Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23745
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為(Chee Wee Liu)
dc.contributor.authorJun Yu Chenen
dc.contributor.author陳俊宇zh_TW
dc.date.accessioned2021-06-08T05:09:36Z-
dc.date.copyright2011-07-29
dc.date.issued2011
dc.date.submitted2011-07-22
dc.identifier.citationChap.2
[1] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R Noufi, Prog. Photovolt: Res. Appl. 16, 235 (2008).
[2] R. Bacewicz, P. Zuk, and R.Trykozko, Opto-Electron Rev. 11, 277 (2003).
[3] S. Siebentritt, in chapter 7 of Wide-Gap Chalcopyrites, Springer Series in Materials Science, edited by S. Siebentritt and U. Rau (Springer, New York, 2006).
[4] S.-H. Han, F. S. Hasoon, H. A. Al-Thani, A. M. Hermann, and D. H. Levi, Appl. Phys. Lett. 85, 576 (2004).
[5] J. E. Jaffe and A. Zunger, Phys. Rev. B 29, 1882 (1984).
[6] M. Gloeckler, Device Physics Of Cu(In,Ga)Se2 Thin-Film Solar Cells, PhD thesis, Colorado State University, Fort Collins, Colorado (2005).
[7] A. Jasenek and U. Rau, J. Appl. Phys., 90, 650 (2001).
[8]T. Nakashiba, A. Yamada, L. Zhang, and M. Konagai, Conference on Optoelectronic and Microelectronic Materials and Devices, 281 (2008).
[9] [10] P. D. Paulson, R. W. Birkmire, and W. N. Shafarman, J. Appl. Phys. 94, 879 (2003).
[11] D. Liao and A. Rockett, J. Appl. Phys. 93, 9380 (2003).
[12] H. Bayhan and A. S. Kavasoglu, Solar Energy 80, 1160 (2006).
[13]C. -S. Jiang, F. S. Hasoon, H. R. Moutinho, H. A. Al-Thani, M. J. Romero, and M. M. Al-Jassim, Appl. Phys. Lett. 95, 127 (2003).
[14] R. Kniese, D. Hariskos, G. Voorwinden, U. Rau, and M. Powalla, Thin Solid Films, 431 – 432, 543 (2003).
[15] S. H. Liu, E. J. Simburger, J. Matsumoto, A. Garcia III, J. Ross, and J. Nocerino, Prog. Photovolt: Res. Appl. 13, 149 (2005).
[16] S. Kijima and T. Nakada, Appl. Phys. Express 1, 075002 (2008).
Chap.3
[1] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R Noufi, “19•9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81•2% fill factor”, Progress in Photovoltaics: Research and Applications, vol. 16, pp. 235-239, 2008.
[2] T. Tsuchiya, O. Tabata, J. Sakata, Y. Taga, “Specimen Size Effect on Tensile Strength of Surface Micromachined Polycrystalline Silicon Thin Films”, J. Microelectromech. Syst., vol. 7, pp. 106-113, 1998.
[3] K. Matsunaga, T. Komaru, Y. Nakayama, T. kume, and Y. Suzuki, “Mass-production technology for CIGS modules”, Solar Energy Materials and Solar Cells, vol. 93, pp. 1134-1138, 2009.
[4] M. Powalla, M. Cemernjak, J. Eberhardt, F. Kessler, R. Kniese, H.D. Mohring, B. Dimmler, “Large-area CIGS modules: Pilot line production and new developments”, Solar Energy Materials & Solar Cells 90 (2006) 3158–3164
[5] M. Passlack, Materials Fundamentals of Gate Dielectrics , Springer, The Netherlands, 2005, pp. 403.
[6] R. Bacewicz, P. Zuk, and R. Trykozko, “Photoluminescence study of ZnO/Cds/Cu(In,Ga)Se2 solar cell”, OPTO-ELECTRONICS REVIEW, vol. 11, pp. 277-280, 2003.
[7] N. M Terlinden, G. Dingemans, M. C. van de Sanden, and W. M. M. Kessels, “Role of field-effect on c-Si surface passivation by ultrathin (2-20 nm) atamic layer deposited Al2O3”, Applied Physics Letters, vol. 96, pp. 112101, 2010.
[8] Sutichai CHAISITSAK, Akira YAMADA and Makoto KONAGAI ,'Preferred Orientation Control of Cu(In1-xGax)Se2 (x~0:28) Thin Films and Its Influence on Solar Cell Characteristics' , Jpn. J. Appl. Phys. Vol. 41 (2002) pp. 507–513
[9] Miguel A. Contreras, Manuel J. Romero, R. Noufi, 'Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells', Thin Solid Films 511-512(2006)51–54
Chap.4
[1] D. L. Staebler and C. R. Wronski, ”Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys Lett. 31, 1977, pp. 292-293.
[2] A. Klaver et al., Solar Energy Materials & Solar Cells,92, pp050-60(2008).
[3] D. E. Carlson and K. Rajan, “Evidence for proton motion in the recovery of light-induced degradation in amorphous silicon solar cells,” J. Appl. Phys. 83(3) 1998, pp. 1726-1729.
[4] M. Stutzmann, W. B. Jackson, and C. C. Tsai, Phys. Rev. B., 32, 23 (1985)
[5] J. H. Stathis and S. Zafar, Microelectronics Reliability, 46, 270 (2006)
[6] K. Morigaki, Jpn. J. Appl. Phys, 27, 163 (1988)
[7] Arvind Shah*, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet, U. Graf, “Microcrystalline silicon and ‘micromorph’ tandem solar cells”, Thin Solid Films 403 –404 (2002) 179–187.
[8] D. L. Staebler and C. R. Wronski, “Optically induced conductivity changes in discharge-produced amorphous silicon,” J. Appl. Phys. 51 1980, pp. 3262-3268.
[9] D. E. Carlson and K. Rajan, “The reversal of light-induced degradation in amorphous silicon solar cells by an electric field,” Appl. Phys. Lett. 70(16). 21 April 1997.
[10] Andreas Schenk and Ulrich Krumbein,'Coupled defect-level recombination:Theory and application to anomalous diode characteristics', J.Appl.Phys.75(5)
[11] C. T. Sah, R. N. Noyce and W. Shockley, “Carrier generation and recombination in p-n junctions and p-n junction characteristics,” Proc.IRE, 45, p. 1228 (1957).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23745-
dc.description.abstract本論文中,利用光激發光、外部量子效率和電壓電流量測去探討缺陷對銅銦硒鎵和非晶矽基薄膜太陽能電池的效應。
首先,銅銦鎵硒薄膜太陽能電池之光激發光特性顯示出與缺陷能階相關的躍遷,並可進一步分析出施體能階與受體能階。由於缺陷會造成銅銦鎵硒太陽能電池的短路電流溫度係數為負值,導致高溫下的效率變小。
在銅銦鎵硒薄膜太陽能電池製程上,需要很多到切割去完成,而這些粗糙切割都可能會在界面上產生許多複合中心。因此,我們試著利用原子層沉積技術在薄膜上沉積一層氧化鋁,以達到鈍化的效果。
在非晶矽基薄膜太陽能電池中,由於照光所產生的劣化是一個相當重要的課題。為了探討出非晶矽基薄膜太陽能電池的生命週期,我們做了一些可靠度的研究,另外,在利用施加外部偏壓的方式,讓原先由於照光所產生的劣化可以回復之前的效率。
zh_TW
dc.description.abstractIn this thesis, the photoluminescence, external quantum efficiency and J-V curve measurement are used to characterize defect information for Cu(In,Ga)Se2 and α-Si based thin film solar cells.
