Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23734
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳昭瑩(Chao-Ying Chen)
dc.contributor.authorYi-Ting Lienen
dc.contributor.author連顗婷zh_TW
dc.date.accessioned2021-06-08T05:09:30Z-
dc.date.copyright2011-07-29
dc.date.issued2011
dc.date.submitted2011-07-25
dc.identifier.citation劉益宏。2004。臺灣百合根圈細菌之篩選及灰黴病防治應用研究。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。64頁。
楊耿豪。2007。臘狀芽孢桿菌C1L菌株誘導玉米系統性抗玉米葉枯病之應用研究。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。78頁。
黃儒音。2008。臘狀芽孢桿菌C1L菌株之轉位子誘變及抗真菌相關基因選殖。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。66頁。
楊琇萍。2008。臘狀芽孢桿菌C1L菌株揮發氣體促進植物生長之探討。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。60頁。
林玉儒。2008。臘狀芽孢桿菌C1L菌株在臺灣百合根部群聚能力之探討。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。85頁。
曾安慈。2010。臘狀芽孢桿菌於玉米根圈群聚與誘導抗病能力相關性探討。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。76頁。
Adesemoye, A. O., Torbert, H. A., and Kloepper, J. W. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol. 58: 921-929.
Al-Taweil, H. I., Osman, M. B. , Abdulhamid, A., Mohammad, N., and Yussof, W. M. W. 2010. Comparison of different delivery system of Trichoderma and Bacillus as biofertilizer. Adv. Environ. Biol. 4: 31-33.
Albareda, M., Rodrı´guez-Navarro, D. N., Camacho, M., and Temprano, F. J. 2008. Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol. Biochem. 40: 2771-2779.
Ayala, S. and Rao, E.V.S.P. 2002. Perspective of soil fertility management with a focus on fertilizer use for crop productivity. Curr. Sci. 82:797-807.
Babalola, O. O. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32: 1559-1570.
Badri, D. V. and Vivanco, J. M. 2009. Regulation and function of root exudates. Plant Cell Environ. 32: 666-681.
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57: 233-266.
Barea, J. M., Pozo, M. J., Azcon, R., and Aguilar, C. A. 2005. Microbial co-operation in the rhizosphere. J. Exp. Bot. 56: 1761-1778.
Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agroculture. Biotechnol. Adv. 16: 729-770.
Bazilah, A. B. I., Sariah, M., Abidin, M. A. Z., and Yasmeen, S. 2011. Effect of Carrier and Temperature on the Viability of Burkholderia sp. (UPMB3) and Pseudomonas sp. (UPMP3) during storage. Int. J. Agric. Biol. 13: 198-202.
Benrebah, F., Prevost, D., Yezza, A., and Tyagi, R. 2007. Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: A review. Bioresource Technol. 98: 3535-3546.
Bonsall, R. F., Weller, D. M., and Thomashow, L. S. 1997. Quantification of 2,4-diacetylphloroglucinol produced by Fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl. Environ. Microbiol. 63: 951-955.
Brar, S. K., Verma, M., Tyagi, R. D., and Valero, J. R. 2006. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem. 41: 323-342.
Chan, Y. K., Savard, M. E., Reid, L. M., Cyr, T., McCormick, W. A., and Seguin, C. 2009. Identification of lipopeptide antibiotics of a Bacillus subtilis isolate and their control of Fusarium graminearum diseases in maize and wheat. Biol. Control 54: 567-574.
Chiou, A. L. and Wu, W. S. 2003. Formulation of Bacillus amyloliquefaciens B190 for control of lily grey mould (Botrytis elliptica). Phytopathology 151: 13-18.
Chung, S., Lim, H. M., and Kim, S. D. 2007. Formulation of stable Bacillus subtilis AH18 against temperature fluctuation with highly heat-resistant endospores and micropore inorganic carriers. Appl. Microbiol. Biotechnol. 76: 217-224.
Collins, D. P. and Jacobsen, B. J. 2003. Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot. Biol. Control 26: 153-161.
Connick, W. J. Jr., Daigle, D. J., Pepperman, A. B., Hebbar, K. P., Lumsden, R. D., Anderson, T. W., and Sands, D. C. 1998. Preparation of stable, granular formulations containing Fusarium oxysporum pathogenic to narcotic plants. Biol. Control 13: 79–84.
Daza, A., SantamarõÂa, C., RodrõÂguez-Navarro, D. N., Camacho, M., Orive, R., and Temprano, F. 2000. Perlite as a carrier for bacterial inoculants. Soil Biol. Biochem. 32: 567-572.
de Freitas, J. R., Banerjee, M. R., and Germida, J.J. 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soils 24: 358-364.
El-Hassan, S. A. and Gowen, S. R. 2006. Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. Phytopathology 154: 148-155.
Emmert, E. A. B. and Handelsman, J. 1998. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171: 1-9.
Errington, J. 2003. Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1: 117-126.
Gerhardson, B. 2002. Biological substitutes for pesticides. Trends Biotechnol. 20: 338-343.
Handelsman, J., Stewart, S. J., and Stabb, E. V. 1998. Bacillus cereus strain W35. US Patent 6033659.
Huang, C. J., Yang, K. H., Liu, Y. H., Lin, Y. J., and Chen, C. Y. 2010. Suppression of southern corn leaf blight by a plant growth-promoting rhizobacterium Bacillus cereus C1L. Ann. Appl. Biol. 157: 45-53.
Jacobsen, B. J., Zidack, N. K., and Larson, B. J. 2004. The role of Bacillus-based biological control agents in integrated pest management systems: Plant diseases. Phytopathology 94:1272-1275.
Jetiyanon, K., Wittaya-Areekul, S., and Plianbangchang, P. 2008. Film coating of seeds with Bacillus cereus RS87 spores for early plant growth enhancement. Can. J. Microbiol. 54: 861-867.
Joo, G. J., Kim, Y. M., Lee, I. J., Song, K. S., and Rhee, I. K. 2004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol. Lett. 26: 487-491.
Khan, M. S., Zaidi, A., Wani, P. A., and Oves, M. 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ. Chem. Lett. 7: 1-19.
Khavazi, K. A., Rejali, F. A., Seguin, P. B., and Miransari, M. C. 2007. Effects of carrier, sterilisation method and incubation on survival of Bradyrhizobium japonicum in soybean (Glycine max L.) inoculants. Enz. Microb. Technol. 41: 780-784.
Kim, P. I., and Chung, K. C. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234: 177-183.
Kloepper, J. W., Lifshitz, R., and Zablotowicz, R. M. 1989. Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7: 39-44.
Kloepper, J. W., Ryu, C. M., and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266.
Kokalis-Burelle, N., Backman, P. A., Rodriguez-Kabana, R., and Ploper, L. D. 1992. Potential for biological control of early leafspot of peanut using Bacillus cereus and chitin as foliar amendments. Biol. Control 2: 321-328.
Kovach, J., Petzoldt, R., and Harman, G. E. 2000. Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to strawberries for Botrytis control. Biol. Control 18: 235-242.
Kozaczuk, M. M., and Skorupska, A. 2001. Production of B-group vitamins by plant growthpromoting Pseudomonas fluorescens strain 267 and the importance of vitamins in the colonization and nodulation of red clover. Biol. Fertil. Soil 33: 146-151.
Kumar, S., Pandey, P., and Maheshwari, D. K. 2009. Reduction in dose of chemical fertilizers and growth enhancement of sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. Eur. J. Soil Biol. 45: 334-340.
Lalande, R., Bissonnette, N., Coutlf, D., and Antoun, H. 1989. Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil 115: 7-11.
Liu, X., Zhao, H., and Chen, S. 2006. Colonization of maize and rice plants by strain Bacillus megaterium C4. Curr. Microbiol. 52: 186-190.
Liu, Y. H., Huang, C. J., and Chen, C. Y. 2008. Evidence of induced systemic resistance against Botrytis elliptica in lily. Phytopathology 98: 830-836.
Liu, L., Kloepper, J. W., and Tuzun, S. 1995. Induction of systemic resistance in cucumber against bacterial leaf spot by plant growth promoting rhizhobacteria. Phytopathology 85: 843-847.
Lugtenberg, B. J. J. and Dekkers, L. C. 1999. What makes Pseudomonas bacteria rhizosphere competent. Environ. Microbiol. 1: 9-13.
Marulanda, A., Azcón, R., Chaumont, F., Ruiz-Lozano, J. M., and Aroca, R. 2010. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232: 533-543.
McSpadden Gardener, B. B., and Fravel, D. R. 2002. Biological control of plant pathogens: Research, commercialization, and application in the USA. Online. Plant Health Progress DOI:10.1094/PHP-2002-0510-01-RV.
Moir, A. 2003. Bacterial spore germination and protein mobility. Trends Microbiol. 11: 452-454.
Moriyama, R., Hattori, A., Miyata, S., Kudoh, S., and Makino, S. 1996. A gene (sleB) encoding a spore cortex-lytic enzyme from Bacillus subtilis and response of the enzyme to L-alanine-mediated germination. J. Bacteriol. 178: 6059–6063.
Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. and Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548-572.
Nicholson, W. L. 2002. Roles of Bacillus endospores in the environment. Cell. Mol. Life Sci. 59: 410-416.
Ojiambo, P. S. and Scherm, H. 2006. Biological and application-oriented factors influencing plant disease suppression by biological control: a meta-analytical review. Phytopathology 96: 1168-1174.
Ongena, M., Duby, F., Jourdan, E., Beaudry, T., Jadin, V., Dommes, J., and Thonart, P. 2005. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl. Microbiol. Biotechnol. 67: 692-698.
Pszczolkowski, M. A., Brunner, J. F., Doerr, M. D., and Brown, J. J. 2004. Enhancement of Bacillus thuringiensis with monosodium glutamate against larvae of obliquebanded leafroller (Lep.:Tortricidae). J. Appl. Entomol. 128:474-477.
Qiao, X. W. 2002. Producing process for microbial bactericide by waxy bacillus Bacillus cereus 98-I strain. CN patent 1417325.
Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V., and Samiyappan, R. 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 20: 1-11.
Rowe, G. E. and Margaritis, A. 1987. Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. Crit. Rev. Biotechnol. 6: 87-127.
Ryu, C. M. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100: 4927-4932.
Schaeffer, A. B. and Fulton, D. 1933. A simplified method of staining endospores. Science 77: 194.
Schippers, B., Bakker, A.W., Bakker, P. A. H. M., and Van Peer, R. 1990. Beneficial and deleterious effects of HCN-producing Pseudomonads on rhizosphere interactions. Plant Soil 129: 75-83.
Schisler, D. A., Slininger, P. J., Behle, R. W., and Jackson, M. A. 2004. Formulation of Bacillus spp. for biological control of plant disease. Phytopathology 94: 1267-1271.
Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., and Dean, D. H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
Setlow, P. 1994. Mechanisms which contribute to the long-term survival of spores of Bacillus species. J. Appl. Bacteriol. Symp. Suppl. 76: 49S-60S.
Sheng, X. 2005. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol. Biochem. 37: 1918-1922.
Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J., and Handelsman, J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60: 2023-2030.
Simons, M., van der Bij, A. J., Brand, I., de Weger, L. A., Wijffelman C., and Lugtenberg, B. J. 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interact. 9: 600-607.
Singh, P. P., Shin, Y. C., Park, C. S., and Chung, Y. R. 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92-99.
Stabb, E. V., Jacobson, L. M., and Handelsman, J. 1994. Zwittermicin A-producing strains of Bacillus cereus from diverse soil. Appl. Environ. Microbiol. 60: 4404-4412.
Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., and Netrusov, A. I. 2006. Microbial producers of plant growth stimulators and their practical use: A review. Appl. Biochem. Microbiol. 42: 117-126.
van Loon, L. C. , Bakker, P. A. H. M. , and Pieterse, C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483.
Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586.
Wei, G., Kloepper, J. W., and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508-1512.
Wei, G., Kloepper, J. W., and Tuzun, S. 1996. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86: 221-224.
Wu, S. C., Cheung, K. C., Luo, Y. M., and Wong, M. H. 2006. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ. Pollut. 140: 124-135.
Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52: 487–511.
Yardin, M. R., Kennedyc, I. R., and Thiesa, J. E. 2000. Development of high quality carrier materials for field delivery of key microorganisms used as bio-fertilizers and bio-pesticides. Radiat. Phys. Chem. 57: 565-568.
Zhang, H., Kim, M. S., Sun, Y., Dowd, S. E., Shi, H., and Paré, P. W. 2008. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol. Plant-Microbe Interact. 21: 737-744.
Zhang, H., Murzello, C., Sun, Y., Kim, M. S., Xie, X., Jeter, R. M., Zak, J. C., Dowd, S. E., and Paré, P. W. 2010. Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol. Plant-Microbe Interact. 23: 1097-1104.
Zhao, D. and Oosterhuis, D.M. 2000. Pix Plus and mepiquat chloride effects on physiology, growth, and yield of field-grown cotton. J. Plant Growth Regul. 19: 415-422.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23734-
dc.description.abstract已知臘狀芽孢桿菌C1L菌株可以促進玉米植株生長,並有助於玉米抗南方葉枯病及臺灣百合、葵百合、阿卡波克百合抗灰黴病。為了發展可以穩定保存之製劑,本研究探討C1L內孢子的生產條件、製劑型式及應用功效。首先選擇C1L菌株產孢最適條件並擴大培養體積至3公升,以添加0.01%消泡劑之NB液態培養基進行發酵,培養2天的產孢率可達81%。將自發酵液所得的菌體冷凍乾燥並存放於室溫,計量之內孢子數由初始濃度1011 CFU/g至第十三個月仍維持在1010 CFU/g。由溫室試驗確認C1L內孢子促進玉米植株抗病之作用,以內孢子懸浮液處理1天後,對葉枯病即有明顯的防治效果,所誘導之抗病性可持續6天;並於菸草與阿拉伯芥上確認C1L內孢子與細菌懸浮液對植物之生長均有促進作用。進一步,選取多孔性載體試製C1L內孢子製劑,以吸附內孢子之真珠石有較佳的抑病作用;有機質肥料則可輔助吸附內孢子之真珠石的抑病作用。兩種測試之有機質肥料(I、II)無法增加植物抗病性,但可加強吸附內孢子之真珠石對植物抗病性的促進作用。玉米與葵百合之田間試驗結果指出,有機質肥料(I、II)可促進植株生長,但無法增加植株之抗病性;內孢子懸浮液不但能促進植株生長,並有很好的病害防治效果;當吸附內孢子之真珠石混拌有機質肥料I施用時,對植株生長、抗病的促進效果與澆灌內孢子懸浮液相當。本研究所建立之載體與輸送方式將可作為C1L菌株製劑化與應用之參考依據。zh_TW
dc.description.abstractBacillus cereus C1L could promote maize growth, induce disease resistance to southern corn leaf blight and Botrytis leaf blight in Lilium formosanum, Lilium ‘Star gazer’ and Lilium ‘Acapulco’. Previous studies demonstrated the great efficacy of strain C1L in promoting plant growth and inducing systemic resistance of maize against southern leaf blight in field conditions. This research aimed to produce endospores of high density, develop endospore-based bioagent and test on activities of plant growth promotion and induced systemic resistance. The endospores of strain C1L produced in 3-L culture with 0.01% anti-foaming agent reached about 81% sporulation rate after 2-day incubation. The freeze-dried powder of 1011 endospores per gram, maintained 1010 endospores per gram over 13-month storage period. In greenhouse assays, application of endospore suspensions could reduce disease severity of southern corn leaf blight when fungal pathogen was challenge-inoculated 1-6 days after bacterial treatment. Seed bacterization of tobacco and Arabidopsis with 1´108 CFU/ml of C1L endospores as well as vegetative cells significantly conducted better plant height, dry weight, and root length as compared to the untreated control. Porous media were tested as carriers of C1L endospores. Among them, perlite was best for delivery of C1L endospores as shown by the biocontrol assay in maize. Two kinds of organic fertilizers (I and II) were unable to enhance disease resistance of maize. However, combined application with organic fertilizer I could increase the effect of endospore-carried perlite on the induction of systemic resistance against southern corn leaf blight. The field assays of maize and Lilium ‘Star Gazer’ indicated that organic fertilizers could promote plant growth, but unable to reduce disease severity. However, application of endospore-carried perlite not only conferred better plant protection, but also promoted plant growth as applied with organic fertilizer I. The delivery system of C1L endospores developed in this study would become a valuable basis for the formulation and application of B. cereus C1L.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:09:30Z (GMT). No. of bitstreams: 1
ntu-100-R98633023-1.pdf: 5292523 bytes, checksum: 2b2366f21d01d6062b74ada56fcea0df (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents壹、中文摘要 1
貳、英文摘要 2
參、前言 4
肆、前人研究 6
一、植物促生根圈細菌 6
二、根圈細菌促進植物生長與生物防治之機制 6
三、芽孢桿菌屬之內孢子與其應用 8
四、細菌性農用生物製劑之載體研究 9
五、B. cereus農用生物製劑之應用發展 10
伍、材料與方法 11
一、供試菌株之培養與保存 11
1. 供試菌株之培養 11
2. 供試菌株之保存 11
二、C1L菌株最適產孢條件之探討 11
1. 不同培養基對於C1L菌株產孢之影響 11
2. 起始pH值對C1L菌株產孢之影響 12
3. 消泡劑對於C1L菌株產孢之影響 12
三、C1L菌株形成內孢子與內孢子特性探討 13
1. 內孢子形成之觀察 13
2. 臘狀芽孢桿菌C1L內孢子對80℃之耐受性測試 13
3. 比較C1L菌株與內孢子於玉米根內纏據之試驗 13
四、內孢子生長活性測試 14
五、C1L菌株促進植物生長試驗(模式植物) 14
1. 溫室試驗之植株栽培 14
2. C1L菌液與內孢子懸浮液對菸草生長之影響 15
3. C1L菌液與內孢子懸浮液對阿拉伯芥生長之影響 15
六、溫室病害防治試驗(模式植物) 15
1. 溫室試驗之植株栽培 15
2. 罹病嚴重度與統計方式 16
3. C1L內孢子對玉米之ISR作用 16
七、內孢子製劑對玉米之ISR作用 17
1. 不同載體製備內孢子製劑對玉米之ISR作用 17
2. 添加有機質肥料對內孢子製劑之作用 17
八、C1L內孢子製劑之田間玉米試驗 17
1. 促進植株生長試驗 17
2. 病害防治試驗 18
九、C1L內孢子製劑之田間葵百合試驗 18
1. 促進植株生長試驗 18
2. 病害防治試驗 18
陸、結果 20
一、臘狀芽孢桿菌C1L菌株最適產孢條件之探討 20
1. 不同液態培養基對C1L菌株產孢之影響 20
2. 不同起始pH值對C1L菌株產孢之影響 20
3. 不同濃度消泡劑對C1L菌株產孢之影響 20
二、C1L菌株內孢子特性測試 21
1. 生長曲線與產孢觀察 21
2. C1L內孢子對於高溫耐受性試驗 21
3. 施用C1L內孢子之玉米根內細菌數計量 22
三、內孢子生長活性測試 22
四、C1L菌株促進植物生長試驗(模式植物) 22
五、溫室防治試驗(模式植物) 23
1. 不同濃度之內孢子懸浮液對於玉米之ISR作用 23
2. 澆灌C1L內孢子懸浮液對於玉米之ISR持續性試驗 23
3. 不同載體製備內孢子製劑對ISR作用之影響 24
4. 有機質肥料對內孢子製劑ISR作用之影響 24
六、玉米田間試驗 24
1. C1L內孢子製劑對玉米生長之影響 25
2. 施用C1L內孢子製劑對南方玉米葉枯病之防治試驗 26
七、葵百合田間試驗 26
1. C1L內孢子製劑對葵百合生長之影響 26
2. 施用C1L內孢子製劑對百合灰黴病之防治試驗 27
柒、討論 28
捌、參考文獻 32
玖、圖表集 41
表一、臘狀芽孢桿菌C1L菌株於玉米根內纏據試驗 42
表二、臘狀芽孢桿菌C1L菌株處理圓葉菸草種子之促進生長效果 43
表三、臘狀芽孢桿菌C1L內孢子懸浮液處理阿拉伯芥種子之促進生長效果 44
表四、臘狀芽孢桿菌C1L內孢子懸浮液誘導玉米產生系統性抗病之持續性測試 45
表五、以多孔性載體吸附臘狀芽孢桿菌C1L內孢子對南方玉米葉枯病之防治效果 46
表六、施用臘狀芽孢桿菌內孢子製劑對玉米生長之影響(田間試驗) 47
圖一、不同液態培養基對臘狀芽孢桿菌C1L菌株產孢之影響 48
圖二、不同起始pH值對臘狀芽孢桿菌C1L菌株產孢之影響 49
圖三、不同濃度消泡劑對臘狀芽孢桿菌C1L菌株產孢之影響(50毫升培養基) 50
圖四、不同濃度消泡劑對臘狀芽孢桿菌C1L菌株產孢之影響(100毫升培養基) 51
圖五、不同濃度消泡劑對臘狀芽孢桿菌C1L菌株產孢之影響(3公升培養基) 52
圖六、臘狀芽孢桿菌C1L菌株之生長曲線與產孢數 53
圖七、臘狀芽孢桿菌C1L內孢子之孔雀綠染色圖 54
圖八、臘狀芽孢桿菌C1L內孢子於80℃下之存活率 55
圖九、室溫下儲存之臘狀芽孢桿菌內孢子生長活性測試 56
圖十、不同濃度內孢子懸浮液對玉米之ISR作用 57
圖十一、臘狀芽孢桿菌C1L內孢子懸浮液與菌液誘導玉米之系統性抗病效果比較 58
圖十二、臘狀芽孢桿菌C1L內孢子懸浮液誘導玉米系統性抗病之持續性測試 59
圖十三、於溫室測試臘狀芽孢桿菌C1L內孢子製劑對南方玉米葉枯病之防治效果(有機質肥料I) 60
圖十四、於溫室測試臘狀芽孢桿菌C1L內孢子製劑對南方玉米葉枯病之防治效果(有機質肥料II) 61
圖十五、於田間測試臘狀芽孢桿菌C1L內孢子製劑對玉米果實鮮重之影響 63
圖十六、施用臘狀芽孢桿菌C1L內孢子製劑之田間玉米葉片外觀 64
圖十七、於田間測試臘狀芽孢桿菌C1L內孢子製劑對南方玉米葉枯病之防治效果 66
圖十八、田間測試臘狀芽孢桿菌C1L內孢子製劑對葵百合生長之影響 67
圖十九、田間測試臘狀芽孢桿菌C1L內孢子製劑對葵百合花苞數之影響 68
圖二十、田間測試臘狀芽孢桿菌C1L內孢子製劑對百合灰黴病之防治效果 69
dc.language.isozh-TW
dc.title臘狀芽孢桿菌C1L內孢子製劑之發展與應用zh_TW
dc.titleDevelopment and application of Bacillus cereus C1L endospore-based bioagentsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文希(Wen-Shi Wu),謝廷芳(Ting-Fang Hsieh),黃祥恩(Hsiang-En Huang)
dc.subject.keyword植物促生根圈細菌,生物防治,內孢子製劑,載體,輸送系統,zh_TW
dc.subject.keywordBacillus cereus,biocontrol,endospore formulation,carrier,delivery system,en
dc.relation.page69
dc.rights.note未授權
dc.date.accepted2011-07-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
5.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved