請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23744完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 汪重光(Chorng-Kuang Wang) | |
| dc.contributor.author | Hsi-Han Chiang | en |
| dc.contributor.author | 江昕翰 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:09:36Z | - |
| dc.date.copyright | 2011-07-29 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-22 | |
| dc.identifier.citation | [1] L. Yujiri, M. Shoucri and P. Moffa, “Passive millimeter wave imaging,” IEEE Microwave Magazine, vol. 4, no. 3, pp. 39-50, September 2003.
[2] K. Okada, K. Matsushita, K. Bunsen, R. Murakami, A. Musa, T. Sato, H. Asada, N. Takayama, N. Li, S. Ito, W. Chaivipas, R. Minami and A. Matsuzawa, “A 60GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c,” in IEEE International Solid-State Circuits Conference, San Francisco, California, February 2011, pp. 160-162. [3] S. Emami, R. F. Wiser, E. Ali, M. G. Forbes, M. Q. Gordon, X. Guan, S. Lo, P. T. McElwee, J. Parker, J. R. Tani, J. M. Gilbert and C. H. Doan, “A 60GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications,” in IEEE International Solid-State Circuits Conference, San Francisco, California, February 2011, pp. 164-166. [4] S. J. Huang, Y. C. Yeh, H. Wang, P. N. Chen and J. Lee, “An 87GHz QPSK transceiver with costas-loop carrier recovery in 65nm CMOS,” in IEEE International Solid-State Circuits Conference, San Francisco, California, February 2011, pp. 168-170. [5] C. S. Lee, M. G. Kim, J. J. Lee, K. E. Pyun and H. M. Park, “A low noise amplifier for a multi-band and multi-mode handset,” in IEEE Radio Frequency Integrated Circuits Symposium, San Francisco, California, June 1998, pp. 47-50. [6] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts and B. Nauta, “Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling,” IEEE Journal of Solid-State Circuits, vol. 43, no. 6, pp. 1341-1350, June 2008. [7] M. Y. Hsu, C. S. Wang and C. K. Wang, “A low power high reliability dual-path noise-cancelling LNA for WSN applications,” in IEEE Custom Integrated Circuits Conference, San Jose, September 2010, pp. 1-4. [8] D. Mastantuono and D. Manstretta, “A low-noise active balun with IM2 cancellation for multiband portable DVB-H receivers,” in IEEE International Solid-State Circuits Conference, San Francisco, California, February 2009, pp. 216-217,217a. [9] S. Joo, T. Y. Choi, J. Y. Kim and B. Jung, “A 3-to-5 GHz UWB LNA with a low-power balanced active balun,” in IEEE Radio Frequency Integrated Circuits Symposium, San Francisco, California, June 2009, pp. 303-306. [10] B. Welch, K. T. Kornegay, H. M. Park and J. Laskar, “A 20-GHz low-noise amplifier with active balun in a 0.25-μm SiGe BICMOS technology,” IEEE Journal of Solid-State Circuits, vol. 40, no. 10, pp. 2092-2097, October 2005. [11] B. J. Huang, B. J. Huang, K. Y. Lin and H. Wang, “A 2-40 GHz active balun using 0.13μm CMOS process,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 3, pp. 164-166, March 2009. [12] S. H. Weng, H. Y. Chang and C. C. Chiong, “A DC-21 GHz low imbalance active balun using darlington cell technique for high speed data communications,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 11, pp. 728-730, November 2009. [13] K. Jung, W. R.. Eisenstadt, R. M. Fox, A. W. Ogden and J. Yoon, “Broadband active balun using combined cmascode–cascade configuration,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 8, pp. 1790-1796, August 2008. [14] M. Ferndahl and H. O. Vickes, “The matrix balun – a transistor-based module for broadband applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 1, pp. 53-60, January 2009. [15] H. H. Chiang, F. C. Huang, C. S. Wang and C. K. Wang, “A 63 GHz low-noise active balun with broadband phase-correction technique in 90 nm CMOS,” in IEEE Asian Solid-State Circuits Conference, Beijing, November 2010, pp. 289-292. [16] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M. T. Yang, P. Schvan and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp.1044-1057, May 2007. [17] M. Tanomura, Y. Hamada, S. Kishimoto, M. Ito, N. Orihashi, K. Maruhashi and H. Shimawaki, “TX and RX front-ends for 60GHz band in 90nm standard bulk CMOS,” in IEEE International Solid-State Circuits Conference, San Francisco, California, February 2008, pp. 558-635. [18] T. Mitomo, R. Fujimoto, N. Ono, R. Tachibana, H. Hoshino,Y. Yoshihara, Y. Tsutsumi and I. Seto, “A 60-GHz CMOS receiver front-end with frequency synthesizer,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp.1030-1037, April 2008. [19] S. Pellerano, Y. Palaskas and K. Soumyanath, 'A 64 GHz LNA with 15.5 dB gain and 6.5 dB NF in 90 nm CMOS,' IEEE Journal of Solid-State Circuits, vol. 43, no. 7, pp.1542-1552, July 2008. [20] C. S. Wang, J. W. Huang, K. D. Chu and C. K. Wang, “A 60-GHz phased array receiver front-end in 0.13-μm CMOS technology,” IEEE Transactions on Circuits and System- I, Regular Papers, vol. 56, no. 10, pp. 2341-2352, October 2009. [21] Y. Zhou and M. Y. W. Chia,“A Low-Power Ultra-Wideband CMOS True RMS Power Detector,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 5, pp. 1052-1058, May 2008. [22] J. W. May and G. M. Rebeiz, “Design and Characterization of W-Band SiGe RFICs for Passive Millimeter Wave Imaging,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 1420-1430, May 2010. [23] A. Tomkins, P. Garcia and S. P. Voinigescu, “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, no. 10, pp. 1981-1991, October 2010. [24] K. A. Townsend and J. W. Haslett, “A Wideband Power Detection System Optimized for the UWB Spectrum,” IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 371-381, February 2009. [25] G. Ferrari, L. Fumagalli, M. Sampietro, E. Prati and M. Fanciulli, “CMOS Fully Compatible Microwave Detector Basedon MOSFET Operating in Resistive Regime,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 7, pp. 445-447, July 2005. [26] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st edition, New York, New York: McGraw-Hill, August 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23744 | - |
| dc.description.abstract | 本論文的研究著重於六百億赫茲短距離傳輸與被動式毫米波影像的應用,兩者皆需要將毫米波電路的高頻效應融入於設計中,並透過電磁模擬去觀察是否達到預期的設計目標,因此本論文將對於COMOS電路在高頻應用中參數的設計與選取做討論,並且將應用在高頻的被動元件的設計考量融入整體的討論中。
V-band低雜訊主動差動訊號匹配器的設計結合了低雜訊放大器與平衡非平衡匹配器,進而可以在接收機前端將單一相位的訊號轉換成差動訊號,使系統在線性度與雜訊上有較好的表現,所提出的電路運用電路架構去修正平衡非平衡匹配器在高頻所產生的相位誤差,進而提供一個較不受製程變異與模擬誤差影響的電路。此電路的量測到的頻寬為60.4-66.6 GHz,頻寬內所量測到的最大電壓增益為17.6 dB與16 dB (63 GHz),頻寬內的相位誤差皆小於6.8度而增益誤差皆小於1.7 dB,最低雜訊指數(noise figure)為8.6 dB (63 GHz), 整體電路消耗19 mW的功率,晶片的核心面積為0.275 mm2. W-band功率偵測器的運作是將75 GHz至110 GHz的高頻訊號接收至電路中並且將所收到的功率大小表現在輸出的直流電壓變化上,本次設計的晶片將電晶體操作在線性區以達成降低等效雜訊功率的目標。本次晶片所量測到的S11在75 GHz至110 GHz內皆達到小於-10 dB的要求,功率大小轉換至直流變化的能力由responsivity表示,所量測到的responsivity為1.77 kV/W, 量測到的等效雜訊功率(NEP)約為17 pW/(Hz)^0.5,電路消耗的總功率為0.18 mW而晶片面積為0.163 mm2。 | zh_TW |
| dc.description.abstract | This thesis presents the researches for 60 GHz short range wireless system and millimeter-wave passive imaging applications. The high frequency effects in both designs need to be considered and observed through electromagnetic simulation. This thesis will focus on the design of CMOS circuits operating at high frequency and put the design considerations for passive components into discussion.
The V-band low-noise active balun combines a low-noise amplifier and an active balun circuit, so the signal can be amplified and converted from single to differential at front-end. The proposed circuit calibrates the phase error of active balun through circuit structure and provides a robust calibration technique for millimeter-wave application. The chip is fabricated in 90 nm low power CMOS technology and occupies an active area of 0.275 mm2. The 3 dB bandwidth is from 60.4-66.6 GHz, the maximum equivalent voltage gain is 17.6 dB and the minimum noise figure is 8.6 dB. The power consumption is only 19 mW from a 1.4 V supply voltage. The measured phase error maintains less than 6.8˚ within 3 dB bandwidth and keeps below 10˚ within 50-67 GHz. The W-band power detector receives the signal from 75 GHz to 110 GHz and converts the power level into the change of DC voltage. The transistor of this work operates at linear region to improve the performance of noise-equivalent power. The chip is fabricated by 65 nm CMOS technology and the chip area is 0.163 mm2. The power consumption is 0.18 mW and the supply voltage is 1V. The measured input reflection coefficient is less than -10 dB within W-band frequency. The measured average responsivity is designed to achieve 1.77k while the measured NEP with average responsivity is about 17 pW/(Hz)^0.5. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:09:36Z (GMT). No. of bitstreams: 1 ntu-100-R97943120-1.pdf: 4279339 bytes, checksum: 91a6b9f64f0c7b25725f801a16ff5d9a (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES ix Chapter 1 Introduction 1 1.1 60GHz Wireless Applications 1 1.2 Millimeter-Wave Passive Imaging System 2 1.3 Motivation 2 1.4 Thesis Overview 3 Chapter 2 V-Band Low-Noise Active Balun 5 2.1 Introduction 5 2.2 Phase-Correction Technique 7 2.2.1 Basic Principle 8 2.2.2 Gain Imbalance 11 2.2.3 Transistor-Level Verification 14 2.2.4 Mismatch Issue 18 2.3 Circuit Implementation 21 2.3.1 MOS Devices 21 2.3.2 Proposed Low-Noise Active Balun 22 2.3.3 Simulation Results 24 2.3.4 Experimental Results 28 2.3.5 Discussion 34 Chapter 3 Peak Detector for Passive Imaging 41 3.1 Introduction 41 3.2 W-Band Peak Detector 43 3.2.1 Circuit Design 45 3.2.2 Simulation Results 47 3.2.3 Experimental Results 53 Chapter 4 Conclusion 59 Bibliography 61 | |
| dc.language.iso | en | |
| dc.title | V頻帶低雜訊主動差動訊號匹配器與W頻帶峰值檢測器之設計與實現 | zh_TW |
| dc.title | Design and Implementation of V-Band Low Noise Active Balun and W-Band Peak Detector | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳介琮(Jieh-Tsorng Wu),劉深淵(Shen-Iuan Liu),郭泰豪(Tai-Haur Kuo),黃柏鈞(Po-Chiun Huang) | |
| dc.subject.keyword | 六百億赫茲,主動差動匹配器,無線傳輸,峰值檢測, | zh_TW |
| dc.subject.keyword | Low Noise Active Balun,W-Band Peak Detector, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
