Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23768
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳煇(Ping-Hei Chen)
dc.contributor.authorCheng-Hao Yangen
dc.contributor.author楊証皓zh_TW
dc.date.accessioned2021-06-08T05:09:52Z-
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-07-20
dc.identifier.citationReferences
Anderson, D. G., Putnam, D., Lavik, E. B., and Mahmood, T. A., 2005, “Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction,” Biomaterials 26, pp. 4892-4897.
Agasti, S. S., Rana, S., Park, M. H., Kim, C. K., You, C. C., and Rotello, V. M., 2010, “Nanoparticles for detection and diagnosis,” Adv. Drug Delivery Rev. 62, pp. 316-328.
Alivisators, P., 2004, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, pp. 47-52.
Arenlcov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V., and Mirzabekov, A., 2000, “Protein microchips: use for immunoassay and enzymatic reactions,” Anal. Biochem. 278, pp. 123-131.
Blacklock, J., You, Y. Z., Zhou, Q. H., Mao, G., and Oupicky, D., 2009, “Gene delivery in vitro and in vivo from bioreducible multilayered polyelectrolyte films of plasmid DNA,” Biomaterials 30, pp. 939-950.
Chang, T. L., Tsai, C. Y., Sun, C. C., Chen, C. C., Kuo, L. S., and Chen, P. H., 2007, “Ultrasensitive electrical detection of protein using nanogap electrodes and nanoparticle-based DNA amplification,” Biosens. Bioelectron. 22, pp. 3139-3145.
Chang, T. Y., Yadav, V. G., Leo, S. D., Mohedas, A., Rajalingam, B., Chen, C. L., Selvarasah, S., Dokmeci, M. R., and Khademhosseini A., 2007, “Cell and protein compatibility of parylene-C surface,” Am. Chem. Soc. 10, pp. 1021-1030.
Cai, H., Xu, C., He, P., and Fang, Y., 2001, “Colloid Au-enhance DNA immobilization for the electrochemical detection of sequence-specific DNA,” J. Electroanal. Chem. 510, pp. 78-85.
Cao, Y. C., Jin, R., Mirkin, C. A., 2002, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297, pp. 1536-1540.
Chen, H., Yuan, L., Song, W., Wu, Z., and Li, D., 2008, “Biocompatible polymer materials: Role of protein-surface interactions,” Prog. Polym. Sci. 33, pp. 1059-1087.
Dalmay, C., Pothier, A., Blondy, P., Lalloue, F., and Jauberteau, M. O., 2008, “Label free biosensors for human cell characterization using radio and microwave frequencies,” IEEE MTT-S, pp. 911-914.
Dong, X., Lau, C. M., Lohani, A., Mhaislkar, S. G., Kasim, J., Shen, Z., Ho, X., Rogers, J. A., and Li, L. J., 2008, “Electrical detection of femtomolar DNA via gold-nanoparticle enhancement in carbon-nanotube-network field-effect transistor,” Adv. Mater. 20, pp. 2389-2393.
Du, H., Disney, M. D., Miller, B. L., and Krauss, T. D., 2003, “Hybridization-based unquenching of DNA hairpins on Au surfaces; prototypical molecular beacon biosensors,” Am. Chem. Soc. 125, pp. 4012-4013.
Gao, Z., Agarwal, A., Trigg, A. D., Singh, N., Fang, C., Tung, C. H., Fan, Y., Buddharaju, K. D., and Kong, J., 2007, “Silicon nanowire arrays for label-free detection of DNA,” Anal. Chem. 79, pp. 3291-3297.
Giljohann, D. A., and Mirkin, C. A., 2009, “Drivers of biodiagnostic development,” Nature 462, pp. 461-464.
Goeruer, A., Karpuz, C., and Alkan, M., 1998, “Characteristics of periodically loaded CPW structures,” IEEE Microw. Guid. Wave Lett. 8, pp. 278-280.
Hong, C. C., Chang, P. H., Lin, C. C., Hong, C. L., 2010, “A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol,” Biosens. Bioelectron. 25, pp. 2058-2064.
Karnfelt, C., Tegnander, C., Rudnicki, J., Starski, J. P., and Emrich, A., 2006, “Investigation of parylene-C on the performance of millimeter-wave circuits,” IEEE Trans. Microwave Theory Tech. 54, pp. 3417-3425.
Kim, R. R., and Ashok, M., 1996, “Biomolecular sensing for bioprocess and environmental monitoring applications,” ACS Sym. Ser. 613, pp. 2-8.
Kim, Y. I., Park, T. S., Kang, J. H., Lee, M. C., Kim, J. T., Park, J. H., and Baik, H. K., 2006, “Biosensors for label free detection based on RF and MEMS technology,” Sens. Actuators. B 119, pp. 592-599.
Kurita, D., and Li, K., 2008, “Two-layered ultra wideband (UWB) bandpass filter,” IEICE Electron. Expr. 5, pp. 291-295.
Lahiji, R. R., Sharifi, H., Mohammadi, S., and Katehi, P. B., 2007, “On the study of parylene-N for millimeter-wave integrated circuits,” IEEE Adv. Packaging Mater. Sym. , pp. 147-151.
Lee, H., Lee, E., Kim, D. K., Jang, N. K., Jeong, Y. Y., and Jon, S., 2006, “Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential as potential magnetic resonance contrast agents for in vivo cancer imaging,” Am. Chem. Soc. 128, pp. 7383-7389.
Lee, K. B., and Lee, J. Y., 2005, “5.2GHz band 2nd-order band-pass filter using LTCC multilayer technology,” IEEE APMC Pro., pp. 708-711.
Liu, Y., Borgioli, A., Nagra, A. S., and York, R. A., 2001, “Distributed MEMS transmission lines for tunable filter application,” Int. J. RF and Microw. Comp. Eng., pp. 254-259.
Lye, W. K., Reed, M., 2006, “MEMS: A practical guide to design, analysis, and applications: Biomedical system,” New York: Springer Press, pp. 729-749.
Nam, J. M., Thaxton, C. S., and Mirkin, C. A., 2003, “Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science 301, pp. 1884-1886.
Notingher, I., 2007, “Raman spectroscopy cell-based biosensors,” Sensors 7, pp. 1343-1358.
Pal, S., and Alocilja, E. C., 2010, “Electrically active magnetic nanoparticles as novel concentrator and electrochemical redox transducer in Bacillus anthracis DNA detection,” Biosens. Bioelectron. 26, pp. 1624-1630.
Park, S. J., Taton, T. A., and Mirkin, C. A., 2002, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295, pp. 1503-1506.
Perng, J. K., Hunt, W. D., Edmonson, P. J., 2007, “Development of a shear horizontal saw RFID biosensor,” IEEE Sens., pp. 691-694.
Polsky, R., Gill, R., Kaganovsky L., and Willner, I., 2006, “Nucleic acid-functionalized Pt Nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules,” Anal. Chem. 78, pp. 2268-2271.
Ratner, B. D., Hoffman, A. S., Schoen, F. J., Lemons, J. E., 2004, “Biomaterials science: An introduction to materials in medicine,” San Diego: Elsevier Academic Press, pp. 1-9.
Ratner, B. D., Bryant, S. J., 2004, “Biomaterials: where we have been and where we are going,” Annu. Rev. Biomed. Eng. 6, pp. 41-75.
Rosi, N. L., and Mirkin, C. A., 2005, “Nanostructures in biodiagnostics,” Chem. Rev. 105, pp. 1547-1562.
Sharifi, H., Choi, T., and Mohammadi, S., 2007, “Self-aligned wafer-level integration technology with high density interconnects and embedded passives,” IEEE Trans. Adv. Packaging 30, pp. 11-18.
Shen, H., Tan, J., and Saltzman, W. M., 2004, “surface-mediated gene transfer from nano-composites of controlled texture,” Nat. Mater. 3, pp. 569-574.
Sheehan, P. E., and Whitman, L. J., 2005, “Detection limits for nanoscale biosensors,” Nano Lett. 5, pp. 803-807.
Shin, Y. S., Cho, K., Lim, S. H. Chung, S., Park, S. J., Chung, C., Han, D. C., and Chang, J. K., 2003, “PDMS-based micro PCR chip with Parylene coating,” J. Micromech. Microeng. 13, pp. 768-774.
Simons, R. N., 2001, “Coplanar waveguide circuits, components, and systems,” New York: Wiley Interscience, pp. 393-397.
Song, S., Qin, Y., He, Y., Huang, Q., Fan, C., and Chen, H. Y., 2010, “Functional nanoprobes for ultrasensitive detection of biomolecules,” Chem. Soc. Rev. 39, pp. 4234-4243.
Thevenot, D. R., Toth, K., Durst, R. A., Wilson, G. S., 2001, “Electrochemical biosensors: Recommended definitions and classification,” Biosens. Bioelectron. 16, pp. 121-131.
Tirrel, M., Kokkoli, E., and Biesalski, M., 2002, “The role of surface science in bioengineered materials,” Surf. Sci. 500, pp. 61-83.
Tsai, C. Y., Chang, T. L., Kuo, L. S., and Chen, P. H., 2006, “Detection of electrical characteristics of DNA strands immobilized on self-assembled multilayer gold nanoparticles,” Appl. Phys. Lett. 89, 203902.
Tsai, Y. S., and Horng, T. S., 2006, “A broadband single-stage equivalent circuit for modeling LTCC bandpass filters,” IEEE Trans. Microw. Theory Tech. 54, pp. 4412-4421.
Tokonami, S., Shiigi, H., and Nagaoka, T., 2008, “Open bridge-structured gold nanoparticles array for label-free DNA detection,” Anal. Chem. 80, pp. 8071-8075.
Jewell, C. M., Zhang, J., Fredin, N. J., and Lynn, D. M., 2005, “Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells,” J. Controlled Release 93, pp. 69-84.
Valois, R., Baillargeat, D., Verdeyme, S., Lahti, M., and Jaakola, T., 2005, “High performance of shielded LTCC vertical transition from DC up to 50 GHz,” IEEE Trans. Microw. Theory Tech. 53, pp. 2026-2032.
Wang, J., 2000, “From DNA biosensor to gene chip,” Nucleic Acid Res. 28, pp. 3011-3016.
Wise, K. D., and Najafi, K., 1991, “Microfabrication techniques for integrated sensors and microsystems,” Science 254, pp. 1335-1342.
Yang, F. R., Qian, Y., Coccioli, R., and Itoh, I., 1998, “A novel low-loss slow-wave microstrip structure,” IEEE Microw. Guid. Wave Lett. 8, pp. 372-274.
Zhang, B., Zhang, Z. J., Wang, B., Yan, J., Li, J. J., and Cai, S. M., 2001, “Preparation of gold nano-arrayed electrode on silicon substrate and its electrochemical properties,” Acta. Chimica. Sinica 59, pp. 1932-1936.
Zhang, J., Song, S., Zhang, L., Wang, L., Wu, H., Pan, D., and Fan, C., 2006, “Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): Effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes,” Am. Chem. Soc. 128, pp. 8575-8580.
Zheng, J., Webster, J. R., Mastrangelo, C. H., Ugaz, V. M., Burns, M. A., and Burke, D. T., 2007, “Integrated plastic microfluidic device for ssDNA separation,” Sens. Actuators B 125, pp. 343-351.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23768-
dc.description.abstractA polymeric DNA sensor using radio frequency detection was developed in this thesis. This biosensor presents an electrical DNA detection method for a coplanar wave guide structures fabricated on a multi-layer polymer. Gold nanoparticles and magnetic nanoparticles are employed to immobilize on the surface of the biosensor to enhance overall detection sensitivity. The surface of the proposed biochip used thioglycolic acid (TGA) chemical reagent to form thiolated modified sensing surface for DNA hybridization. Since the electromagnetic characteristic of the biosensors can be altered through the establishment of multilayer nanoparticles, the performance of the proposed biosensor can be evaluated by the shift of the center frequency of the RF biosensor.
The shift of the center frequency is increasing with the raise of the target DNA concentrations. Among the experimental results, the detection limit of the developed biosensor for the DNA detection is 10pM. Moreover, the measured center frequency of the biosensor without nanoparticles is about 6.4 GHz, which is close to the simulated results. The shifts of center frequency using AuNPs and MNPs triple-layer are about 0.9 and 0.7 GHZ, which exceed the shift of the double-layer AuNPs and MNPs by 0.6 and 0.5 GHz, respectively.
The polymer biosensor for DNA detection using nano-electromechanical system (NEMS), Radio Frequency (RF), surface modification, and biochemical detection technology is successfully completed. The polymer materials are utilized as substrates to replace conventional substrate such as glass and silicon wafers. Therefore, the price of each biochip is effectively educed by using fully polymeric materials. In this study, the developed biosensor can attain inexpensive, disposable, and high-sensitive advantages for biomedicine diagnostic system. As biotechnology becomes more and more indispensable nowadays, the developed biosensor has potential applications for precise recognizing, fast sensing, and reliable quantifying in disease diagnosis and health care.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:09:52Z (GMT). No. of bitstreams: 1
ntu-100-D95522002-1.pdf: 5707531 bytes, checksum: fe0f88eeb84f455dbeac9680e1d83210 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents
Acknowledgement I
Abstract II
Nomenclature IV
Table of Content V
List of Tables VIII
List of Figures IX
Chapter 1 Introduction 1
1.1 General Remarks 1
1.2 Motivation and Objectives 3
1.3 Literature Survey 6
1.3.1 Functional Probes for DNA Detection 6
1.3.2 Polymeric Materials for Biosensor 9
1.3.3 Multilayer RF Components for Biosensor 12
1.4 Contributions 14
1.5 Thesis Outline 14
Chapter 2 Design of the Polymeric RF biosensor 22
2.1 Selection of the Polymeric Materials for RF Application 22
2.2 Principles of the RF Biosensor 23
2.2.1 Passive Filters for Biosensor 23
2.2.2 Scattering Parameters 24
2.2.3 Definition of the center frequency 25
2.3 Design of the biosensor structures 26
2.4 Electromagnetic Simulation for the polymeric RF Biosensor 28
2.4.1 Simulation Tool 28
2.4.2 Simulation Procedures and Parameters for Biosensor 29
Chapter 3 Experimental Design and Fabrication Process 38
3.1 Micromachining Process Flow of the Polymer Biochip 39
3.1.1 CVD Process for Parylene Deposition 41
3.1.2 Isotropic Wet Etching for Metal Layer 42
3.2 Surface Treatment of the Biosensor 42
3.2.1 Surface Treatment with Silane A-174 43
3.2.2 Surface Treatment with O2 Plasma 43
3.2.3 Surface Modification with Thioglycolic Acid 44

Chapter 4 Experimental Apparatuses and Procedures 63
4.1 Experimental and measurement apparatuses 63
4.1.1 Experimental apparatuses 63
4.1.2 Measurement apparatuses 64
4.2 Experimental Materials 65
4.3 Experimental Procedures 66
4.3.1 DNA Hybridization with Self-assembly Multilayer AuNPs 66
4.3.2 DNA Hybridization with Self-assembly Multilayer MNPs 67
Chapter 5 Results and Discussion 81
5.1 Measurement Results of the Polymer Biosensor 81
5.2 Measurement results of the DNA detection 83
5.2.1 DNA Detection with AuNPs 83
5.2.2 DNA Detection with MNPs 85

Chapter 6 Conclusions and Future Prospects 105
References 107
dc.language.isoen
dc.title應用於DNA檢測之高分子射頻生醫感測器之開發zh_TW
dc.titleDevelopment of a Polymeric Radio Frequency Biosensor for DNA Detectionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee戴慶良,楊啟榮,李達生,蔡作敏
dc.subject.keyword高分子感測器,射頻,DNA檢測,功能性奈米顆粒,生物感測器,zh_TW
dc.subject.keywordPolymeric sensor,Radio frequency,DNA detection,Function nanoparticles,Biosensor,en
dc.relation.page114
dc.rights.note未授權
dc.date.accepted2011-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved