Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23769
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor簡正鼎
dc.contributor.authorWei-Kang Yangen
dc.contributor.author楊維康zh_TW
dc.date.accessioned2021-06-08T05:09:52Z-
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-07-20
dc.identifier.citationReferences
Baluska, F., Wojtaszek, P., Volkmann, D., and Barlow, P. (2003). The architecture of polarized cell growth: the unique status of elongating plant cells. Bioessays 25, 569-576.
Barry, J., Gu, Y., and Gu, C. (2010). Polarized targeting of L1-CAM regulates axonal and dendritic bundling in vitro. Eur J Neurosci 32, 1618-1631.
Bazinet, C., Katzen, A.L., Morgan, M., Mahowald, A.P., and Lemmon, S.K. (1993). The Drosophila clathrin heavy chain gene: clathrin function is essential in a multicellular organism. Genetics 134, 1119-1134.
Beronja, S., Laprise, P., Papoulas, O., Pellikka, M., Sisson, J., and Tepass, U. (2005). Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells. J Cell Biol 169, 635-646.
Bieber, A.J., Snow, P.M., Hortsch, M., Patel, N.H., Jacobs, J.R., Traquina, Z.R., Schilling, J., and Goodman, C.S. (1989). Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1. Cell 59, 447-460.
Blanpied, T.A., Scott, D.B., and Ehlers, M.D. (2002). Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36, 435-449.
Chang, H.C., Newmyer, S.L., Hull, M.J., Ebersold, M., Schmid, S.L., and Mellman, I. (2002). Hsc70 is required for endocytosis and clathrin function in Drosophila. J Cell Biol 159, 477-487.
Chien, C.T., Wang, S., Rothenberg, M., Jan, L.Y., and Jan, Y.N. (1998). Numb-associated kinase interacts with the phosphotyrosine binding domain of Numb and antagonizes the function of Numb in vivo. Mol Cell Biol 18, 598-607.
Conner, S.D., and Schmid, S.L. (2002). Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J Cell Biol 156, 921-929.
Conner, S.D., Schroter, T., and Schmid, S.L. (2003). AAK1-Mediated micro2 Phosphorylation is Stimulated by Assembled Clathrin. Traffic 4, 885-890.
Emoto, K., He, Y., Ye, B., Grueber, W.B., Adler, P.N., Jan, L.Y., and Jan, Y.N. (2004). Control of dendritic branching and tiling by the Tricornered-kinase/Furry signaling pathway in Drosophila sensory neurons. Cell 119, 245-256.
Gao, F.B., Brenman, J.E., Jan, L.Y., and Jan, Y.N. (1999). Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev 13, 2549-2561.
Gonzalez-Gaitan, M., and Jackle, H. (1997). Role of Drosophila alpha-adaptin in presynaptic vesicle recycling. Cell 88, 767-776.
Grueber, W.B., Jan, L.Y., and Jan, Y.N. (2002). Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129, 2867-2878.
Grueber, W.B., Jan, L.Y., and Jan, Y.N. (2003). Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell 112, 805-818.
Haucke, V. (2005). Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans 33, 1285-1289.
Howe, C.L., Valletta, J.S., Rusnak, A.S., and Mobley, W.C. (2001). NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron 32, 801-814.
Huet, F., Lu, J.T., Myrick, K.V., Baugh, L.R., Crosby, M.A., and Gelbart, W.M. (2002). A deletion-generator compound element allows deletion saturation analysis for genomewide phenotypic annotation. Proc Natl Acad Sci U S A 99, 9948-9953.
Islam, R., Wei, S.Y., Chiu, W.H., Hortsch, M., and Hsu, J.C. (2003). Neuroglian activates Echinoid to antagonize the Drosophila EGF receptor signaling pathway. Development 130, 2051-2059.
Jan, Y.N., and Jan, L.Y. (2010). Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 11, 316-328.
Jinushi-Nakao, S., Arvind, R., Amikura, R., Kinameri, E., Liu, A.W., and Moore, A.W. (2007). Knot/Collier and cut control different aspects of dendrite cytoskeleton and synergize to define final arbor shape. Neuron 56, 963-978.
Kamiguchi, H. (2003). The mechanism of axon growth: what we have learned from the cell adhesion molecule L1. Mol Neurobiol 28, 219-228.
Kamiguchi, H., Long, K.E., Pendergast, M., Schaefer, A.W., Rapoport, I., Kirchhausen, T., and Lemmon, V. (1998). The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway. J Neurosci 18, 5311-5321.
Kitamoto, T. (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 47, 81-92.
Kuo, C.T., Jan, L.Y., and Jan, Y.N. (2005). Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc Natl Acad Sci U S A 102, 15230-15235.
Lecuit, T., and Pilot, F. (2003). Developmental control of cell morphogenesis: a focus on membrane growth. Nat Cell Biol 5, 103-108.
Lee, A., Li, W., Xu, K., Bogert, B.A., Su, K., and Gao, F.B. (2003). Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 130, 5543-5552.
Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461.
McAllister, A.K. (2002). Conserved cues for axon and dendrite growth in the developing cortex. Neuron 33, 2-4.
Medina, P.M., Worthen, R.J., Forsberg, L.J., and Brenman, J.E. (2008). The actin-binding protein capulet genetically interacts with the microtubule motor kinesin to maintain neuronal dendrite homeostasis. PLoS One 3, e3054.
Mousavi, S.A., Malerod, L., Berg, T., and Kjeken, R. (2004). Clathrin-dependent endocytosis. Biochem J 377, 1-16.
Ovecka, M., Lang, I., Baluska, F., Ismail, A., Illes, P., and Lichtscheidl, I.K. (2005). Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226, 39-54.
Parrish, J.Z., Xu, P., Kim, C.C., Jan, L.Y., and Jan, Y.N. (2009). The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in drosophila sensory neurons. Neuron 63, 788-802.
Parton, R.G., Simons, K., and Dotti, C.G. (1992). Axonal and dendritic endocytic pathways in cultured neurons. J Cell Biol 119, 123-137.
Peng, Y.H., Yang, W.K., Lin, W.H., Lai, T.T., and Chien, C.T. (2009). Nak regulates Dlg basal localization in Drosophila salivary gland cells. Biochem Biophys Res Commun 382, 108-113.
Pruyne, D., and Bretscher, A. (2000a). Polarization of cell growth in yeast. J Cell Sci 113 ( Pt 4), 571-585.
Pruyne, D., and Bretscher, A. (2000b). Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J Cell Sci 113 ( Pt 3), 365-375.
Raghu, P., Coessens, E., Manifava, M., Georgiev, P., Pettitt, T., Wood, E., Garcia-Murillas, I., Okkenhaug, H., Trivedi, D., Zhang, Q., et al. (2009). Rhabdomere biogenesis in Drosophila photoreceptors is acutely sensitive to phosphatidic acid levels. J Cell Biol 185, 129-145.
Ricotta, D., Conner, S.D., Schmid, S.L., von Figura, K., and Honing, S. (2002). Phosphorylation of the AP2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J Cell Biol 156, 791-795.
Robinson, P.J., Liu, J.P., Powell, K.A., Fykse, E.M., and Sudhof, T.C. (1994). Phosphorylation of dynamin I and synaptic-vesicle recycling. Trends Neurosci 17, 348-353.
Satoh, D., Sato, D., Tsuyama, T., Saito, M., Ohkura, H., Rolls, M.M., Ishikawa, F., and Uemura, T. (2008). Spatial control of branching within dendritic arbors by dynein-dependent transport of Rab5-endosomes. Nat Cell Biol 10, 1164-1171.
Schaefer, A.W., Kamei, Y., Kamiguchi, H., Wong, E.V., Rapoport, I., Kirchhausen, T., Beach, C.M., Landreth, G., Lemmon, S.K., and Lemmon, V. (2002). L1 endocytosis is controlled by a phosphorylation-dephosphorylation cycle stimulated by outside-in signaling by L1. J Cell Biol 157, 1223-1232.
Strahler, A.N. (1953). Revisions of Horton's quantitative factors in erosionalterrain. Trans. Am. Geophys. Un. 34, 345.
Sugimura, K., Yamamoto, M., Niwa, R., Satoh, D., Goto, S., Taniguchi, M., Hayashi, S., and Uemura, T. (2003). Distinct developmental modes and lesion-induced reactions of dendrites of two classes of Drosophila sensory neurons. J Neurosci 23, 3752-3760.
Sweeney, N.T., Brenman, J.E., Jan, Y.N., and Gao, F.B. (2006). The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila. Curr Biol 16, 1006-1011.
Toshima, J., Toshima, J.Y., Martin, A.C., and Drubin, D.G. (2005). Phosphoregulation of Arp2/3-dependent actin assembly during receptor-mediated endocytosis. Nat Cell Biol 7, 246-254.
Turner, K.M., Burgoyne, R.D., and Morgan, A. (1999). Protein phosphorylation and the regulation of synaptic membrane traffic. Trends Neurosci 22, 459-464.
Valdez, G., Philippidou, P., Rosenbaum, J., Akmentin, W., Shao, Y., and Halegoua, S. (2007). Trk-signaling endosomes are generated by Rac-dependent macroendocytosis. Proc Natl Acad Sci U S A 104, 12270-12275.
Washbourne, P., Liu, X.B., Jones, E.G., and McAllister, A.K. (2004). Cycling of NMDA receptors during trafficking in neurons before synapse formation. J Neurosci 24, 8253-8264.
Wright, T.R., Hodgetts, R.B., and Sherald, A.F. (1976). The genetics of dopa decarboxylase in Drosophila melanogaster. I. Isolation and characterization of deficiencies that delete the dopa-decarboxylase-dosage-sensitive region and the alpha-methyl-dopa-hypersensitive locus. Genetics 84, 267-285.
Wucherpfennig, T., Wilsch-Brauninger, M., and Gonzalez-Gaitan, M. (2003). Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J Cell Biol 161, 609-624.
Yamamoto, M., Ueda, R., Takahashi, K., Saigo, K., and Uemura, T. (2006). Control of axonal sprouting and dendrite branching by the Nrg-Ank complex at the neuron-glia interface. Curr Biol 16, 1678-1683.
Yap, C.C., Wisco, D., Kujala, P., Lasiecka, Z.M., Cannon, J.T., Chang, M.C., Hirling, H., Klumperman, J., and Winckler, B. (2008). The somatodendritic endosomal regulator NEEP21 facilitates axonal targeting of L1/NgCAM. J Cell Biol 180, 827-842.
Ye, B., Zhang, Y., Song, W., Younger, S.H., Jan, L.Y., and Jan, Y.N. (2007). Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130, 717-729.
Yeh, E., Gustafson, K., and Boulianne, G.L. (1995). Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci U S A 92, 7036-7040.
Zeng, G., and Cai, M. (1999). Regulation of the actin cytoskeleton organization in yeast by a novel serine/threonine kinase Prk1p. J Cell Biol 144, 71-82.
Zeng, G., Yu, X., and Cai, M. (2001). Regulation of yeast actin cytoskeleton-regulatory complex Pan1p/Sla1p/End3p by serine/threonine kinase Prk1p. Mol Biol Cell 12, 3759-3772.
Zheng, J., Shen, W.H., Lu, T.J., Zhou, Y., Chen, Q., Wang, Z., Xiang, T., Zhu, Y.C., Zhang, C., Duan, S., and Xiong, Z.Q. (2008a). Clathrin-dependent endocytosis is required for TrkB-dependent Akt-mediated neuronal protection and dendritic growth. J Biol Chem 283, 13280-13288.
Zheng, Y., Wildonger, J., Ye, B., Zhang, Y., Kita, A., Younger, S.H., Zimmerman, S., Jan, L.Y., and Jan, Y.N. (2008b). Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 10, 1172-1180.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23769-
dc.description.abstractDuring development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription programs and cell adhesion molecule (CAM)-mediated dendrodendritic interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, I show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, the number and length of higher-order dendrites are reduced, which are phenocopied by compromising clathrin-mediated internalization. Nak genetically interacts with genes involved in endocytosis, colocalizes with clathrin puncta and is required for localization of clathrin puncta in distal dendrites. Furthermore, these clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. I present evidence to show that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:09:52Z (GMT). No. of bitstreams: 1
ntu-100-D93448007-1.pdf: 16735638 bytes, checksum: 894d285fecb87ae210750c1291d23f11 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsACKNOWLEDGEMENTS…………………………………………………………….4
ABSTRACT IN CHINESE……………………………………………………………..5
ABSTRACT………………………………………………………...................................6
INTRODUCTION…………………………………………………………………........7
MATERIALS AND METHOD
Fly mutants and transgenic stocks……………………………………..……......11
Immunoblotting and immunohistochemistry………………………...……...….12
Confocal scanning, image processing, and live image recording………….......13
Mosaic analysis with a repressible cell marker (MARCM) analysis………….14
RESULTS
Mutations in nak disrupt dendrite arborization of da neurons…….……….....15
Nak is required preferentially for the growth of higher-order dendrites….…17
Dendritic arborization defects in nak-RNAi mutants were enhanced by endocytic mutations……………………………………………….…..………….19
Nak and clathrin are colocalized in dendrites....……………………………..…22
Nak specifically regulates dendritic localization of clathrin puncta….......…...24
Golgi-outpost mediated dendrite growth is not depended on Nak, and vice versa……………………………………………………………………………….26
Stationary Nak puncta promote local dendrite growth……...…………………27
The localization of Nrg in higher-order dendrites is regulated by Nak-mediated endocytosis…………………..………………………………………………..…...28
DISCUSSION……………….…………………………………………………………..31
FIGURES
Figure 1. Dendritic defects in nak mutants.………………………..….……….36
Figure 2. Expression of endogenous Nak and axon defects in nak mutant..…38
Figure 3. MARCM analysis of classIV ddaC in nak mutant….……...……….40
Figure 4. Dendritic defects of class IV da neurons in nak mutants………..….42
Figure 5. nak is required in da neurons for higher-order dendrite arborization……………………………………………………………………….44
Figure 6. Endocytosis is required for dendrite morphogenesis……………….46
Figure 7. YFP-Nak is localized in distal dendrite as puncta form…………….48
Figure 8. YFP-Nak is colocalized with Clathrin in dendrites…………………50
Figure 9. Clathrin sites are stationary in dendrite……………………………..52
Figure 10. Nak regulates GFP-Clc localization in higher-order dendrites…...54
Figure 11. Localization of endocytosis site in higher-order dendrite…………56
Figure 12. Mutation in AP1 and AP3 component failed to enhance nak-RNAi dendritic defects…………………………………………………………………..58
Figure 13. Nak promotes dendrite extension.......................................................60
Figure 14. Nak-mediated endocytosis promotes Nrg localization and Nrg-dependent growth of higher-order dendrites…………………………………...62
Figure 15. Nrg localization is influenced by Y1185D mutation and nak-RNAi……………………………………………………………………………….64
Figure 16. Quantification of dendritic endpoints in dorsal group da neuron..66
REFEREMCE…………………………………………………………………………..68
APPENDIX……………………………………………………………………………...73
dc.language.isoen
dc.titleNak透過胞飲作用促進樹突生長zh_TW
dc.titleNak promotes dendrite growth through endocytosisen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳瑞華,李秀香,孫以瀚,薛一蘋,黃佩欣
dc.subject.keyword樹狀樹突神經元,樹突,胞飲作用,籠形蛋白,籠形蛋白轉接器,zh_TW
dc.subject.keywordNak,endocytosis,clathrin,adaptin,Nrg,dendrite,da neuron,en
dc.relation.page80
dc.rights.note未授權
dc.date.accepted2011-07-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
Appears in Collections:分子醫學研究所

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
16.34 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved