technol., vol. 17, no. 3, pp. 397-405, March 1999. [18] E. Inaty, H. M. H. Shalaby, and P. Fortier, “On the cutoff rates of a multiclass OFFH-CDMA system,” IEEE Trans. Commun., vol. 53, no. 2, pp. 323-334, Feb. 2005. [19] M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” J. Lightw. Technol., vol. 13, no. 3, pp. 534-545, March 1995. [20] E. D. J. Smith, P. T. Gough, and D. P. Taylor, “Noise limits of optical spectral-encoding CDMA systems,” Electron. Lett., vol. 31, no. 17, pp. 1469-1470, Aug. 1995. [21] E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, no. 3, pp. 1176-1185, Sept. 1998. [22] J. F. Huang and D. Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1252-1254, Sept. 2000. [23] X. Zhou, H. M. H. Shalaby, C. Lu, and T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, no. 8, pp. 728-729, Apr. 2000. [24] Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightw. Technol., vol. 19, no. 9, pp. 1274-1281, Sept. 2001. [25] C. C. Yang, J. F. Huang, and S. P. Tseng, “Optical CDMA network codecs structured with M-sequence codes over waveguide-grating routers,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 641-643, Feb. 2004. [26] J. F. Huang, C. C. Yang, and S. P. Tseng, “Complementary Walsh-Hadamard coded optical CDMA coder/decoders structured over arrayed-waveguide grating routers,” Opt. Commun., vol. 229, no. 1-6, pp. 241-248, Jan. 2004. [27] C. C. Yang, “Modified legendre sequences for optical CDMA-based passive optical networks,” IEEE Commun. Lett., vol. 10, no. 5, pp. 393-395, May 2006. [28] C. C. Yang, “Compact bi-direction optical CDMA encoder/decoder with low power dissipation,” Opt. Fiber Technol., vol. 13, pp. 254-259, 2007. [29] C. H. Lin, J. Wu, H. W. Tsao, and C. L. Yang, “Spectral amplitude-coding optical CDMA system using Mach-Zehnder interferometers,” J. Lightw. Technol., vol. 23, no. 4, pp. 1543-1555, Apr. 2005. [30] C. C. Yang, “Optical CDMA passive optical network using prime code with interference elimination,” IEEE Photon. Technol. Lett., vol. 7, no. 19, pp. 516-518, Apr. 2007. [31] C. C. Yang, “Compact optical CDMA passive optical network with differentiated services,” IEEE Trans. Commun., vol. 57, no. 8, pp. 2402-2409, Aug. 2009. [32] S. P. Tseng and J. Wu, “Extended perfect difference codes for SAC optical CDMA PONs,” IEEE Commun. Lett., vol. 12, no. 8, pp. 587-589, Aug. 2008. [33] S. P. Tseng and J. Wu, ‘Extended M-sequence codes for SAC FO-CDMA PONs applications,” Electron. Lett., vol. 44, no. 7, pp. 488-490, March 2008. [34] S. P. Tseng and J. Wu, “A new code family suitable for high-rate SAC OCDMA PONs applications,” IEEE J. Areas Commun., vol. 28, no. 6, pp. 827-837, Aug. 2010. [35] S. P. Tseng and J. Wu, “The SAC OCDMA PON with super perfect difference code,” in IEEE International Conference on Communications, June 2011. [36] J. Singer, “A theorem in finite projective geometry and some applications to number theory,” Trans. Amer. Math. Soc., vol. 43, no. 3, pp. 377-385, 1938. [37] C. C. Yang and J. F. Huang, “Two-dimensional M-matrices coding in spatial/frequency optical CDMA networks,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 168-170, Jan. 2003. [38] C. H. Lin, J. Wu and C. L. Yang, “Noncoherent spatial/spectral optical CDMA system with two-dimensional perfect difference codes,” J. Lightw. Technol., vol. 23, no. 12, pp. 3966-3980, Dec. 2005. [39] J. F. Huang and C. C. Yang, “Permuted M-matrices for the reduction of phase-induced intensity noise in optical CDMA network,” IEEE Trans. Commun., vol. 54, no. 1, pp. 150-158, Jan. 2006. [40] C. C. Yang, J. F. Huang, and I. M. Chiu, “Performance analyses on hybrid MQC/M-Sequence coding over frequency/spatial optical CDMA system,” IEEE Trans. Commun., vol. 55, no. 1, pp. 40-43, Jan. 2007. [41] B. C. Yeh, C. H. Lin, C. L. Yang, and J. Wu, “Non-coherent spectral/spatial optical CDMA system using 2-D diluted perfect difference codes,” J. Lightw. Technol., vol. 27, no. 13, pp. 2420-2432, July 2009. [42] B. C. Yeh, C. H. Lin, and J. Wu, “Noncoherent spectral/spatial OCDMA system using two-dimensional hybrid codes,” J. Opt. Commun. Netw., vol. 2, no. 9, pp. 653-661, Sept. 2010. [43] S. P. Tseng, J. Wu, and W. H. Yang, “Two-dimensional spectral/spatial fiber-optic CDMA PON with EMS/EPD codes,” Accepted by IEEE Trans. Commun., May 2011. [44] L. R. Chen, P. W. E. Smith, C. M. de. Sterke, “Wavelength-encoding/temporal- spreading optical code-division access system with in-fiber chirped Moiré gratings,” Appl. Opt., vol. 38, no. 21, pp. 4500-4508, July 1999. [45] L. R. Chen, “Flexible fiber Bragg grating encoder/decoder for hybrid wavelength-time optical CDMA,” IEEE Photon. Technol. Lett., vol. 13, no. 11, pp. 1233-1235, Nov. 2001. [46] W. C. Kwong and G. C. Yang, “Extended carrier-hopping prime codes for wavelength-time optical code-division multiple access,” IEEE Trans. Commun., vol. 52, no. 7, pp. 1084-1091, July 2004. [47] H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, “Experimental study on time-spread/wavelength-hop optical code division multiplexing with group delay compensating en/decoder,” IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 335-337, Jan. 2004. [48] S. Kim, K. Yu, and N. Park, “A new family of space/wavelength/time spread three-dimensional optical code for OCDMA networks,” J. Lightw. Technol., vol. 18, no. 4, pp. 502-511, Apr. 2009. [49] B. C. Yeh, C. H. Lin, and J. Wu, “Non-coherent spectral/time/spatial optical CDMA system using 3-D perfect difference codes,” J. Lightw. Technol., vol. 27, no. 6, pp. 744-759, March 2009. [50] J. Singh and M. L. Singh, “Design of 3-D wavelength/time/space codes for asynchronous fiber-optic CDMA systems,” IEEE Photon. Technol. Lett., vol. 22, no. 4, pp. 131-133, Feb. 2010. [51] R. Ramaswami, K. N. Sivarajan, Optical Networks: a practical perspective. Baker & Taylor Books, 2001. [52] J. W. Goodman, Statistical Optics. John Wiley & Sons, 1985. [53] C. F. Lam, D. T. K. Tong, M. C. Wu, and E. Yablonovitch, “Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoding,” IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1504-1506, Oct. 1998. [54] Z. A. El-Sahn, B. J. Shastri, M. Zeng, N. Kheder, D. V. Plant, and L. A. Rusch, “Experimental demonstration of a SAC-OCDMA PON with burst-mode reception: local versus centralized sources,” J. Lightw. Technol., vol. 26, no. 10, pp. 1192-1203, Oct. 2008. [55] S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. ONO, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8x8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOPTM),” in OFC/NFOEC 2008. Conference, Feb. 2008. [56] T. H. Shake, “Security performance of optical CDMA against eavesdropping,” J. Lightw. Technol., vol. 23, no. 2, pp. 655-670, Feb. 2005. [57] F. Saliou, P. Chanclou, F. Laurent, N. Genay, J. A. Lazaro, F. Bonada, and J. Prat, “Reach extension strategies for passive optical networks [Invited],” J. Opt. Commun. Netw., vol. 1, no. 4, pp. C51-C60, Sept. 2009. [58] K. Fouli and M. Maier, “OCDMA and optical coding: principles, applications, and challenges [Topics in Optical Communication],” IEEE Commun. Maga., vol. 45, no. 8, pp. 27-34, Aug. 2007. [59] M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Optimised square passband fibre Bragg grating filter with in-band flat group delay response,” Electron. Lett., vol. 34, no. 8, pp. 800-802, March 1998. [60] K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightw. Technol., vol. 15, no. 8, pp. 1263-1276, Aug. 1997. [61] L. Tancevski and L. A. Rusch, “Impact of the beat noise on the performance of 2-D optical CDMA systems,” IEEE Commun. Lett., vol. 4, no. 8, pp. 264-266, Aug. 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23827 | - |
| dc.description.abstract | 在過去的四十年來,光纖通信技術因有能力提供豐富的頻寬、高速率傳輸與適度的安全性,已被廣泛討論。而光分碼多工接取(Optical Code-Division Multiple-Access, OCDMA)技術經由特定碼字的分配下,允許多用戶使用者隨機存取光網路,在最近幾年更被受注意。不過,早期的光分碼多工接取系統在採用時域或是跳頻編碼下,其效能嚴重地遭受到多用戶使用者干擾所影響。其後,雖然有許多研究人員提出頻域振幅編碼(Spectral Amplitude Coding, SAC)光分碼多工接取系統,在所設計的碼族有固定的同相交相關(In-phase Cross-correlation, IPCC)值下去減輕這項問題。然而,以往的頻域振幅編碼光分碼多工接取系統不論在效能或是在碼長之選擇均有不足之處。
在本篇論文中,我們將發展數種新穎的碼族與架構以作為次世代光纖網路的應用。首先,我們提出兩種新碼族,名為延伸式完美差異碼與延伸式M序列碼的碼族。應用這些碼族,我們建構與分析簡潔頻域振幅編碼光分碼多工接取被動光網路(Passive Optical Network, PON)。第二部分,我們研究新穎的二維頻域/空域的延伸式M序列碼/延伸式完美差異碼的碼族,這是鑑於延伸式M序列碼與延伸式完美差異碼的碼族所建構而成,並設計對應的系統架構,以便容納更多同時間使用者和降低介於中繼站與光網路單元間的光纖數量。第三部份,我們集中我們的專注力在一種重要的方式,來建構分割式局部質數碼的碼族具有低的同相交相關值、優良的碼平衡與彈性碼長等特性,適合於高速傳輸的頻域振幅編碼光分碼多工接取被動光網路下的應用。此碼族是從眾所皆知的質數碼與分割方式所衍生出的。在最後一部分,超完美差異碼是被提出並應用在簡潔頻域振幅編碼光分碼多工接取被動光網路上。所提出的被動光網路不僅可容納大量的同時間使用者而且兼具簡潔的架構與適度的安全性。 | zh_TW |
| dc.description.abstract | In the past four decades, the optical fiber communication techniques were widely studied because they are capable of providing abundant bandwidth, high-rate transmission, and moderate security. Among them, the optical code-division multiple-access (OCDMA) technique, which has the potential advantage of allowing multiple users to randomly access optical network through the assignment of unique codewords, attracts a lot of attention in recent years. Nevertheless, the performance of early OCDMA systems is seriously suffered from the influence of multi-user interference (MUI) when the time-spreading or frequency-hopping schemes are used. Afterward, to mitigate the problem, the researchers proposed the spectral amplitude coding (SAC) optical CDMA systems when designed code families have a fixed value of in-phase cross-correlation (IPCC). However, the previous SAC optical CDMA systems are limited in performance or in the code length selection.
In the dissertation, we develop several newly code families and architectures which can be applied to the next-generation optical networks. First of all, we present two new code families, named the extended perfect difference (EPD) code and extended M-sequence (EMS) code families. Using these codes, we construct and analyze the compact SAC optical CDMA passive optical networks (PONs). Second, we study the two dimensional (2-D) Spectral/Spatial (SS) EMS/EPD code family based on EMS code and EPD code families. We also design the corresponding system architecture in order to accommodate more simultaneous users and reduce the number of optical fibers between the remote node (RN) and the optical network units (ONUs). Third, we focus on a significant approach to construct the partitioned partial prime (PPP) code family, which has the property of low IPCC value, good code balance, and flexible code length, suitable for high-rate SAC optical CDMA PONs applications. They are derived from the well-known prime codes (PCs) and a manner of partitioning technique. Finally, the super perfect difference (SPD) code is proposed and used in compact SAC optical CDMA PONs. The proposed PON not only can accommodate a large number of simultaneous users but also has compact configuration with moderate security. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:10:41Z (GMT). No. of bitstreams: 1 ntu-100-D96942015-1.pdf: 1964865 bytes, checksum: 6232ba516a8f62b2f91d31bd2ae1fd45 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Overview of Optical CDMA Techniques 2 1.2.1 Optical Multiple Accessing Schemes 3 1.2.2 Optical Code-Division Multiple-Access 5 1.2.3 SAC Optical CDMA Techniques 8 1.2.4 2-D Spatial/Spectral Optical CDMA Techniques 12 1.3 Organization of the Dissertation 14 Chapter 2 Extended Method for SAC Optical CDMA Systems 17 2.1 Extended Perfect Difference Codes for SAC Optical CDMA PONs 17 2.1.1 Code Construction 18 2.1.2 System Configuration 20 2.1.3 Performance Analysis 23 2.2 Extended M-sequence Codes for SAC Optical CDMA PONs Applications 26 2.2.1 Code Design 26 2.2.2 System Description 27 2.2.3 System Performance 29 2.3 Summary 31 Chapter 3 2-D Spectral/Spatial Optical CDMA PON with EMS/EPD Codes 33 3.1 2-D SS EMS/EPD Codes 33 3.2 System Configuration 38 3.3 Performance Analysis 43 3.4 Numerical Results and Discussions 48 3.4.1 Numerical Results 48 3.4.2 Estimation of Optical Power Budget 53 3.5 Summary 55 Chapter 4 Partitioned Partial Prime Code for High-rate SAC Optical CDMA PONs Applications 57 4.1 Code Design 57 4.2 The System using PPP Code 63 4.3 Performance Analysis 68 4.4 Numerical Results and Discussions 73 4.4.1 Numerical Results 73 4.4.2 Evaluation of Optical Power Budget 80 4.5 Summary 82 Chapter 5 The SAC Optical CDMA PON with Super Perfect Difference Code 83 5.1 Code Construction 83 5.2 System Design 86 5.3 Performance Analysis 88 5.4 Summary 91 Chapter 6 Conclusion 93 REFERENCES 96 | |
| dc.language.iso | en | |
| dc.title | 光分碼多工接取系統與碼型設計之研究 | zh_TW |
| dc.title | Study of Optical CDMA System and Code Design | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊谷章(Guu-Chang Yang),黃振發(Jen-Fa Huang),曹恆偉(Hen-Wai Tsao),李揚漢(Yang-Han Lee),楊朝欽(Chao-Chin Yang) | |
| dc.subject.keyword | 延伸式M序列碼,延伸式完美差異碼,分割式局部質數碼,光分碼多工接取,被動光網路,超完美差異碼,頻域振幅編碼, | zh_TW |
| dc.subject.keyword | Extended M-sequence (EMS) code,Extended perfect difference (EPD) code,Partitioned partial prime (PPP) code,Optical code-division multiple-access (OCDMA),Passive optical network (PON),Super perfect difference (SPD) code,Spectral amplitude coding (SAC), | en |
| dc.relation.page | 102 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