First, the photoluminescence of defect-related Cu(In,Ga)Se2 thin film solar cells show the donor-acceptor transition and band-impurity transition. The donor level and acceptor level can be extracted. The negative temperature coefficient of the short circuit current of Cu(In,Ga)Se2 solar cells may cause more degradation of power conversion efficiency at high temperature due to defects.
In CIGS thin film solar cell standard process, it needs many patterning to complete process. The edge of the patterning is very rough and may have a lot of recombination in surface region. For the reason, atomic layer deposited (ALD) Al2O3 is used to passivated the CIGS and the effect of the passivation.
For α-Si based solar cells, light-induced degradation is a significant issue. In order to investigate the lifetime of the α-Si based solar cells, we have to do reliability test.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:09:36Z (GMT). No. of bitstreams: 1
ntu-100-R98943107-1.pdf: 2314071 bytes, checksum: 3fb67b68cbe5f86346836194cec905c0 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContents
Chapter 1 Introduction
1.1 Motivation 1
1.2 Organization 1

Chapter 2 Defect related effect analysis of Cu(In,Ga)Se2 solar cells by photoluminescence
2.1 Introduction 3
2.2 Typical CIGS structure and experimental samples 3
2.3 Photoluminescence from CIGS solar cells 7
2.3.1 Pumping power dependence of PL 10
2.3.2 Temperature dependence of PL 12
2.4 Result and discussion 13
2.4.1 Temperature dependence of external quantum efficiency (EQE) 15
2.4.2 Temperature dependence of CIGS bandgap 17
2.5 Conclusion 19
References 20

Chapter 3 Surface passivation of Cu(In,Ga)Se2 by atomic layer deposited Al2O3
3.1 Introduction 22
3.2 Description of approach and techniques 23
3.3 Results and discussion 26
3.3.1 Photoluminescence from CIGS passivation films 26
3.3.2 Simulation of CIGS passivation films 29
3.3.3 XRD patterns of experimental samples 34
3.3.4 PL integrated intensity of experimental samples 37
3.4 Conclusion 38
References 39

Chapter 4 Recovery of light-induced degradation of α-Si based thin film solar cells by reverse bias
4.1 Introduction 41
4.2 Staebler-Wronski effect 41
4.3 Light-induced degradation and recovery method for α-Si based solar
cells 44
4.4 Structure of experiment samples 46
4.5 Results and discussion 48
4.5.1 Degradation results and analysis 48
4.5.2 Recovery experiments and model of single junction solar cells 54
4.5.3 Recovery with different structure by reverse bias recovery application 59
4.5.4 Reliability of recovery experiments 63
4.6 Summary 64
References 65

Chapter 5 Summary and future work
5.1 Conclusion 67
5.2 Future work 68
List of Tables
Table.3-1 The ratio of I(220)/ I(112) for co-evaporation CIGS films with and without deposition of Al2O3. 35
Table.3-2 The ratio of I(220)/ I(112) for co-evaporation CIGS films with and without annealing process. 37
Table.4-1 Recovery methods of light-induced degradation. 46
Table.4-2 The illuminated J-V data of experimental samples that with and without light-soaking. 53
Table.4-3 The illuminated J-V data of the α-Si solar cell after light soaking and the recovery by reverse bias 57
List of Figures
Fig.2-1 The structure of typical CIGS solar cells. 5
Fig.2-2 The SEM image of CIGS solar cell (Sample 1). 5
Fig.2-3 The TEM image of CIGS solar cell (Sample 1). 6
Fig.2-4 The SEM image of CIGS solar cell (Sample 2). The CIGS layer has a thickness of 1.41μm. 6
Fig.2-5 The PL spectrum of Sample1 with 671 nm laser excitation at the power of 10mW. 9
Fig.2-6 The band diagram of CIGS energy states. ED = EC - 0.08eV and EA = EV + 0.03 eV. 10
Fig.2-7 The PL spectra of Sample1 with excitation power from 10 to 60mW 11
Fig.2-8 The PL spectra of Sample2 with excitation power from 15 to 60mW 11
Fig.2-9 The PL spectra of Sample1 with temperature range from 150 to 300K. 12
Fig.2-10 The PL spectra of Sample2 with temperature range from 150 to 300K. 13
Fig.2-11 The PL spectra of Sample1 (Two peaks: BI and DAP). 14
Fig.2-12 The PL spectra of Sample2 (One peak: BI). 14
Fig.2-13 The EQE spectra of Sample1. It shows obvious degradation at short wavelength region (< 1100nm) 16
Fig.2-14 The EQE spectra of Sample2. It shows slight degradation at short wavelength region and slight increased at long wavelength region. 16
Fig.2-15 The trapping mechanism of photo-generated carriers in CIGS solar cells. 17
Fig.2-16 The temperature dependence of the short circuit current (Jsc) of CIGS solar cells. The serious negative temperature coefficient of Sample1 is due to the defects to trap photo-generated carriers at high temperature. 18
Fig.3-1 Process sequence step of CIGS large-area module fabrication. 24
Fig.3-2 Process sequence schematic view of CIGS large-area module fabrication 24
Fig.3-3 Process sequence step of CIGS Samples in this study. 25
Fig.3-4 The PL spectrum of co-evaporation CIGS films at room temperature. The intensity of the film with 50nm thickness of Al2O3 as passivation layer has about 200 times larger PL intensity. 27
Fig.3-5 The band diagram of CIGS energy states 27
Fig.3-6 The PL spectrum of sputter CIGS films at room temperature. The intensity of the film with 50nm thickness of Al2O3 as passivation layer has about 20 times larger PL intensity. 28
Fig.3-7 The PL spectra of co-evaporation CIGS films with Al2O3 passivated with temperature range from 150 to 300K. 29
Fig.3-8 The relative integrated light intensity versus the Seff of CIGS with various bulk life time. 30
Fig.3-9 The energy band diagram of the CIGS film w/ and w/o Al2O3 as passivation layer. 31
Fig.3-10 The surface recombination velocity versus the Qf of CIGS with various Dit 32
Fig.3-11 Dit at the interface can be reduce to about half of the no passivation one 33
Fig.3-12 The simulation structure when CIGS is passivated by the Al2O3 33
Fig.3-13 The XRD patterns for co-evaporation CIGS films with and without deposition of Al2O3. 34
Fig.3-14 The XRD patterns for co-evaporation CIGS films with and without N2 annealing. 36
Fig.3-15 The XRD patterns for co-evaporation CIGS films with and without forming gas annealing. 36
Fig.3-16 Relative integrated PL intensity with different thickness of Al2O3, annealing time of N2 and forming gas. The light intensity increases with increasing thickness of Al2O3. 38
Fig.4-1 The efficiency of α-Si solar cells degrades after light-soaking. 43
Fig.4-2 The EQE of α-Si solar cells degrades after light-soaking. 43
Fig.4-3 The model of the Staebler-Wronski Effect. 44
Fig.4-4 Structure of experimental samples. (a)α-SiGe (b)α-Si (c)a-Si/
dc.language.isoen
dc.title銅銦鎵硒及非晶矽基薄膜太陽能電池之缺陷效應zh_TW
dc.titleDefect Related Effects of CIGS anden
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭宇軒(Yu-Hsuan Kuo),張書通(Shu-Tong Chang),林中一(Lin Chung-Yi),張廖貴術(K.S. Chang-Liao)
dc.subject.keyword銅銦鎵硒,光激發光,外部量子效率,鈍化,非晶矽基太陽能電池,zh_TW
dc.subject.keywordCu(In,Ga)Se2,Photoluminescence,external quantum efficiency,passivation,α-Si based solar cells,en
dc.relation.page68
dc.rights.note未授權
dc.date.accepted2011-07-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved