請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23806
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳瑞華 | |
dc.contributor.author | Mei-Yao Lin | en |
dc.contributor.author | 林美瑤 | zh_TW |
dc.date.accessioned | 2021-06-08T05:10:22Z | - |
dc.date.copyright | 2011-10-05 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-14 | |
dc.identifier.citation | Adams, J., Kelso, R., and Cooley, L. (2000). The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 10, 17-24.
Adler, C.E., Fetter, R.D., and Bargmann, C.I. (2006). UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation. Nat Neurosci 9, 511-518. Ahnert-Hilger, G., Holtje, M., Grosse, G., Pickert, G., Mucke, C., Nixdorf-Bergweiler, B., Boquet, P., Hofmann, F., and Just, I. (2004). Differential effects of Rho GTPases on axonal and dendritic development in hippocampal neurones. J Neurochem 90, 9-18. Allen, E., Ding, J., Wang, W., Pramanik, S., Chou, J., Yau, V., and Yang, Y. (2005). Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival. Nature 438, 224-228. Andersen, S.S., and Bi, G.Q. (2000). Axon formation: a molecular model for the generation of neuronal polarity. Bioessays 22, 172-179. Angers, S., Thorpe, C.J., Biechele, T.L., Goldenberg, S.J., Zheng, N., MacCoss, M.J., and Moon, R.T. (2006). The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 8, 348-357. Aoki, K., Nakamura, T., and Matsuda, M. (2004). Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells. J Biol Chem 279, 713-719. Arakawa, Y., Bito, H., Furuyashiki, T., Tsuji, T., Takemoto-Kimura, S., Kimura, K., Nozaki, K., Hashimoto, N., and Narumiya, S. (2003). Control of axon elongation via an SDF-1alpha/Rho/mDia pathway in cultured cerebellar granule neurons. J Cell Biol 161, 381-391. Arevalo, J.C., and Wu, S.H. (2006). Neurotrophin signaling: many exciting surprises! Cell Mol Life Sci 63, 1523-1537. Arimura, N., and Kaibuchi, K. (2007). Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8, 194-205. Atwal, J.K., Massie, B., Miller, F.D., and Kaplan, D.R. (2000). The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27, 265-277. Bagrodia, S., Derijard, B., Davis, R.J., and Cerione, R.A. (1995). Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J Biol Chem 270, 27995-27998. Banerjee, J., Fischer, C.C., and Wedegaertner, P.B. (2009). The amino acid motif L/IIxxFE defines a novel actin-binding sequence in PDZ-RhoGEF. Biochemistry 48, 8032-8043. Banerjee, J., and Wedegaertner, P.B. (2004). Identification of a novel sequence in PDZ-RhoGEF that mediates interaction with the actin cytoskeleton. Mol Biol Cell 15, 1760-1775. Barac, A., Basile, J., Vazquez-Prado, J., Gao, Y., Zheng, Y., and Gutkind, J.S. (2004). Direct interaction of p21-activated kinase 4 with PDZ-RhoGEF, a G protein-linked Rho guanine exchange factor. J Biol Chem 279, 6182-6189. Bardwell, V.J., and Treisman, R. (1994). The POZ domain: a conserved protein-protein interaction motif. Genes Dev 8, 1664-1677. Barna, M., Merghoub, T., Costoya, J.A., Ruggero, D., Branford, M., Bergia, A., Samori, B., and Pandolfi, P.P. (2002). Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev Cell 3, 499-510. Basile, J.R., Barac, A., Zhu, T., Guan, K.L., and Gutkind, J.S. (2004). Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res 64, 5212-5224. Beattie, M.S., Harrington, A.W., Lee, R., Kim, J.Y., Boyce, S.L., Longo, F.M., Bresnahan, J.C., Hempstead, B.L., and Yoon, S.O. (2002). ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron 36, 375-386. Behar, O., Golden, J.A., Mashimo, H., Schoen, F.J., and Fishman, M.C. (1996). Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383, 525-528. Bhattacharyya, R., Banerjee, J., Khalili, K., and Wedegaertner, P.B. (2009). Differences in Galpha12- and Galpha13-mediated plasma membrane recruitment of p115-RhoGEF. Cell Signal 21, 996-1006. Bishop, D.L., Misgeld, T., Walsh, M.K., Gan, W.B., and Lichtman, J.W. (2004). Axon branch removal at developing synapses by axosome shedding. Neuron 44, 651-661. Bloom, D.A., and Jaiswal, A.K. (2003). Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem 278, 44675-44682. Bovolenta, P., and Fernaud-Espinosa, I. (2000). Nervous system proteoglycans as modulators of neurite outgrowth. Prog Neurobiol 61, 113-132. Boyd, J.G., and Gordon, T. (2001). The neurotrophin receptors, trkB and p75, differentially regulate motor axonal regeneration. J Neurobiol 49, 314-325. Bradke, F., and Dotti, C.G. (1997). Neuronal polarity: vectorial cytoplasmic flow precedes axon formation. Neuron 19, 1175-1186. Brouns, M.R., Matheson, S.F., and Settleman, J. (2001). p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation. Nat Cell Biol 3, 361-367. Buchsbaum, R.J., Connolly, B.A., and Feig, L.A. (2002). Interaction of Rac exchange factors Tiam1 and Ras-GRF1 with a scaffold for the p38 mitogen-activated protein kinase cascade. Mol Cell Biol 22, 4073-4085. Buchser, W.J., Slepak, T.I., Gutierrez-Arenas, O., Bixby, J.L., and Lemmon, V.P. (2010). Kinase/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology. Mol Syst Biol 6, 391. Bustelo, X.R., Sauzeau, V., and Berenjeno, I.M. (2007). GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29, 356-370. Campbell, D.S., Stringham, S.A., Timm, A., Xiao, T., Law, M.Y., Baier, H., Nonet, M.L., and Chien, C.B. (2007). Slit1a inhibits retinal ganglion cell arborization and synaptogenesis via Robo2-dependent and -independent pathways. Neuron 55, 231-245. Carter, B.D., Kaltschmidt, C., Kaltschmidt, B., Offenhauser, N., Bohm-Matthaei, R., Baeuerle, P.A., and Barde, Y.A. (1996). Selective activation of NF-kappa B by nerve growth factor through the neurotrophin receptor p75. Science 272, 542-545. Chao, M.V. (2003). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4, 299-309. Chen, C.H., Wang, W.J., Kuo, J.C., Tsai, H.C., Lin, J.R., Chang, Z.F., and Chen, R.H. (2005a). Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. The EMBO journal 24, 294-304. Chen, Y., Yang, Z., Meng, M., Zhao, Y., Dong, N., Yan, H., Liu, L., Ding, M., Peng, H.B., and Shao, F. (2009a). Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell 35, 841-855. Chen, Y., Zeng, J., Cen, L., Wang, X., Yao, G., Wang, W., Qi, W., and Kong, K. (2009b). Multiple roles of the p75 neurotrophin receptor in the nervous system. J Int Med Res 37, 281-288. Chen, Z., Singer, W.D., Sternweis, P.C., and Sprang, S.R. (2005b). Structure of the p115RhoGEF rgRGS domain-Galpha13/i1 chimera complex suggests convergent evolution of a GTPase activator. Nat Struct Mol Biol 12, 191-197. Chen, Z., Singer, W.D., Wells, C.D., Sprang, S.R., and Sternweis, P.C. (2003). Mapping the Galpha13 binding interface of the rgRGS domain of p115RhoGEF. J Biol Chem 278, 9912-9919. Cheng, P.L., Lu, H., Shelly, M., Gao, H., and Poo, M.M. (2011). Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development. Neuron 69, 231-243. Chiang, S.H., Hwang, J., Legendre, M., Zhang, M., Kimura, A., and Saltiel, A.R. (2003). TCGAP, a multidomain Rho GTPase-activating protein involved in insulin-stimulated glucose transport. EMBO J 22, 2679-2691. Chierzi, S., Ratto, G.M., Verma, P., and Fawcett, J.W. (2005). The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK. Eur J Neurosci 21, 2051-2062. Chikumi, H., Barac, A., Behbahani, B., Gao, Y., Teramoto, H., Zheng, Y., and Gutkind, J.S. (2004). Homo- and hetero-oligomerization of PDZ-RhoGEF, LARG and p115RhoGEF by their C-terminal region regulates their in vivo Rho GEF activity and transforming potential. Oncogene 23, 233-240. Chikumi, H., Fukuhara, S., and Gutkind, J.S. (2002). Regulation of G protein-linked guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation: evidence of a role for focal adhesion kinase. J Biol Chem 277, 12463-12473. Choe, S., Cushman, S., Baker, K.A., and Pfaffinger, P. (2002). Excitability is mediated by the T1 domain of the voltage-gated potassium channel. Novartis Found Symp 245, 169-175; discussion 175-167, 261-164. Colledge, M., Snyder, E.M., Crozier, R.A., Soderling, J.A., Jin, Y., Langeberg, L.K., Lu, H., Bear, M.F., and Scott, J.D. (2003). Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40, 595-607. Cordon-Cardo, C., Tapley, P., Jing, S.Q., Nanduri, V., O'Rourke, E., Lamballe, F., Kovary, K., Klein, R., Jones, K.R., Reichardt, L.F., et al. (1991). The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin-3. Cell 66, 173-183. Cremer, H., Chazal, G., Goridis, C., and Represa, A. (1997). NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol Cell Neurosci 8, 323-335. Da Silva, J.S., Medina, M., Zuliani, C., Di Nardo, A., Witke, W., and Dotti, C.G. (2003). RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J Cell Biol 162, 1267-1279. Dechant, G., and Barde, Y.A. (2002). The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci 5, 1131-1136. del Pozo, M.A., Price, L.S., Alderson, N.B., Ren, X.D., and Schwartz, M.A. (2000). Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J 19, 2008-2014. Deng, P.Y., and Lei, S. (2007). Long-term depression in identified stellate neurons of juvenile rat entorhinal cortex. J Neurophysiol 97, 727-737. Dent, E.W., and Gertler, F.B. (2003). Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209-227. Deshaies, R.J. (1999). SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15, 435-467. Dodelet, V.C., and Pasquale, E.B. (2000). Eph receptors and ephrin ligands: embryogenesis to tumorigenesis. Oncogene 19, 5614-5619. Dotti, C.G., Sullivan, C.A., and Banker, G.A. (1988). The establishment of polarity by hippocampal neurons in culture. J Neurosci 8, 1454-1468. Driessens, M.H., Olivo, C., Nagata, K., Inagaki, M., and Collard, J.G. (2002). B plexins activate Rho through PDZ-RhoGEF. FEBS Lett 529, 168-172. Drinjakovic, J., Jung, H., Campbell, D.S., Strochlic, L., Dwivedy, A., and Holt, C.E. (2010). E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron 65, 341-357. Ebens, A., Brose, K., Leonardo, E.D., Hanson, M.G., Jr., Bladt, F., Birchmeier, C., Barres, B.A., and Tessier-Lavigne, M. (1996). Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17, 1157-1172. Encinas, M., Iglesias, M., Llecha, N., and Comella, J.X. (1999). Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem 73, 1409-1421. Epstein, A.C., Gleadle, J.M., McNeill, L.A., Hewitson, K.S., O'Rourke, J., Mole, D.R., Mukherji, M., Metzen, E., Wilson, M.I., Dhanda, A., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43-54. Ernsberger, U. (2009). Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 336, 349-384. Esteban, P.F., Yoon, H.Y., Becker, J., Dorsey, S.G., Caprari, P., Palko, M.E., Coppola, V., Saragovi, H.U., Randazzo, P.A., and Tessarollo, L. (2006). A kinase-deficient TrkC receptor isoform activates Arf6-Rac1 signaling through the scaffold protein tamalin. J Cell Biol 173, 291-299. Friedman, W.J. (2000). Neurotrophins induce death of hippocampal neurons via the p75 receptor. J Neurosci 20, 6340-6346. Fritz, J.L., and VanBerkum, M.F. (2002). Regulation of rho family GTPases is required to prevent axons from crossing the midline. Dev Biol 252, 46-58. Fukuhara, S., Murga, C., Zohar, M., Igishi, T., and Gutkind, J.S. (1999). A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J Biol Chem 274, 5868-5879. Funakoshi, H., Frisen, J., Barbany, G., Timmusk, T., Zachrisson, O., Verge, V.M., and Persson, H. (1993). Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol 123, 455-465. Garcia-Mata, R., and Burridge, K. (2007). Catching a GEF by its tail. Trends Cell Biol 17, 36-43. Garrett, M.D., Self, A.J., van Oers, C., and Hall, A. (1989). Identification of distinct cytoplasmic targets for ras/R-ras and rho regulatory proteins. J Biol Chem 264, 10-13. Geetha, T., Jiang, J., and Wooten, M.W. (2005). Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell 20, 301-312. Gehler, S., Gallo, G., Veien, E., and Letourneau, P.C. (2004). p75 neurotrophin receptor signaling regulates growth cone filopodial dynamics through modulating RhoA activity. J Neurosci 24, 4363-4372. Giancotti, F.G. (1997). Integrin signaling: specificity and control of cell survival and cell cycle progression. Curr Opin Cell Biol 9, 691-700. Gibson, D.A., and Ma, L. (2011). Developmental regulation of axon branching in the vertebrate nervous system. Development 138, 183-195. Goslin, K., and Banker, K. (1998). Rat hippocampal neurons in low-density culture. (Cambridge, MA: MIT). Govek, E.E., Newey, S.E., and Van Aelst, L. (2005). The role of the Rho GTPases in neuronal development. Genes Dev 19, 1-49. Haase, G., Dessaud, E., Garces, A., de Bovis, B., Birling, M., Filippi, P., Schmalbruch, H., Arber, S., and deLapeyriere, O. (2002). GDNF acts through PEA3 to regulate cell body positioning and muscle innervation of specific motor neuron pools. Neuron 35, 893-905. Hakeda-Suzuki, S., Ng, J., Tzu, J., Dietzl, G., Sun, Y., Harms, M., Nardine, T., Luo, L., and Dickson, B.J. (2002). Rac function and regulation during Drosophila development. Nature 416, 438-442. Hall, A., and Lalli, G. (2010a). Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2, a001818. Hall, A., and Lalli, G. (2010b). Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harbor Perspect Biol 2, a001818. Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E.M., and Bastiani, M. (2009). Axon regeneration requires a conserved MAP kinase pathway. Science 323, 802-806. Han, J., Jiang, Y., Li, Z., Kravchenko, V.V., and Ulevitch, R.J. (1997). Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386, 296-299. Hao, B., Oehlmann, S., Sowa, M.E., Harper, J.W., and Pavletich, N.P. (2007). Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell 26, 131-143. Hao, B., Zheng, N., Schulman, B.A., Wu, G., Miller, J.J., Pagano, M., and Pavletich, N.P. (2005). Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol Cell 20, 9-19. Hara, T., Ishida, H., Raziuddin, R., Dorkhom, S., Kamijo, K., and Miki, T. (2004). Novel kelch-like protein, KLEIP, is involved in actin assembly at cell-cell contact sites of Madin-Darby canine kidney cells. Mol Biol Cell 15, 1172-1184. Harrington, A.W., Leiner, B., Blechschmitt, C., Arevalo, J.C., Lee, R., Morl, K., Meyer, M., Hempstead, B.L., Yoon, S.O., and Giehl, K.M. (2004). Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc Natl Acad Sci U S A 101, 6226-6230. Hart, M.J., Jiang, X., Kozasa, T., Roscoe, W., Singer, W.D., Gilman, A.G., Sternweis, P.C., and Bollag, G. (1998). Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280, 2112-2114. Hart, M.J., Sharma, S., elMasry, N., Qiu, R.G., McCabe, P., Polakis, P., and Bollag, G. (1996). Identification of a novel guanine nucleotide exchange factor for the Rho GTPase. J Biol Chem 271, 25452-25458. Hartmann, M., Brigadski, T., Erdmann, K.S., Holtmann, B., Sendtner, M., Narz, F., and Lessmann, V. (2004). Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor. J Cell Sci 117, 5803-5814. He, X.L., and Garcia, K.C. (2004). Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science 304, 870-875. Hegde, A.N., and DiAntonio, A. (2002). Ubiquitin and the synapse. Nat Rev Neurosci 3, 854-861. Hegde, A.N., Inokuchi, K., Pei, W., Casadio, A., Ghirardi, M., Chain, D.G., Martin, K.C., Kandel, E.R., and Schwartz, J.H. (1997). Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell 89, 115-126. Hegde, A.N., and Upadhya, S.C. (2007). The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci 30, 587-595. Henderson, C.E. (1996). Role of neurotrophic factors in neuronal development. Curr Opin Neurobiol 6, 64-70. Himanen, J.P., and Nikolov, D.B. (2003). Eph receptors and ephrins. Int J Biochem Cell Biol 35, 130-134. Hotton, S.K., and Callis, J. (2008). Regulation of cullin RING ligases. Annu Rev Plant Biol 59, 467-489. Huang, C., Borchers, C.H., Schaller, M.D., and Jacobson, K. (2004). Phosphorylation of paxillin by p38MAPK is involved in the neurite extension of PC-12 cells. J Cell Biol 164, 593-602. Hurov, J.B., Watkins, J.L., and Piwnica-Worms, H. (2004). Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14, 736-741. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S., and Kaelin, W.G., Jr. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464-468. Iwanicki, M.P., Vomastek, T., Tilghman, R.W., Martin, K.H., Banerjee, J., Wedegaertner, P.B., and Parsons, J.T. (2008). FAK, PDZ-RhoGEF and ROCKII cooperate to regulate adhesion movement and trailing-edge retraction in fibroblasts. J Cell Sci 121, 895-905. Iwasaki, S., Hattori, A., Sato, M., Tsujimoto, M., and Kohno, M. (1996). Characterization of the bone morphogenetic protein-2 as a neurotrophic factor. Induction of neuronal differentiation of PC12 cells in the absence of mitogen-activated protein kinase activation. J Biol Chem 271, 17360-17365. Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472. Jackson, M., Song, W., Liu, M.Y., Jin, L., Dykes-Hoberg, M., Lin, C.I., Bowers, W.J., Federoff, H.J., Sternweis, P.C., and Rothstein, J.D. (2001). Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 410, 89-93. Jeon, C.Y., Kim, H.J., Lee, J.Y., Kim, J.B., Kim, S.C., and Park, J.B. (2010a). p190RhoGAP and Rap-dependent RhoGAP (ARAP3) inactivate RhoA in response to nerve growth factor leading to neurite outgrowth from PC12 cells. Exp Mol Med 42, 335-344. Jeon, C.Y., Kim, H.J., Morii, H., Mori, N., Settleman, J., Lee, J.Y., Kim, J., Kim, S.C., and Park, J.B. (2010b). Neurite outgrowth from PC12 cells by basic fibroblast growth factor (bFGF) is mediated by RhoA inactivation through p190RhoGAP and ARAP3. J Cell Physiol 224, 786-794. Jiang, S., Seng, S., Avraham, H.K., Fu, Y., and Avraham, S. (2007). Process elongation of oligodendrocytes is promoted by the Kelch-related protein MRP2/KLHL1. J Biol Chem 282, 12319-12329. Kaplan, D.R., and Miller, F.D. (2000). Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10, 381-391. Katoh, H., Aoki, J., Yamaguchi, Y., Kitano, Y., Ichikawa, A., and Negishi, M. (1998). Constitutively active Galpha12, Galpha13, and Galphaq induce Rho-dependent neurite retraction through different signaling pathways. J Biol Chem 273, 28700-28707. Keleman, K., and Dickson, B.J. (2001). Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32, 605-617. Kelly, P., Casey, P.J., and Meigs, T.E. (2007). Biologic functions of the G12 subfamily of heterotrimeric g proteins: growth, migration, and metastasis. Biochemistry 46, 6677-6687. Kennedy, T.E., Wang, H., Marshall, W., and Tessier-Lavigne, M. (2006). Axon guidance by diffusible chemoattractants: a gradient of netrin protein in the developing spinal cord. J Neurosci 26, 8866-8874. Kernie, S.G., Liebl, D.J., and Parada, L.F. (2000). BDNF regulates eating behavior and locomotor activity in mice. EMBO J 19, 1290-1300. Kim, M.D., Kamiyama, D., Kolodziej, P., Hing, H., and Chiba, A. (2003). Isolation of Rho GTPase effector pathways during axon development. Dev Biol 262, 282-293. Kim, S.K. (2000). Cell polarity: new PARtners for Cdc42 and Rac. Nat Cell Biol 2, E143-145. Kipreos, E.T. (2005). Ubiquitin-mediated pathways in C. elegans. WormBook, 1-24. Koh, C.G. (2006). Rho GTPases and their regulators in neuronal functions and development. Neurosignals 15, 228-237. Koncina, E., Roth, L., Gonthier, B., and Bagnard, D. (2007). Role of semaphorins during axon growth and guidance. Adv Exp Med Biol 621, 50-64. Kourlas, P.J., Strout, M.P., Becknell, B., Veronese, M.L., Croce, C.M., Theil, K.S., Krahe, R., Ruutu, T., Knuutila, S., Bloomfield, C.D., et al. (2000). Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc Natl Acad Sci U S A 97, 2145-2150. Kozasa, T., Jiang, X., Hart, M.J., Sternweis, P.M., Singer, W.D., Gilman, A.G., Bollag, G., and Sternweis, P.C. (1998). p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280, 2109-2111. Kranenburg, O., Poland, M., van Horck, F.P., Drechsel, D., Hall, A., and Moolenaar, W.H. (1999). Activation of RhoA by lysophosphatidic acid and Galpha12/13 subunits in neuronal cells: induction of neurite retraction. Mol Biol Cell 10, 1851-1857. Kruger, R.P., Aurandt, J., and Guan, K.L. (2005). Semaphorins command cells to move. Nat Rev Mol Cell Biol 6, 789-800. Kubo, T., Yamashita, T., Yamaguchi, A., Sumimoto, H., Hosokawa, K., and Tohyama, M. (2002). A novel FERM domain including guanine nucleotide exchange factor is involved in Rac signaling and regulates neurite remodeling. J Neurosci 22, 8504-8513. Kuner, R., Swiercz, J.M., Zywietz, A., Tappe, A., and Offermanns, S. (2002). Characterization of the expression of PDZ-RhoGEF, LARG and G(alpha)12/G(alpha)13 proteins in the murine nervous system. Eur J Neurosci 16, 2333-2341. Kuo, C.T., Zhu, S., Younger, S., Jan, L.Y., and Jan, Y.N. (2006). Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51, 283-290. Lasorella, A., Stegmuller, J., Guardavaccaro, D., Liu, G., Carro, M.S., Rothschild, G., de la Torre-Ubieta, L., Pagano, M., Bonni, A., and Iavarone, A. (2006). Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature 442, 471-474. Lee, Y.R., Yuan, W.C., Ho, H.C., Chen, C.H., Shih, H.M., and Chen, R.H. (2010a). The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses. EMBO J 29, 1748-1761. Lee, Y.R., Yuan, W.C., Ho, H.C., Chen, C.H., Shih, H.M., and Chen, R.H. (2010b). The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses. The EMBO journal. Lentz, S.I., Knudson, C.M., Korsmeyer, S.J., and Snider, W.D. (1999). Neurotrophins support the development of diverse sensory axon morphologies. J Neurosci 19, 1038-1048. Lewcock, J.W., Genoud, N., Lettieri, K., and Pfaff, S.L. (2007). The ubiquitin ligase Phr1 regulates axon outgrowth through modulation of microtubule dynamics. Neuron 56, 604-620. Lichtman, J.W., and Colman, H. (2000). Synapse elimination and indelible memory. Neuron 25, 269-278. Ligeti, E., Dagher, M.C., Hernandez, S.E., Koleske, A.J., and Settleman, J. (2004). Phospholipids can switch the GTPase substrate preference of a GTPase-activating protein. J Biol Chem 279, 5055-5058. Lim, Y., Lim, S.T., Tomar, A., Gardel, M., Bernard-Trifilo, J.A., Chen, X.L., Uryu, S.A., Canete-Soler, R., Zhai, J., Lin, H., et al. (2008). PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. J Cell Biol 180, 187-203. Linseman, D.A., and Loucks, F.A. (2008). Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front Biosci 13, 657-676. Longhurst, D.M., Watanabe, M., Rothstein, J.D., and Jackson, M. (2006). Interaction of PDZRhoGEF with microtubule-associated protein 1 light chains: link between microtubules, actin cytoskeleton, and neuronal polarity. J Biol Chem 281, 12030-12040. Lonze, B.E., Riccio, A., Cohen, S., and Ginty, D.D. (2002). Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34, 371-385. Lowery, L.A., and Van Vactor, D. (2009). The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 10, 332-343. Luo, L. (2000). Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1, 173-180. Lynch, E.A., Stall, J., Schmidt, G., Chavrier, P., and D'Souza-Schorey, C. (2006). Proteasome-mediated degradation of Rac1-GTP during epithelial cell scattering. Mol Biol Cell 17, 2236-2242. Lyons, W.E., Mamounas, L.A., Ricaurte, G.A., Coppola, V., Reid, S.W., Bora, S.H., Wihler, C., Koliatsos, V.E., and Tessarollo, L. (1999). Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci U S A 96, 15239-15244. Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., Obinata, T., Ohashi, K., Mizuno, K., and Narumiya, S. (1999). Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895-898. Maina, F., Hilton, M.C., Ponzetto, C., Davies, A.M., and Klein, R. (1997). Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev 11, 3341-3350. Makkerh, J.P., Ceni, C., Auld, D.S., Vaillancourt, F., Dorval, G., and Barker, P.A. (2005). p75 neurotrophin receptor reduces ligand-induced Trk receptor ubiquitination and delays Trk receptor internalization and degradation. EMBO Rep 6, 936-941. Matsuzawa, T., Kuwae, A., Yoshida, S., Sasakawa, C., and Abe, A. (2004). Enteropathogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO J 23, 3570-3582. McLaughlin, T., and O'Leary, D.D. (2005). Molecular gradients and development of retinotopic maps. Annu Rev Neurosci 28, 327-355. Meberg, P.J., and Miller, M.W. (2003). Culturing hippocampal and cortical neurons. Methods in cell biology 71, 111-127. Meier, P., Silke, J., Leevers, S.J., and Evan, G.I. (2000). The Drosophila caspase DRONC is regulated by DIAP1. EMBO J 19, 598-611. Meijering, E., Jacob, M., Sarria, J.C., Steiner, P., Hirling, H., and Unser, M. (2004). Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58, 167-176. Melnick, A., Carlile, G., Ahmad, K.F., Kiang, C.L., Corcoran, C., Bardwell, V., Prive, G.G., and Licht, J.D. (2002). Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. Mol Cell Biol 22, 1804-1818. Merlet, J., Burger, J., Gomes, J.E., and Pintard, L. (2009). Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cell Mol Life Sci 66, 1924-1938. Ming, G.L., and Song, H. (2005). Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28, 223-250. Miyamoto, S., Teramoto, H., Gutkind, J.S., and Yamada, K.M. (1996). Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol 135, 1633-1642. Moore, S.W., Tessier-Lavigne, M., and Kennedy, T.E. (2007). Netrins and their receptors. Adv Exp Med Biol 621, 17-31. Morooka, T., and Nishida, E. (1998). Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. J Biol Chem 273, 24285-24288. Mowla, S.J., Farhadi, H.F., Pareek, S., Atwal, J.K., Morris, S.J., Seidah, N.G., and Murphy, R.A. (2001). Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem 276, 12660-12666. Mudo, G., Persson, H., Timmusk, T., Funakoshi, H., Bindoni, M., and Belluardo, N. (1993). Increased expression of trkB and trkC messenger RNAs in the rat forebrain after focal mechanical injury. Neuroscience 57, 901-912. Nacak, T.G., Alajati, A., Leptien, K., Fulda, C., Weber, H., Miki, T., Czepluch, F.S., Waltenberger, J., Wieland, T., Augustin, H.G., et al. (2007). The BTB-Kelch protein KLEIP controls endothelial migration and sprouting angiogenesis. Circ Res 100, 1155-1163. Nagy, V., and Dikic, I. (2010). Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity. Biol Chem 391, 163-169. Nakamura, T., Komiya, M., Sone, K., Hirose, E., Gotoh, N., Morii, H., Ohta, Y., and Mori, N. (2002). Grit, a GTPase-activating protein for the Rho family, regulates neurite extension through association with the TrkA receptor and N-Shc and CrkL/Crk adapter molecules. Mol Cell Biol 22, 8721-8734. Ng, J., Nardine, T., Harms, M., Tzu, J., Goldstein, A., Sun, Y., Dietzl, G., Dickson, B.J., and Luo, L. (2002). Rac GTPases control axon growth, guidance and branching. Nature 416, 442-447. Nikolic, M., Chou, M.M., Lu, W., Mayer, B.J., and Tsai, L.H. (1998). The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395, 194-198. Nishimura, T., Yamaguchi, T., Kato, K., Yoshizawa, M., Nabeshima, Y., Ohno, S., Hoshino, M., and Kaibuchi, K. (2005). PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nat Cell Biol 7, 270-277. O'Leary, D.D., and Koester, S.E. (1993). Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron 10, 991-1006. Oe, T., Nakajo, N., Katsuragi, Y., Okazaki, K., and Sagata, N. (2001). Cytoplasmic occurrence of the Chk1/Cdc25 pathway and regulation of Chk1 in Xenopus oocytes. Dev Biol 229, 250-261. Ogura, T., Tong, K.I., Mio, K., Maruyama, Y., Kurokawa, H., Sato, C., and Yamamoto, M. (2010). Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Proc Natl Acad Sci U S A 107, 2842-2847. Ozdinler, P.H., and Erzurumlu, R.S. (2001). Regulation of neurotrophin-induced axonal responses via Rho GTPases. J Comp Neurol 438, 377-387. O | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23806 | - |
dc.description.abstract | 神經細胞軸突分枝及生長在神經發育及再生過程中扮演重要的角色。在本篇論文中,我們發現在神經細胞中, BTB-kelch蛋白KLHL20藉由與Cul3結合形成泛素接合酉毎複合體而具有促進神經細胞軸突分枝及生長功能。Cul3-KLHL20 接合酉毎複合體會促使一個在腦部高度表現的蛋白PDZ-RhoGEF的泛素化,並造成其降解。我們更進一步發現,神經滋養因子(Neurotrophins)可以藉由影響PDZ-RhoGEF的泛素化進而促使神經元的生長。神經細胞接收到神經滋養因子的刺激後,會活化下游的p38 MAPK,進一步促使PDZ-RhoGEF磷酸化。磷酸化的PDZ-RhoGEF會被KLHL20所辨識,並將其送至Cul3-KLHL20 接合酉毎複合體,促進PDZ-RhoGEF的泛素化,並引發PDZ-RhoGEF蛋白的降解。此一過程會進導致RhoA活性降低,而促使神經元的生長。由於神經滋養因子在神經發育過程中扮演著重要的角色,不僅可以促進神經細胞的存活更具有促進神經元生長的功能。因此,我們的研究提出了神經滋養因子藉由促進PDZ-RhoGEF降解而達到其調控神經分化的功能。 | zh_TW |
dc.description.abstract | The induction of neurite outgrowth and arborization is critical for developmental and regenerative processes. Here we report that the BTB-kelch protein KLHL20 promoted neurite outgrowth and arborization in hippocampal and cortical neurons through its interaction with Cullin3 to form a ubiquitin ligase complex. This complex targeted PDZ-RhoGEF, a protein abundantly expressed in brain, for ubiquitin-dependent proteolysis, thereby restricting RhoA activity and facilitating growth cone spreading and neurite outgrowth. Importantly, targeting PDZ-RhoGEF to KLHL20 required PDZ-RhoGEF phosphorylation by p38 MAPK. In response to p38-activating neurotrophins, such as brain-derived neurotrophic factor and neurotrophin-3, KLHL20-mediated PDZ-RhoGEF destruction was potentiated, leading to neurotrophin-induced neurite outgrowth. Our study identified a ubiquitin-dependent pathway that targets PDZ-RhoGEF destruction to facilitate neurite outgrowth, and indicates a key role of this pathway in neurotrophin-induced neuronal morphogenesis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:10:22Z (GMT). No. of bitstreams: 1 ntu-100-D94448005-1.pdf: 8386079 bytes, checksum: 535dd647f1433355ff84e08c5590a910 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Table Contents 1
Abbreviations 7 中文摘要 9 Abstract 10 Chapter I. Literature Review 11 1. Neuronal Differentiation 11 1.1 Overview of neuronal differentiation 11 1.2 Development of neuronal polarity 12 1.3 Axonal growth, branching and pruning 13 1.3.1 Axonal growth 13 1.3.2 Axonal branching 14 1.3.3 Axonal pruning 15 1.4 Factors regulating neurite outgrowth 16 1.4.1 Attractive factors 16 1.4.1.1 Adhesive molecules 16 1.4.1.2 Trophic factors 17 1.4.2 Inhibitory factors 17 1.4.3 Guidance cues 18 2. Neurotrophins 19 2.1 Neurotrophic proteins 19 2.2 Neurotrophic receptors 21 2.3 Neurotrophin signaling pathway 22 2.3.1 Neurotrophin signaling mediated by Trk receptors 22 2.3.1.1Ras-MAP kinase pathway 22 2.3.1.2 PI3K-Akt pathway 23 2.3.1.3 PLC-γ............................... 24 2.3.2 Neurotrophin signaling mediated by p75NTR receptors .............................. 24 3. Rho GTPases .............. 25 3.1 Rho family ............ 25 3.2 The regulation of GTPases activity .................... 26 3.2.1 RhoGEFs and RhoGAPs ......... 26 3.2.2 Temporal modularity of Rho GTPase signaling ................... 28 3.2.3 Transcriptional regulation and differential degradation .......... 28 3.3 Effectors and functions of Rho GTPases ............. 29 3.3.1 Rac and Cdc42 effectors ......... 29 3.3.1.1 PAK ............ 29 3.3.1.2 Wiskott-Aldrich syndrome family ............. 30 3.3.2 Rho effectors ........................... 30 3.4 Rho GTPases in axonal outgrowth, branching, and guidance ............................ 31 3.4.1 Neurite extension and outgrowth .................. 31 3.4.1.1 Rac and Cdc42 signaling pathways promoting neurite outgrowth .......... 32 3.4.1.2 The role of Rho signaling in neurite retraction ................ 33 3.4.2 Axonal growth and branching ....................... 34 3.4.3 Axon guidance ........................ 35 4. Ubiquitination ............ 36 4.1 The ubiquitin-proteasome system ...................... 36 4.2 The diversity of E3 ubiquitin ligases.................. 37 4.3 The functions of ubiquitination in nervous system .................... 39 4.3.1 Protein turnover during neuronal development .................... 39 4.3.1.1 Axonal formation ............... 39 4.3.1.2 Axonal growth and branching .................. 40 4.3.1.3 Dendritic pruning ............... 41 4.3.1.4 Regulation of synaptic number and size .......................... 42 4.3.2 Regulation of synaptic plasticity by ubiquitination .............. 42 4.4 BTB-kelch protein and KLHL20 ....................... 43 4.4.1 BTB proteins ........................... 43 4.4.2 BTB-kelch proteins ................. 44 4.4.3 KLHL20 .......... 45 5. PDZ-RhoGEF ............ 46 5.1 RGS family ........... 46 5.1.1 RGS-RhoGEFs ........................ 46 5.1.1.1 Deactivation of Gα12/13 by RGS proteins ...................... 47 5.1.1.2 Regulation of RGS-RhoGEFs by Gα12/13 ..................... 48 5.2 PDZ-RhoGEF function ................ 49 5.2.1 The role of PDZ-RhoGEF in neuronal progression .............. 49 5.2.2 Regulation of cell polarity and migration ............................. 50 5.3 The regulation of PDZ-RhoGEF ........................ 51 5.3.1 Oligomerization ...................... 51 5.3.2 Phosphorylation ...................... 51 5.3.2 Protein-protein interaction ............................ 51 Chapter II. PDZ-RhoGEF ubiquitination by Cullin3-KLHL20 controls neurotrophin-induced neurite growth ..................... 53 Introduction .................... 54 Results ............................ 55 KLHL20 promotes neurite outgrowth/arborization. ........................ 55 KLHL20 interacts with PDZ-RhoGEF. ................... 55 KLHL20 promotes PDZ-RhoGEF ubiquitination and destruction to inactivate RhoA.......................... 56 KLHL20 promotes neurite outgrowth and growth cone spreading through PDZ-RhoGEF degradation................. 57 KLHL20-mediated PDZ-RhoGEF destruction is potentiated by p38 MAPK and participates in neurotrophin-induced morphogenesis...................... 58 Discussion ...................... 59 Materials and Methods ........................... 63 Cell culture and transfection .............. 63 Plasmids ..................... 63 RNA interference ............................. 64 Yeast two-hybrid screen ..................... 64 Antibodies and reagents ..................... 64 Immunofluorescence .......................... 65 Analyses of neurite outgrowth, neuronal morphology and growth cone morphology ................................... 65 Production of baculovirus .................. 66 In vitro phosphorylation ..................... 66 Immunoprecipitation and GST pull down .................. 66 In vitro ubiquitination......................... 67 RhoA activity assay ............................ 67 Table .............................. 68 Table 1: Genes identified by yeast two-hybrid using kelch-repeats domain of KLHL20 as bait .......... 68 Figures........................... 69 Fig.1 The expression of KLHL20 in primary hippocampal neurons. ...................... 69 Fig. 2 Specificity of the KLHL20 antibody. .............. 70 Fig. 3 KLHL20 promotes neurite outgrowth/arborization in hippocampal neurons. ................................... 71 Fig. 4 KLHL20 promotes neurite outgrowth in cortical neurons. ............................ 72 Fig. 5 KLHL20 does not affect neuronal polarity. ........................... 73 Fig. 6 Cul3 depletion blocks KLHL20-induced neurite outgrowth. ........................ 74 Fig. 7 KLHL20 interacts specifically with PDZ-RhoGEF. .............. 75 Fig. 8 KLHL20 interacts with PDZ-RhoGEF via kelch-repeats domain. ................ 76 Fig. 9 The C-terminus of PDZ-RhoGEF is required for KLHL20 binding ............. 77 Fig. 10 Interaction of endogenous PDZ-RhoGEF amd KLHL20 in mouse brain. .. 78 Fig. 11 KLHL20 forms a complex with Cul3 and PDZ-RhoGEF ........................... 79 Fig. 12 KLHL20-based Cul3 complex promotes PDZ-RhoGEF ubiquitination in vivo. ............................ 80 Fig. 13 Endogenous KLHL20 promotes PDZ-RhoGEF ubiquitination. .................. 81 Fig. 14 KLHL20-based Cul3 complex promotes PDZ-RhoGEF ubiquitination in vitro. ........................... 82 Fig. 15 Purification of the KLHL20-based Cul3 complex by GST pull down assay. ................................... 83 Fig. 16 KLHL20 promotes proteasomal degradation of PDZ-RhoGEF. ................. 84 Fig. 17 KLHL20 promotes PDZ-RhoGEF turnover. ....................... 85 Fig. 18 Knockdown of KLHL20 increases PDZ-RhoGEF steady-state level.......... 86 Fig. 19 KLHL20 promotes PDZ-RhoGEF degradation to inactivate RhoA. ........... 87 Fig. 20 Depletion of KLHL20 in hippocampal neurons potentiates RhoA activity without affecting RhoA expression.......................... 88 Fig. 21 Overexpression of PDZ-RhoGEF abolishes the effect of KLHL20 on neurite outgrowth in hippocampal neurons................ 89 Fig. 22 KLHL20 promotes neurite outgrowth through down-regulating PDZ-RhoGEF. ........... 90 Fig. 23 Blockage of ROCK or myosin II abrogates the effect of KLHL20 on neurite outgrowth. ................. 91 Fig. 24 Overexpression of KLHL20 abolishes the effect of PDZ-RhoGEF on growth cones collpase in hippocampal neurons. ............................. 92 Fig. 25 KLHL20-mediated PDZ-RhoGEF degradation is important to maintain growth cones spreading. ..................... 93 Fig. 26 p38 enhances the PDZ-RhoGEF interaction with KLHL20. ....................... 94 Fig. 27 Phosphorylation is required for PDZ-RhoGEF ubiquitination by KLHL20/Cul3/Roc1. .......................... 95 Fig. 28 p38, but not ERK, potentiates the ubiquitination of PDZ-RhoGEF catalyzed by KLHL20/Cul3/Roc1. ..................... 96 Fig. 29 p38 directly phosphorylates PDZ-RhoGEF. ........................ 97 Fig. 30 Pharmacological inhibition of p38 MAPK increases PDZ-RhoGEF level. . 98 Fig. 31 Pharmacological inhibition of p38 MAPK increases RhoA activity. .......... 99 Fig. 32 p38-activating neurotrophins up-regulate the KLHL20-dependent PDZ-RhoGEF degradation pathway. ..................... 100 Fig. 33 p38- and KLHL20-mediated PDZ-RhoGEF destruction participates in BDNF- and NT-3-induced differentiation................ 101 Fig. 34 Model for p38-activating neurotrophin induces PDZ-RhoGEF degradation by KLHL20-Cul3-Roc1 E3 ligase complex ............ 102 Reference ..................... 103 | |
dc.language.iso | en | |
dc.title | Cullin3-KLHL20對PDZ-RhoGEF泛素化在神經滋養因子引起神經突生長之探討 | zh_TW |
dc.title | PDZ-RhoGEF ubiquitination by Cullin3-KLHL20 controls neurotrophin-induced neurite outgrowth | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 李芳仁,陳鴻震,張智芬,戴晶瑩 | |
dc.subject.keyword | PDZ-RhoGEF,Rho,Cullin3泛素接合酶,神經分化,神經滋養因子, | zh_TW |
dc.subject.keyword | PDZ-RhoGEF,Rho,Cullin3 ubiquitin ligase,neuronal differentiatio,neurotrophin, | en |
dc.relation.page | 121 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-07-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 8.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。