請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23741完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉致為 | |
| dc.contributor.author | Ren-Jie Hsu | en |
| dc.contributor.author | 許人介 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:09:34Z | - |
| dc.date.copyright | 2011-08-05 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-22 | |
| dc.identifier.citation | [1] Richard H. Bube “ Photovoltaic Materials” Imperial College Press (1997).
[2] Su-Huai Wei, S. B. Zhang, and Alex Zuger “Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties”, Appl. Phys. Lett., Vol. 72, No. 24, 15 June 1998 [3] D.J. Schroeder, J.L. Herberholz, A.A. Rockett, in: Proceedings of the 11th International Conference on Ternary and Multinary Compounds, 1999, pp. 749–752. [4] P. D. Paulson, R. W. Birkmire, and W. N. Shafarman. “Optical characterization of CuIn1ÀxGaxSe2 alloy thin films by spectroscopic ellipsometry” JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 2 15 JULY 2003 [5] S. Siebentritt , Solar Energy 77 (2004) 767–775 [6] R.N. Bhattacharya, K. Ramanathan / Solar Energy 77 (2004) 679–683 [7] D. Hariskos et al. / Thin Solid Films 480–481 (2005) 99–109 [8] M. Gloeckler et al., Proc. 3rd World Conf. on Photovoltaic 37 Energy Conversion, 491-494 (2003) [9] S. Kundu, L.C. Olsen / Thin Solid Films 471 (2005) 298–303 [10] Son et al., Appl.Phys.Lett. 90,101910 (2007) [11] A. PUDOV et al., Jpn. J. Appl. Phys. Vol.41 (2002) Pt.2,No.6B [12]I. Repins et al., Prog. Photovolt:Res.Appl. 2008; 16:235–239 [13]M.A. Contreras et al., “ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/Mo SOLAR CELL WITH 18.6% EFFICIENCY” [14]T. Minemoto et al., Solar Energy Materials & Solar Cells 67 (2001) 83-88 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23741 | - |
| dc.description.abstract | 本論文中,探討背面接觸式結構與銅銦鎵硒型太陽能電池,以模擬的方法進行研究,建構模型並嘗試改良其結構。
傳統矽晶太陽能電池的結構一般皆為正面接觸式,改用背電極可使電池入光面的陰影區域減少,光吸收區域增加以達到提高短路電流的功用。再者,因為接面全在背面的緣故,入光面的低接面複合速率可以很容易的達成,因此背電極型太陽能電池有大於20%的高效率。 利用雷射參雜的好處有很多,尤其是可以簡單的做到選擇性重參雜而不需要用到微影技術,另一方面是,它的製程環境是在室溫之下,與傳統熱擴散法比較下來,不會有熱應力影響。雷射參雜目前主要應用在太陽能電池的部分有,形成正面射極與背面場、背電極型太陽能電池、雙面照光式太陽能電池,等等。 銅銦鎵硒型太陽能電池目前已經被廣泛的使用,唯其緩衝程材料多使用硫化鎘,鎘對於環境與人體皆有蠻大的壞處,因此找到了硫化鋅做為替代,論文中探討了緩衝層對於銅銦鎵硒型太陽能電池的影響,以及兩種緩衝層材料的比較。 最後一種結合矽與銅銦鎵硒的新型異質結構太陽能電池為主要的討論對象, | zh_TW |
| dc.description.abstract | In this thesis, to study interdigitated back contact and CIGS based solar cell, we use TCAD sentaurus to simulate characteristics of solar cell. We build the model and try to improve the structure and get better efficiency.
Mostly, the conventional silicon solar cell has front junction near surface. If we change the structure and made all the contact at the back side, the shadow area can be reduced and the absorbed area increased. Therefore higher short circuit current can be reached. The other advantage of all back contact is that the low surface recombination velocity can be achieved easily. For the above reason, the IBC solar cell has high efficiency (>20%). There are some advantages of LD solar cell: (1) local selective area for emitter or back side field (BSF) can be formed easily without conventional photolithograph process, (2) the process can be fabricated at room temperature for the reduction of thermal stress in the substrate, (3) the atmosphere condition instead of conventional impurity diffusion method at high temperatures. Since the selective area doping can be formed by LD process, the interdigitated back contact (IBC) solar cell is also can be possibly fabricated by this process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:09:34Z (GMT). No. of bitstreams: 1 ntu-100-R98941092-1.pdf: 1089977 bytes, checksum: d76408a3ed75d9a544824c2ead27700c (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 II
Abstract III Contents IV List of Tables VI List of Figures VII Chapter 1 1 1.1 Motivation 1 1.2 Organization 2 Chapter 2 5 Interdigitated Back Contact Solar cell 5 2.1 Introduction 5 2.2 Basic IBC solar cell simulation 6 2.2.1 Simulation structure and parameters 6 2.2.2 IBC solar cell structure design 8 2.3 Lateral carrier transport issue 9 2.3.1 Front surface field (FSF) 9 2.3.2 EQE simulation 15 2.4 IBC with selective heavily doping 17 Reference 19 Chapter 3 20 Laser Doping Solar cell Simulation and IBC-SHJ simulation 20 3.1 Laser doping solar cell 20 3.1.1 Introduction 20 3.1.2 Experimental and simulation result of Laser Doping solar cell 21 3.2 Interdigitated back contact solar cell with silicon hetero-junction (IBC-SHJ) 26 3.2.1 simulation result and discuss 28 References 31 Chapter 4 32 CIGS with alternative buffer layers and novel hetero structure of CIGS solar cell (CIGS on Si) 32 4.1 Introduction 32 4.2 CIGS with alternative buffer layers 36 4.2.1 Introduction 36 4.2.2 Simulation result and discussion 38 4.2.3 Conduction band offset in buffer layer and CIGS interface 43 4.3 Novel hetero structure of CIGS solar cell (CIGS on Si) 47 4.3.1 Introduction 47 4.3.2 Simulation result and discussion 48 Chapter 5 54 Summary and Future Work 54 5.1 Summary 54 5.2 Future work 55 List of Tables Table 2-1 Performance of with and without back side oxide passivation. 7 Table 2-2 Different emitter coverage fraction. 9 Table 2-3 Different pitch width. 11 Table 2-4 Selective heavily doping. 18 Table 3-1 Performance of conventional IBC and IBC-SHJ 28 Table 3-2 Performance of conventional HIT and IBC-SHJ. 30 Table 4-1 Simulation parameter 37 Table 4-2 CdS and ZnS record efficiency 38 Table 4-3 Performance of CdS and ZnS cells 40 Table 4-4 Performance of conventional CIGS and CIGS on silicon cells 49 Table 4-4 Performance of three CIGS on silicon cells 50 List of Figures Fig. 2-1 Structure of IBC solar cells 6 Fig. 2-4 Lateral transport. Path (a) through base and Path (b) Through (FSF). 10 Fig. 2-6 Band Diagram of FSF and n-type wafer. 12 Fig. 2-7 Efficiency vs. Front SRV 13 Fig. 2-8 (a) Jsc vs. Front SRV 14 (b) Voc vs. Front SRV 14 (c) F.F. vs. Front SRV 15 Fig. 2-9 (a) EQE vs front SRV(structure with FSF) 16 (b) EQE vs front SRV(structure without FSF) 16 Fig. 2-10 structure of selective heavily doping 17 Fig. 3-1 SIMS data of LD solar cell 22 Fig. 3-2 Structure of LD and conventional multi-silicon solar cell 22 Fig. 3-3 Experimental J-V curves of LD and conventional multi-silicon solar cell 23 Fig. 3-4 Simulation J-V curves of LD and conventional multi-silicon solar cell 23 Fig. 3-5 Simulation J-V curves of LD and conventional multi-silicon solar cell 24 Fig. 3-6 EQE of LD solar cell and conventional multi-silicon solar cell 25 Fig. 3-7 Structure of IBC-SHJ 27 Fig. 3-8 light J-V of conventional IBC and IBC-SHJ 28 Fig. 3-9 Dark current of conventional IBC and IBC-SHJ 29 Fig. 3-10 Light J-V of conventional HIT and IBC-SHJ 30 Fig. 4-1 Band gap of CIGS with different Ga content 33 Fig. 4-2 Schematic energy levels of CBM and VBM in CIGS material. 34 Fig. 4-3 Absorption coefficient of CIGS with different Ga content 35 Fig. 4-4 Absorption coefficient of CIGS with different Ga content 36 Fig. 4-5 illuminated J-V curve of two different buffer layer 39 Fig. 4-6 Dark J-V curve of two different buffer layer 39 Fig. 4-7 (a) Band diagram of buffer layer and CIGS interface. 40 (b) Band diagram of buffer layer and CIGS interface. 41 Fig. 4-8 Band diagram of buffer layer and CIGS interface – same dielectric constant. 42 Fig. 4-9 Dark J-V curve of two different buffer layer – same dielectric constant. 43 Fig. 4-9 CIGS performance vs CBO 44 Fig. 4-10 Simulation result of Jsc vs CBO 45 Fig. 4-11 Band diagram of different CBO 46 Fig. 4-12 Structure of CIGS on silicon 47 Fig. 4-14 Illuminated J-V curve of three CIGS on Silicon solar cells 50 | |
| dc.language.iso | en | |
| dc.title | 交錯式背面接點與銅銦鎵硒型太陽能電池模擬 | zh_TW |
| dc.title | IBC and CIGS Based Solar Cell Simulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭宇軒,胡振國,林吉聰,林中一 | |
| dc.subject.keyword | 矽太陽能電池,異質接面結構太陽能電池,銅銦鎵硒型太陽能電池, | zh_TW |
| dc.subject.keyword | Silicon solar cell,Hetero-junction solar cell,CIGS solar cell, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
