請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23736完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊彬 | |
| dc.contributor.author | Ming-Zen Su | en |
| dc.contributor.author | 蘇明仁 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:09:31Z | - |
| dc.date.copyright | 2011-10-05 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-25 | |
| dc.identifier.citation | [1] Muhlemann H. R., Periodontometry, a method for measuring tooth mobility. Oral Surg Oral Med Oral Pathol, 1951. 4(10): p. 1220-33.
[2] Harkness R. D., Biological functions of collagen. Biol Rev Camb Philos Soc, 1961. 36: p. 399-463. [3] Ridge M. D. and Wright V., The rheology of skin. A bio-engineering study of the mechanical properties of human skin in relation to its structure. Br J Dermatol, 1965. 77(12): p. 639-49. [4] Maceri F., Marino M., and Vario G., A unified multiscale mechanical model for soft collagenous tissues with regular fiber arrangement. J. Biomech, 2010. 43: p. 355-363. [5] Synge J.L., The Tightness of the teeth considered as a problem concerning the equilibrium of a thin incompressible elastic membrane. Phil. Trans. Roy. Soc. London, A, 1933. 231: p. 435. [6] Gabel A.B., A mathematical analysis of the function of the fibers of the periodontal membrance. J Periodontol, 1956. 25: p. 191. [7] Boyle Paul E., Tooth Suspension. A Comparative Study of the Paradental Tissues of Man and of the Guinea Pig. Journal of Dental Research, 1938. 17(1): p. 37-46. [8] Parfitt G. J., Measurement of the physiological mobility of individual teeth in an axial direction. J Dent Res, 1960. 39: p. 608-18. [9] Kindlova M. and Matena V., Blood vessels of the rat molar. J Dent Res, 1962. 41: p. 650-60. [10] Bien S. M., Hydrodynamic damping of tooth movement. J Dent Res, 1966. 45(3): p. 907-14. [11] Bergomi M., Cugnoni J., and Wiskott H.W.A, The role of the fluid phase in the viscous response of bovine periodontal ligament. J. Biomech, 2010. 43: p. 1146-1152. [12] Picton D. C., Tilting movements of teeth during biting. Arch Oral Biol, 1962. 7: p. 151-9. [13] Picton D. C. and Wills D. J., Viscoelastic properties of the periodontal ligament and mucous membrane. J Prosthet Dent, 1978. 40(3): p. 263-72. [14] Natali A., Pavan P., Carniel E., and Dorow C., Viscoelastic response of the periodontal ligament: an experimental-numerical analysis. Connect Tissue Res, 2004. 45(4-5): p. 222-30. [15] Picton D. C., On the part played by the socket in tooth support. Arch Oral Biol, 1965. 10(6): p. 945-55. [16] Wong R. S. and Sims M. R., A scanning electron-microscopic, stereo-pair study of methacrylate corrosion casts of the mouse palatal and molar periodontal microvasculature. Arch Oral Biol, 1987. 32(8): p. 557-66. [17] Freezer S. R. and Sims M. R., A transmission electron-microscope stereological study of the blood vessels, oxytalan fibres and nerves of mouse-molar periodontal ligament. Arch Oral Biol, 1987. 32(6): p. 407-12. [18] Walker T. W., Ng G. C., and Burke P. S., Fluid pressures in the periodontal ligament of the mandibular canine tooth in dogs. Archives of Oral Biology, 1978. 23(9): p. 753-765. [19] Korber K. H., Electronic registration of tooth movements. Int Dent J, 1971. 21(4): p. 466-77. [20] Robins G. and Grandage J., Temporomandibular joint dysplasia and open-mouth jaw locking in the dog. J Am Vet Med Assoc, 1977. 171(10): p. 1072-6. [21] Picton D. C. and Slatter J. M., The effect on horizontal tooth mobility of experimental trauma to the periodontal membrane in regions of tension or compression in monkeys. J Periodontal Res, 1972. 7(1): p. 35-41. [22] Tanaka E., Inubushi T., Koolstra J. H., van Eijden T. M., Sano R., Takahashi K., Kawai N., Rego E. B., and Tanne K., Comparison of dynamic shear properties of the porcine molar and incisor periodontal ligament. Ann Biomed Eng, 2006. 34(12): p. 1917-23. [23] Tanaka E., Inubushi T., Takahashi K., Shirakura M., Sano R., Dalla-Bona D. A., Nakajima A., van Eijden T. M., and Tanne K., Dynamic shear properties of the porcine molar periodontal ligament. J Biomech, 2007. 40(7): p. 1477-83. [24] Komatsu K., Sanctuary C., Shibata T., Shimada A., and Botsis J., Stress-relaxation and microscopic dynamics of rabbit periodontal ligament. J Biomech, 2007. 40(3): p. 634-44. [25] Berkovitz BKB., The structure of the periodontal ligament: an update. European J of Orthodontics, 1990. 12: p. 51-76. [26] Berkovitz BKB., Moxham B. J., and Newman H. N., The periodontal ligament and physiological tooth movements. In: Berkovitz BKB The Periodontal Ligament in Health and Disease. 1982, 249-68. [27] Harkness RD., Mechanical properties of collagenous tissues. In: Treatise on collagen, Vol. 2, Biology of collagen, B. S. Gould , London, Academic Press. 1968, 248-310. [28] Sloan P., Scanning electron microscopy of the collagen fibre architecture of the rabbit incisor periodontium. Arch. Oral Biol., 1978. 23: p. 567-572. [29] Sloan P., Collagen fibre architecture in the periodontal ligament. J R Soc Med, 1979. 72(3): p. 188-91. [30] Sloan P. and Carter D.H., Structure organization of the fibres of the periodontal ligament. In: Berkovitz, B.K.B., Moxham, B.J., Newman, H.N. (Eds.), The Periodontal Ligament in Health and Disease. 1995, Mosby-Wolfe, London, 35-53. [31] Atkinson H.F. and Ralph W.J., In vitro strength of the human periodontal ligament. J. Dent., 1977. Res.56: p. 48-52. [32] Dorow C., Krstin N., and Sander F.G., Determination of the mechanical properties of the periodontal ligament in a uniaxial tensional experiment. J. Orofac. Orthop., 2003. 64: p. 100-107. [33] Wills D. J., Picton D. C., and Davies W. I., An investigation of the viscoelastic properties of the periodontium in monkeys. J Periodontal Res, 1972. 7(1): p. 42-51. [34] Picton D. C., Tooth mobility--an update. Eur J Orthod, 1990. 12(1): p. 109-15. [35] Nelson SJ. and Ash MM., The permanent maxillary incisor. In: Nelson SJ, Ash MM Wheeler's Dental anatomy, physiology, and occlusion saunders Inc. 2010, 99-112. [36] ABAQUS Theory manual Version 5.8 1999, Hibbitt, Karlsson and Sorensen, Inc. [37] Holmes D. C., Grigsby W. R., Goel V. K., and Keller J. C., Comparison of stress transmission in the IMZ implant system with polyoxymethylene or titanium intramobile element: a finite element stress analysis. Int J Oral Maxillofac Implants, 1992. 7(4): p. 450-8. [38] Ross G. G., Lear C. S., and DeCou R., Modeling the lateral movement of teeth. J Biomech, 1976. 9(11): p. 723-34. [39] Blaushild N., Michaeli Y., and Steigman S., Histomorphometric study of the periodontal vasculature of the rat incisor. J. Dent., 1992. Res. 71: p. 1908-1912. [40] Embery G., Waddington R., and Hall R., The Ground substance of the periodontal ligament. In: Berkovitz, B., Moxham, B., Newman, H. (Eds.), The Periodontal Ligament in Health and Disease. 1995, Mosby-Wolfe, London, 83-106. [41] Fratzl P. Collagen, Structure and Mechanics. in Springer. 2008. Berlin. [42] Wills D. J., Picton D. C., and Davies W. I., A study of the fluid systems of the periodontium in macaque monkeys. Arch Oral Biol, 1976. 21(3): p. 175-85. [43] Wills D. J. and Picton D. C., The effect on axial tooth mobility of submucosal injections of hyaluronidase in adult Macaca irus monkeys. J Dent Res, 1978. 59: p. 1841. [44] Bien S. M., Fluid dynamic mechanisms which regulate tooth movement. Adv Oral Biol, 1966. 2: p. 173-201. [45] Yoshida N., Koga Y., Kobayashi K., Yamada Y., and Yoneda T., A new method for qualitative and quantitative evaluation of tooth displacement under the application of orthodontic forces using magnetic sensors. Med Eng Phys, 2000. 22(4): p. 293-300. [46] Brekelmans W. A., Poort H. W., and Slooff T. J., A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand, 1972. 43(5): p. 301-17. [47] Morin D. L., Douglas W. H., Cross M., and DeLong R., Biophysical stress analysis of restored teeth: experimental strain measurement. Dent Mater, 1988. 4(1): p. 41-8. [48] Kamposiora P., Papavasilious G., Bayne S. C., and Felton D. A., Finite element analysis estimates of cement microfracture under complete veneer crowns. J Prosthet Dent, 1994. 71(5): p. 435-41. [49] Rieger M. R., Fareed K., Adams W. K., and Tanquist R. A., Bone stress distribution for three endosseous implants. J Prosthet Dent, 1989. 61(2): p. 223-8. [50] Rieger M. R., Adams W. K., Kinzel G. L., and Brose M. O., Finite element analysis of bone-adapted and bone-bonded endosseous implants. J Prosthet Dent, 1989. 62(4): p. 436-40. [51] Yaman S. D., Alacam T., and Yaman Y., Analysis of stress distribution in a maxillary central incisor subjected to various post and core applications. J Endod, 1998. 24(2): p. 107-11. [52] Howard P. S., Kucich U., Taliwal R., and Korostoff J. M., Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodontal Res, 1998. 33(8): p. 500-8. [53] GG Ross, CS Lear, and R. Decos, Modeling the lateral movements of teeth. J Biomechanics, 1976. 9: p. 723-734. [54] Götze W., Uber Altersonsveranderungen des parodontiums. Dtsch. Zahnaerztl. AZ, 1965. 15: p. 465. [55] Tanne K., Yoshida S., Kawata T., Sasaki A., Knox J., and Jones M. L., An evaluation of the biomechanical response of the tooth and periodontium to orthodontic forces in adolescent and adult subjects. Br J Orthod, 1998. 25(2): p. 109-15. [56] ABAQUS Theory manual Version 6.2 2001, Hibbitt, Karlsson and Sorensen, Inc. [57] Box M. J., A New Method of Constrained Optimization and a Comparison With Other Methods. The Computer Journal, 1965. 8(1): p. 42-52. [58] Picton D. C., The periodontal enigma: eruption versus tooth support. Eur J Orthod, 1989. 11(4): p. 430-9. [59] Packman H., Shoher I., and Stein R. S., Vascular responses in the human periodontal ligament and alveolar bone detected by photoelectric plethysmography: the effect of force application to the tooth. J Periodontol, 1977. 48(4): p. 194-200. [60] Nanci A. and Ten Cate AR., Development of tooth and its supporting tissue in Ten Cate's oral histology: development, structure, and function. 7th ed. 2008, Mosby Inc., 79-108. [61] Muhlemann H. R. and Houglum M. W., The determination of the tooth rotation center. Oral Surg Oral Med Oral Pathol, 1954. 7(4): p. 392-4. [62] Muhlemann H. R., Wartmann P., and Marthaler T. M., [Tooth mobility, intraalveolar portion of root, biological factor.]. Parodontologie, 1955. 9(1): p. 24-7. [63] Picton D. C., Vertical movement of cheek teeth during biting. Arch Oral Biol, 1963. 8: p. 109-18. [64] Bien S. M. and Ayers H. D., RESPONSES OF RAT MAXILLARY INCISORS TO LOADS. J Dent Res, 1965. 44: p. 517-20. [65] Moxham B. J., Berkovitz B. K., Shore R. C., and Spence J. A., A laboratory method for studying tooth mobility of the mandibular central incisor of the sheep. Res Vet Sci, 1987. 42(1): p. 61-4. [66] Moxham B. J., Shore R. C., and Berkovitz B. K., Effects of inflammatory periodontal disease ('broken mouth') on the mobility of the sheep incisor. Res Vet Sci, 1990. 48(1): p. 99-102. [67] Yoshida N., Koga Y., Peng C. L., Tanaka E., and Kobayashi K., In vivo measurement of the elastic modulus of the human periodontal ligament. Med Eng Phys, 2001. 23(8): p. 567-72. [68] Poppe M., Bourauel C., and Jager A., Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth a study of autopsy specimens and their conversion into finite element models. J Orofac Orthop, 2002. 63(5): p. 358-70. [69] Picton D. C., The effect on tooth mobility of trauma to the mesial and distal regions of the periodontal membrane in monkeys. Helv Odontol Acta, 1967. 11(1): p. 105-12. [70] Davies D. M., Picton D. C., and Alexander A. G., An objective method of assessing the periodontal condition in human skulls. J Periodontal Res, 1969. 4(1): p. 74-7. [71] Wills D. J., Picton D. C., and Davies W. I., The intrusion of the tooth for different loading rates. J Biomech, 1978. 11(10-12): p. 429-34. [72] Coelho A. J. and Moxham B. J., The intrusive mobility of the incisor tooth of the guinea pig. Arch Oral Biol, 1989. 34(5): p. 383-6. [73] Picton D. C., The effect on normal vertical tooth mobility of the rate of thrust and time interval between thrusts. Arch Oral Biol, 1963. 8: p. 291-9. [74] Parfitt G. J., An investigation of the normal variations in alveolar bone trabeculation. Oral Surg Oral Med Oral Pathol, 1962. 15: p. 1453-63. [75] Dorow C., Krstin N., and Sander F. G., Experiments to determine the material properties of the periodontal ligament. J Orofac Orthop, 2002. 63(2): p. 94-104. [76] Toms S. R., Dakin G. J., Lemons J. E., and Eberhardt A. W., Quasi-linear viscoelastic behavior of the human periodontal ligament. J Biomech, 2002. 35(10): p. 1411-5. [77] Komatsu K., Shibata T., Shimada A., Viidik A., and Chiba M., Age-related and regional differences in the stress-strain and stress-relaxation behaviours of the rat incisor periodontal ligament. J Biomech, 2004. 37(7): p. 1097-106. [78] Sanctuary C. S., Wiskott H. W., Justiz J., Botsis J., and Belser U. C., In vitro time-dependent response of periodontal ligament to mechanical loading. J Appl Physiol, 2005. 99(6): p. 2369-78. [79] Sanctuary C. S., Wiskott H. W., Botsis J., Scherrer S. S., and Belser U. C., Oscillatory shear loading of bovine periodontal ligament--a methodological study. J Biomech Eng, 2006. 128(3): p. 443-8. [80] Provenzano P., Lakes R., Keenan T., and Vanderby R., Jr., Nonlinear ligament viscoelasticity. Ann Biomed Eng, 2001. 29(10): p. 908-14. [81] Shibata T., Botsis J., Bergomi M., Mellal A., and Komatsu K., Mechanical behavior of bovine periodontal ligament under tension-compression cyclic displacements. Eur J Oral Sci, 2006. 114(1): p. 74-82. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23736 | - |
| dc.description.abstract | 背景與目的:
牙周膜韌帶(Periodontal Ligament, PDL)的力學行為在牙醫學非常重要,提供緩衝機制免於牙齒在受力時斷裂;反之當承受不當力量,例如設計不良的補綴物,會造成嚴重發炎。更有甚者,牙科植體應用在牙科治療上與日俱增,主要的後遺症為周圍齒槽骨喪失,其肇因於植體受力後缺乏緩衝設計,因此了解牙周膜韌帶的力學行為為當務之急。 研究方法: 本研究計畫以有限元素計算力學方法,推算牙周膜材料參數,建立可靠數學模型;在實驗方面設計更精良的測量裝置,以非侵入式檢測,取得牙周膜受力的受力位移數據資料。 實驗結果: 在數學模擬方面,較諸非線性應變能模型,本研究發現線性張力─壓力體積粘彈模型更能精準模擬健康牙周膜韌帶的受力反應,而偏切粘彈模型則提供損傷牙周膜韌帶之應力分佈模擬;在牙周膜韌帶測量裝置的研發方面,我們的新型裝置可取得潛變、應力鬆弛、能量耗損、阻尼制振的粘彈數據。 結論: 本研究提出張力─壓力體積粘彈模型,可精準符合牙周膜韌帶受力、卸力的實驗數據,提供實時觀察的可靠模擬;所研發的受力位移測量裝置呈現良好的一致性與再現性,觀察到大約300gw潛變轉折點,大約100gw應力鬆弛瓶頸,1.26x10^-1 mJ及3.30x10^-2 mJ的遲滯環能量損耗,1.30x10^5 (N⋅sec)⁄m的粗略阻尼係數。 | zh_TW |
| dc.description.abstract | Background/Purpose: The mechanical behavior of PDL is very important in dentistry. It provides cushion mechanism to protect tooth from fracture during loading. In contrast, it will make severe inflammation if PDL bearing unsuitable force, for example, from pooly designed prothesis. Moreover, dental implant is well accepted in dental therapy recently. A main side effect, surrounding bone loss, is usually due to lack of cushion design in implant. Thus, understanding the mechanical behavior of PDL is an imperious mission.
Methods: This research used finite element method to retrograde calculate the PDL parameters and construct a reliable mathematic model. In experiment, we designed a better device for data acquisition. It provided noninvasive test to collect the loading-displacement data of PDL. Results: Result of this research, compared to nonlinear strain energy model, the linear tension-compression volumetric viscoelastic model could better simulate the mechanical response of normal PDL. The deviatoric viscoelastic model provided the stress distribution simulation of damaged PDL. On the other hand, the latest designed measuring equipment has collected the data about creep, stress relaxation, energy loss and damping tendency. Conclusions: The tension-compression volumetric viscoelastic model, accurately fitting the experimental mechanical data of PDL, provided a reliable simulation for real-time mechanism. The new measuring equipment, presenting well consistency and reproducibility, recorded an about 300gw turning point of creep, an about 100gw primary stress relaxation limit, 1.26x10^-1 mJ and 3.30x10^-2 mJ energy loss in hysteresis loop, and a 1.30x10^5 (N⋅sec)⁄m rough damping coefficient. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:09:31Z (GMT). No. of bitstreams: 1 ntu-100-D91422002-1.pdf: 6001991 bytes, checksum: 9608615b45057a2c77ac8e16f02e1835 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 目錄 iv 圖次 vi 表次 xi 英文縮寫 xii 前言 1 1. 實驗背景和重要性 1 2. 研究動機與目的 5 3. 論文架構 6 第一章、 牙周膜韌帶的粘彈行為:非線性有限元素分析 7 1.1 研究背景與動機 8 1.2 研究材料與方法 9 1.3 研究結果 12 1.4 討論 13 第二章、 PDL之張壓體積粘彈模型與受力行為探討 23 2.1 研究背景與動機 24 2.2 研究材料與方法 26 2.3 研究結果 31 2.4 討論 34 第三章、 人類牙周膜韌帶生物力學行為測量裝置及實驗 46 3.1 研究背景與動機 47 3.2 研究材料與方法 50 3.3 研究結果 53 3.4 討論 59 總結 106 未來研究方向 107 參考文獻 108 | |
| dc.language.iso | zh-TW | |
| dc.title | 人類牙周膜韌帶力學行為之探討 | zh_TW |
| dc.title | Investigation of biomechanical behaviors of natural human tooth periodontal ligament | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 江俊斌,陳羿貞,陳文斌,鄭榮和 | |
| dc.subject.keyword | 牙周膜韌帶,粘彈理論,有限元素法,潛變,應力鬆弛,阻尼, | zh_TW |
| dc.subject.keyword | periodontal ligament,viscoelasticity theory,finite element method,creep,stress relaxation,damping, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-25 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
