請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23725完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃德富 | |
| dc.contributor.author | Chien-Hsin Chang | en |
| dc.contributor.author | 張倩馨 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:07:45Z | - |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-05-30 | |
| dc.identifier.citation | 1. Koh, D. C., A. Armugam, and K. Jeyaseelan. 2006. Snake venom components and their applications in biomedicine. Cell Mol Life Sci 63:3030-3041.
2. Marsh, N., and V. Williams. 2005. Practical applications of snake venom toxins in haemostasis. Toxicon 45:1171-1181. 3. Huang, T. F. 1998. What have snakes taught us about integrins? Cell Mol Life Sci 54:527-540. 4. Lu, Q., J. M. Clemetson, and K. J. Clemetson. 2005. Snake venoms and hemostasis. J Thromb Haemost 3:1791-1799. 5. Calvete, J. J., C. Marcinkiewicz, D. Monleon, V. Esteve, B. Celda, P. Juarez, and L. Sanz. 2005. Snake venom disintegrins: evolution of structure and function. Toxicon 45:1063-1074. 6. Calvete, J. J., M. P. Moreno-Murciano, R. D. Theakston, D. G. Kisiel, and C. Marcinkiewicz. 2003. Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem J 372:725-734. 7. Huang, T. F., J. C. Holt, H. Lukasiewicz, and S. Niewiarowski. 1987. Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J Biol Chem 262:16157-16163. 8. Hati, R., P. Mitra, S. Sarker, and K. K. Bhattacharyya. 1999. Snake venom hemorrhagins. Crit Rev Toxicol 29:1-19. 9. Fox, J. W., and S. M. Serrano. 2008. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 275:3016-3030. 10. Clemetson, K. J., T. Morita, and R. Manjunatha Kini. 2009. Scientific and standardization committee communications: classification and nomenclature of snake venom C-type lectins and related proteins. J Thromb Haemost 7:360. 11. Wijeyewickrema, L. C., M. C. Berndt, and R. K. Andrews. 2005. Snake venom probes of platelet adhesion receptors and their ligands. Toxicon 45:1051-1061. 12. Wang, W. J., and T. F. Huang. 2001. A novel tetrameric venom protein, agglucetin from Agkistrodon acutus, acts as a glycoprotein Ib agonist. Thromb Haemost 86:1077-1086. 13. Chung, C. H., H. C. Peng, and T. F. Huang. 2001. Aggretin, a C-type lectin protein, induces platelet aggregation via integrin alpha(2)beta(1) and GPIb in a phosphatidylinositol 3-kinase independent pathway. Biochem Biophys Res Commun 285:689-695. 14. Chang, C. H., C. H. Chung, H. L. Kuo, C. C. Hsu, and T. F. Huang. 2008. The highly specific platelet glycoprotein (GP) VI agonist trowaglerix impaired collagen-induced platelet aggregation ex vivo through matrix metalloproteinase-dependent GPVI shedding. J Thromb Haemost 6:669-676. 15. Suzuki-Inoue, K., G. L. Fuller, A. Garcia, J. A. Eble, S. Pohlmann, O. Inoue, T. K. Gartner, S. C. Hughan, A. C. Pearce, G. D. Laing, R. D. Theakston, E. Schweighoffer, N. Zitzmann, T. Morita, V. L. Tybulewicz, Y. Ozaki, and S. P. Watson. 2006. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107:542-549. 16. Kini, R. M. 2005. Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon 45:1147-1161. 17. Pirkle, H. 1998. Thrombin-like enzymes from snake venoms: an updated inventory. Scientific and Standardization Committee's Registry of Exogenous Hemostatic Factors. Thromb Haemost 79:675-683. 18. Ouyang, C., and T. F. Huang. 1983. Inhibition of platelet aggregation by 5'-nucleotidase purified from Trimeresurus gramineus snake venom. Toxicon 21:491-501. 19. Du, X. Y., and K. J. Clemetson. 2002. Snake venom L-amino acid oxidases. Toxicon 40:659-665. 20. Ouyang, C., and T. F. Huang. 1983. Potent platelet aggregation inhibitor from Trimeresurus gramineus snake venom. Biochim Biophys Acta 757:332-341. 21. 1998. Two i.v. antiplatelet agents marketed for coronary disease. Am J Health Syst Pharm 55:1440, 1443. 22. Jackson, S. P., and S. M. Schoenwaelder. 2003. Antiplatelet therapy: in search of the 'magic bullet'. Nat Rev Drug Discov 2:775-789. 23. Hagedorn, I., T. Vogtle, and B. Nieswandt. 2010. Arterial thrombus formation. Novel mechanisms and targets Novel mechanisms and targets. Hamostaseologie 30:127-135. 24. Canobbio, I., C. Balduini, and M. Torti. 2004. Signalling through the platelet glycoprotein Ib-V-IX complex. Cell Signal 16:1329-1344. 25. Du, X. 2007. Signaling and regulation of the platelet glycoprotein Ib-IX-V complex. Curr Opin Hematol 14:262-269. 26. Moroi, M., and S. M. Jung. 2004. Platelet glycoprotein VI: its structure and function. Thromb Res 114:221-233. 27. Chaipan, C., E. J. Soilleux, P. Simpson, H. Hofmann, T. Gramberg, A. Marzi, M. Geier, E. A. Stewart, J. Eisemann, A. Steinkasserer, K. Suzuki-Inoue, G. L. Fuller, A. C. Pearce, S. P. Watson, J. A. Hoxie, F. Baribaud, and S. Pohlmann. 2006. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J Virol 80:8951-8960. 28. Suzuki-Inoue, K., Y. Kato, O. Inoue, M. K. Kaneko, K. Mishima, Y. Yatomi, Y. Yamazaki, H. Narimatsu, and Y. Ozaki. 2007. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 282:25993-26001. 29. Kerrigan, A. M., K. M. Dennehy, D. Mourao-Sa, I. Faro-Trindade, J. A. Willment, P. R. Taylor, J. A. Eble, C. Reis e Sousa, and G. D. Brown. 2009. CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. J Immunol 182:4150-4157. 30. Huang, T. F., C. Z. Liu, and S. H. Yang. 1995. Aggretin, a novel platelet-aggregation inducer from snake (Calloselasma rhodostoma) venom, activates phospholipase C by acting as a glycoprotein Ia/IIa agonist. Biochem J 309 ( Pt 3):1021-1027. 31. Shin, Y., and T. Morita. 1998. Rhodocytin, a functional novel platelet agonist belonging to the heterodimeric C-type lectin family, induces platelet aggregation independently of glycoprotein Ib. Biochem Biophys Res Commun 245:741-745. 32. Chung, C. H., L. C. Au, and T. F. Huang. 1999. Molecular cloning and sequence analysis of aggretin, a collagen-like platelet aggregation inducer. Biochem Biophys Res Commun 263:723-727. 33. Chung, C. H., W. B. Wu, and T. F. Huang. 2004. Aggretin, a snake venom-derived endothelial integrin alpha 2 beta 1 agonist, induces angiogenesis via expression of vascular endothelial growth factor. Blood 103:2105-2113. 34. Clemetson, K. J., Q. Lu, and J. M. Clemetson. 2005. Snake C-type lectin-like proteins and platelet receptors. Pathophysiol Haemost Thromb 34:150-155. 35. Yeh, C. H., H. C. Peng, J. B. Yih, and T. F. Huang. 1998. A new short chain RGD-containing disintegrin, accutin, inhibits the common pathway of human platelet aggregation. Biochim Biophys Acta 1425:493-504. 36. Yeh, C. H., H. C. Peng, and T. F. Huang. 1998. Accutin, a new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin alphavbeta3 antagonist and inducing apoptosis. Blood 92:3268-3276. 37. Wu, W. B., H. C. Peng, and T. F. Huang. 2003. Disintegrin causes proteolysis of beta-catenin and apoptosis of endothelial cells. Involvement of cell-cell and cell-ECM interactions in regulating cell viability. Exp Cell Res 286:115-127. 38. Yeh, C. H., H. C. Peng, R. S. Yang, and T. F. Huang. 2001. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Mol Pharmacol 59:1333-1342. 39. Tseng, Y. L., H. C. Peng, and T. F. Huang. 2004. Rhodostomin, a disintegrin, inhibits adhesion of neutrophils to fibrinogen and attenuates superoxide production. J Biomed Sci 11:683-691. 40. Hsu, C. C., W. J. Chuang, C. H. Chang, Y. L. Tseng, H. C. Peng, and T. F. Huang. 2011. Improvements in endotoxemic syndromes using a disintegrin, rhodostomin, through integrin alphavbeta3-dependent pathway. J Thromb Haemost 9:593-602. 41. Huang, T. F., J. R. Sheu, and C. M. Teng. 1991. Mechanism of action of a potent antiplatelet peptide, triflavin from Trimeresurus flavoviridis snake venom. Thromb Haemost 66:489-493. 42. Chung, C. H., K. T. Lin, C. H. Chang, H. C. Peng, and T. F. Huang. 2009. The integrin alpha2beta1 agonist, aggretin, promotes proliferation and migration of VSMC through NF-kB translocation and PDGF production. Br J Pharmacol 156:846-856. 43. Chang, C. H., C. H. Chung, C. C. Hsu, T. Y. Huang, and T. F. Huang. 2010. A novel mechanism of cytokine release in phagocytes induced by aggretin, a snake venom C-type lectin protein, through CLEC-2 ligation. J Thromb Haemost 8:2563-2570. 44. Yeh, C. H., M. C. Chang, H. C. Peng, and T. F. Huang. 2001. Pharmacological characterization and antithrombotic effect of agkistin, a platelet glycoprotein Ib antagonist. Br J Pharmacol 132:843-850. 45. Yeh, C. H., W. C. Wang, T. T. Hsieh, and T. F. Huang. 2000. Agkistin, a snake venom-derived glycoprotein Ib antagonist, disrupts von Willebrand factor-endothelial cell interaction and inhibits angiogenesis. J Biol Chem 275:18615-18618. 46. Kanaji, S., T. Kanaji, K. Furihata, K. Kato, J. L. Ware, and T. J. Kunicki. 2003. Convulxin binds to native, human glycoprotein Ib alpha. J Biol Chem 278:39452-39460. 47. Polgar, J., J. M. Clemetson, B. E. Kehrel, M. Wiedemann, E. M. Magnenat, T. N. Wells, and K. J. Clemetson. 1997. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J Biol Chem 272:13576-13583. 48. Liu, C. Z., T. F. Wu, T. F. Huang, D. H. Wu, and G. L. Lin. 2002. Trimucytin, a collagen-like snake venom protein, activates platelets independent of I-domain within alpha2 subunit of alpha2beta1 integrin. Thromb Res 105:153-160. 49. Wang, W. J., and T. F. Huang. 2002. Purification and characterization of a novel metalloproteinase, acurhagin, from Agkistrodon acutus venom. Thromb Haemost 87:641-650. 50. Chang, M. C., H. K. Lin, H. C. Peng, and T. F. Huang. 1998. Antithrombotic effect of crotalin, a platelet membrane glycoprotein Ib antagonist from venom of Crotalus atrox. Blood 91:1582-1589. 51. Wu, W. B., H. C. Peng, and T. F. Huang. 2001. Crotalin, a vWF and GP Ib cleaving metalloproteinase from venom of Crotalus atrox. Thromb Haemost 86:1501-1511. 52. Liu, C. Z., and T. F. Huang. 1997. Crovidisin, a collagen-binding protein isolated from snake venom of Crotalus viridis, prevents platelet-collagen interaction. Arch Biochem Biophys 337:291-299. 53. Wu, W. B., S. C. Chang, M. Y. Liau, and T. F. Huang. 2001. Purification, molecular cloning and mechanism of action of graminelysin I, a snake-venom-derived metalloproteinase that induces apoptosis of human endothelial cells. Biochem J 357:719-728. 54. Hsu, C. C., W. B. Wu, and T. F. Huang. 2008. A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions. J Thromb Haemost 6:1578-1585. 55. Huang, T. F., M. C. Chang, and C. M. Teng. 1993. Antiplatelet protease, kistomin, selectively cleaves human platelet glycoprotein Ib. Biochim Biophys Acta 1158:293-299. 56. Tseng, Y. L., C. J. Lee, and T. F. Huang. 2004. Effects of a snake venom metalloproteinase, triflamp, on platelet aggregation, platelet-neutrophil and neutrophil-neutrophil interactions: involvement of platelet GPIbalpha and neutrophil PSGL-1. Thromb Haemost 91:315-324. 57. Tseng, Y. L., C. J. Lee, C. C. Hsu, and T. F. Huang. 2004. Triflamp, a snake venom metalloproteinase, reduces neutrophil-platelet adhesion through proteolysis of PSGL-1 but not glycoprotein Ib alpha. Thromb Haemost 91:1177-1185. 58. Watson, S. P., J. M. Herbert, and A. Y. Pollitt. 2010. GPVI and CLEC-2 in hemostasis and vascular integrity. J Thromb Haemost 8:1456-1467. 59. Furie, B., and B. C. Furie. 2008. Mechanisms of thrombus formation. N Engl J Med 359:938-949. 60. Varga-Szabo, D., I. Pleines, and B. Nieswandt. 2008. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 28:403-412. 61. Asselin, J., J. M. Gibbins, M. Achison, Y. H. Lee, L. F. Morton, R. W. Farndale, M. J. Barnes, and S. P. Watson. 1997. A collagen-like peptide stimulates tyrosine phosphorylation of syk and phospholipase C gamma2 in platelets independent of the integrin alpha2beta1. Blood 89:1235-1242. 62. McCawley, L. J., and L. M. Matrisian. 2001. Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol 13:534-540. 63. Jones, C. B., D. C. Sane, and D. M. Herrington. 2003. Matrix metalloproteinases: a review of their structure and role in acute coronary syndrome. Cardiovasc Res 59:812-823. 64. Gardiner, E. E., J. F. Arthur, M. L. Kahn, M. C. Berndt, and R. K. Andrews. 2004. Regulation of platelet membrane levels of glycoprotein VI by a platelet-derived metalloproteinase. Blood 104:3611-3617. 65. Massberg, S., I. Konrad, A. Bultmann, C. Schulz, G. Munch, M. Peluso, M. Lorenz, S. Schneider, F. Besta, I. Muller, B. Hu, H. Langer, E. Kremmer, M. Rudelius, U. Heinzmann, M. Ungerer, and M. Gawaz. 2004. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J 18:397-399. 66. Du, X. Y., J. M. Clemetson, A. Navdaev, E. M. Magnenat, T. N. Wells, and K. J. Clemetson. 2002. Ophioluxin, a convulxin-like C-type lectin from Ophiophagus hannah (King cobra) is a powerful platelet activator via glycoprotein VI. J Biol Chem 277:35124-35132. 67. Lee, W. H., X. Y. Du, Q. M. Lu, K. J. Clemetson, and Y. Zhang. 2003. Stejnulxin, a novel snake C-type lectin-like protein from Trimeresurus stejnegeri venom is a potent platelet agonist acting specifically via GPVI. Thromb Haemost 90:662-671. 68. Batuwangala, T., M. Leduc, J. M. Gibbins, C. Bon, and E. Y. Jones. 2004. Structure of the snake-venom toxin convulxin. Acta Crystallogr D Biol Crystallogr 60:46-53. 69. Hooley, E., E. Papagrigoriou, A. Navdaev, A. V. Pandey, J. M. Clemetson, K. J. Clemetson, and J. Emsley. 2008. The crystal structure of the platelet activator aggretin reveals a novel (alphabeta)2 dimeric structure. Biochemistry 47:7831-7837. 70. Watson, A. A., J. A. Eble, and C. A. O'Callaghan. 2008. Crystal structure of rhodocytin, a ligand for the platelet-activating receptor CLEC-2. Protein Sci 17:1611-1616. 71. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. 72. Chen, Y. L., K. W. Tsai, T. Chang, T. M. Hong, and I. H. Tsai. 2000. Glycoprotein Ib-binding protein from the venom of Deinagkistrodon acutus--cDNA sequence, functional characterization, and three-dimensional modeling. Thromb Haemost 83:119-126. 73. Mustard, J. F., D. W. Perry, N. G. Ardlie, and M. A. Packham. 1972. Preparation of suspensions of washed platelets from humans. Br J Haematol 22:193-204. 74. Stephens, G., Y. Yan, M. Jandrot-Perrus, J. L. Villeval, K. J. Clemetson, and D. R. Phillips. 2005. Platelet activation induces metalloproteinase-dependent GP VI cleavage to down-regulate platelet reactivity to collagen. Blood 105:186-191. 75. Liu, C. Z., Y. W. Wang, M. C. Shen, and T. F. Huang. 1994. Analysis of human platelet glycoprotein IIb-IIIa by fluorescein isothiocyanate-conjugated disintegrins with flow cytometry. Thromb Haemost 72:919-925. 76. Rucavado, A., M. Soto, T. Escalante, G. D. Loria, R. Arni, and J. M. Gutierrez. 2005. Thrombocytopenia and platelet hypoaggregation induced by Bothrops asper snake venom. Toxins involved and their contribution to metalloproteinase-induced pulmonary hemorrhage. Thromb Haemost 94:123-131. 77. Dejana, E., S. Villa, and G. de Gaetano. 1982. Bleeding time in rats: a comparison of different experimental conditions. Thromb Haemost 48:108-111. 78. Massberg, S., M. Gawaz, S. Gruner, V. Schulte, I. Konrad, D. Zohlnhofer, U. Heinzmann, and B. Nieswandt. 2003. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 197:41-49. 79. Nieswandt, B., V. Schulte, W. Bergmeier, R. Mokhtari-Nejad, K. Rackebrandt, J. P. Cazenave, P. Ohlmann, C. Gachet, and H. Zirngibl. 2001. Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. J Exp Med 193:459-469. 80. Lu, Q., A. Navdaev, J. M. Clemetson, and K. J. Clemetson. 2004. GPIb is involved in platelet aggregation induced by mucetin, a snake C-type lectin protein from Chinese habu (Trimeresurus mucrosquamatus) venom. Thromb Haemost 91:1168-1176. 81. Peng, M., W. Lu, and E. P. Kirby. 1992. Characterization of three alboaggregins purified from Trimeresurus albolabris venom. Thromb Haemost 67:702-707. 82. Knight, C. G., L. F. Morton, D. J. Onley, A. R. Peachey, T. Ichinohe, M. Okuma, R. W. Farndale, and M. J. Barnes. 1999. Collagen-platelet interaction: Gly-Pro-Hyp is uniquely specific for platelet Gp VI and mediates platelet activation by collagen. Cardiovasc Res 41:450-457. 83. Clemetson, K. J., and J. M. Clemetson. 2007. Collagen receptors as potential targets for novel anti-platelet agents. Curr Pharm Des 13:2673-2683. 84. Penz, S., A. J. Reininger, R. Brandl, P. Goyal, T. Rabie, I. Bernlochner, E. Rother, C. Goetz, B. Engelmann, P. A. Smethurst, W. H. Ouwehand, R. Farndale, B. Nieswandt, and W. Siess. 2005. Human atheromatous plaques stimulate thrombus formation by activating platelet glycoprotein VI. FASEB J 19:898-909. 85. Leduc, M., and C. Bon. 1998. Cloning of subunits of convulxin, a collagen-like platelet-aggregating protein from Crotalus durissus terrificus venom. Biochem J 333 ( Pt 2):389-393. 86. Wang, W. J., Q. D. Ling, M. Y. Liau, and T. F. Huang. 2003. A tetrameric glycoprotein Ib-binding protein, agglucetin, from Formosan pit viper: structure and interaction with human platelets. Thromb Haemost 90:465-475. 87. Kowalska, M. A., L. Tan, J. C. Holt, M. Peng, J. Karczewski, J. J. Calvete, and S. Niewiarowski. 1998. Alboaggregins A and B. Structure and interaction with human platelets. Thromb Haemost 79:609-613. 88. Nathan, C. 2002. Points of control in inflammation. Nature 420:846-852. 89. Rankin, J. A. 2004. Biological mediators of acute inflammation. AACN Clin Issues 15:3-17. 90. Chen, L. Y., W. W. Pan, M. Chen, J. D. Li, W. Liu, G. Chen, S. Huang, T. J. Papadimos, and Z. K. Pan. 2009. Synergistic induction of inflammation by bacterial products lipopolysaccharide and fMLP: an important microbial pathogenic mechanism. J Immunol 182:2518-2524. 91. Medvedev, A. E., K. M. Kopydlowski, and S. N. Vogel. 2000. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol 164:5564-5574. 92. Ajizian, S. J., B. K. English, and E. A. Meals. 1999. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J Infect Dis 179:939-944. 93. Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cell Signal 13:85-94. 94. Li, Q., and I. M. Verma. 2002. NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725-734. 95. Morita, T. 2005. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon 45:1099-1114. 96. Tseng, Y. L., W. B. Wu, C. C. Hsu, H. C. Peng, and T. F. Huang. 2004. Inhibitory effects of human alpha2-macroglobulin and mouse serum on the PSGL-1 and glycoprotein Ib proteolysis by a snake venom metalloproteinase, triflamp. Toxicon 43:769-777. 97. Chao, L. K., K. F. Hua, H. Y. Hsu, S. S. Cheng, I. F. Lin, C. J. Chen, S. T. Chen, and S. T. Chang. 2008. Cinnamaldehyde inhibits pro-inflammatory cytokines secretion from monocytes/macrophages through suppression of intracellular signaling. Food Chem Toxicol 46:220-231. 98. Vermeulen, L., G. De Wilde, P. Van Damme, W. Vanden Berghe, and G. Haegeman. 2003. Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J 22:1313-1324. 99. Ialenti, A., A. Ianaro, S. Moncada, and M. Di Rosa. 1992. Modulation of acute inflammation by endogenous nitric oxide. Eur J Pharmacol 211:177-182. 100. Cohen, J. 2002. The immunopathogenesis of sepsis. Nature 420:885-891. 101. van der Flier, A., and A. Sonnenberg. 2001. Function and interactions of integrins. Cell Tissue Res 305:285-298. 102. Colonna, M., J. Samaridis, and L. Angman. 2000. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 30:697-704. 103. Suzuki-Inoue, K., Y. Ozaki, M. Kainoh, Y. Shin, Y. Wu, Y. Yatomi, T. Ohmori, T. Tanaka, K. Satoh, and T. Morita. 2001. Rhodocytin induces platelet aggregation by interacting with glycoprotein Ia/IIa (GPIa/IIa, Integrin alpha 2beta 1). Involvement of GPIa/IIa-associated src and protein tyrosine phosphorylation. J Biol Chem 276:1643-1652. 104. Leon, C. G., R. Tory, J. Jia, O. Sivak, and K. M. Wasan. 2008. Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm Res 25:1751-1761. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23725 | - |
| dc.description.abstract | 蛇毒中含有許多具有活性的蛋白質和胜肽分子,經過純化後的成分有特定的作用標的並具有獨特的作用,藉由研究這些分子結構和活性之間的關係,它們不僅能夠當作診斷的工具更可以發展成新的治療藥物。其中C型凝集素蛋白(snaclecs)家族會作用在血小板上不同的受體,包括醣蛋白Ib、醣蛋白VI和黏著蛋白α2β1,進而影響血小板的功能。本論文中我們從Tropidolaemus wagleri原毒中純化出一個新的蛇毒蛋白trowaglerix,利用此蛇毒蛋白和另一個已知的蛇毒蛋白Aggretin當作模板來研究新藥物發展的契機。這兩種蛇毒蛋白皆屬於C型凝集素蛋白家族,並具有造成血小板凝集的活性。
當血管受傷時,內皮細胞層會產生破裂,使得平常隱藏在下的基質蛋白膠原蛋白(collagen)暴露出來,提供了血小板吸附的受質並造成血小板活化,進而吸引更多的血小板到受傷的血管壁,最終造成血栓的形成。血小板分別透過醣蛋白Ib和醣蛋白VI、黏著蛋白α2β1與vWF和膠原蛋白結合,來調控血栓形成初期的血小板活化。本論文中我們純化出一個新的蛇毒蛋白trowaglerix,由兩個不同的次單元組成,屬於C型凝集素家族成員。Trowaglerix在人類血小板懸浮液(PS)和富含血小板血漿(PRP),皆會呈現濃度相關性地引起血小板凝集。接有生物素(biotinylated)的trowaglerix會結合到血小板膜上的醣蛋白VI,但不會結合到醣蛋白Ib或是黏著蛋白α2。在人類血小板中給予trowaglerix會造成醣蛋白VI的消失,而在小鼠注射給予trowaglerix後,其血小板失去對膠原蛋白引起凝集的活性,但對於二磷酸腺苷(ADP)所引起的血小板凝集則沒有影響。然而投予基質金屬蛋白酶(MMP)抑制劑GM6001能夠抑制trowaglerix所造成的醣蛋白VI分裂,同時恢復小鼠血小板對於膠原蛋白的反應。因為血小板上的醣蛋白VI對於暴露出來的膠原蛋白而言是重要的受體,加上之前的研究顯示,缺少醣蛋白VI的病人會失去對於膠原蛋白引起的貼附和凝集反應,然而卻只有輕微的出血症狀。近年來在急性冠狀動脈症狀(短暫缺血或是中風)中發現血小板醣蛋白VI的表現會增加,顯示醣蛋白VI可以當作急性冠狀血栓的指標。在我們之前未發表的數據中,我們發現C型凝集素蛋白結合到受體的位置主要位於C端。因此我們定出trowaglerix的部份胺基酸序列,並且依據這些C型凝集素蛋白的C端序列合成數個六胜肽。我們發現從trowaglerix α次單元序列中合成了六胜肽會專一性地作用在醣蛋白VI上,進而抑制膠原蛋白所引起的血小板凝集,在動物模式中同時也顯示有抗血栓的活性。 巨噬細胞是主要的免疫細胞並且在免疫防禦機制中扮演重要的腳色,當外來病原菌入侵時會啟動發炎反應,巨噬細胞活化並且產生許多發炎物質。C型凝集素蛋白會作用在不同的標的,包括表現在血小板、內皮細胞或是骨髓細胞上的各種受體(醣蛋白VI、醣蛋白Ib、黏著蛋白α2β1或是CLEC-2)。在本篇論文中我們觀察許多C型凝集素蛋白在單核白血球和巨噬細胞上的反應,我們發現在數種C型凝集素蛋白當中,唯有aggretin會增加人類單核白血球細胞株和老鼠巨噬細胞株中TNF-α和IL-6的產生。在巨噬細胞中,aggretin會促使ERK1/2和JNK磷酸化。事先給予各種激酶(kinase)抑制劑能夠抑制aggretin所造成的細胞素(cytokine)釋放。流式細胞實驗中顯示aggretin會呈現濃度相關性地結合到單核球表面,並且能夠減少CLEC-2抗體的結合;實驗也顯示immobilized aggretin會專一性地結合到血小板和單核球上的CLEC-2受體。此外,肌肉注射aggretin的小鼠,其血漿中IL-6的量也會增加。 對於這兩種C型凝集素蛋白在血栓和發炎上仍有許多值得研究的部份,目前實驗室針對trowaglerix和aggretin也正在進行抗血栓和抗發炎小分子的藥物研發。 | zh_TW |
| dc.description.abstract | Snake venoms contained various bioactive proteins and polypeptides, and some purified components are specific for their substrates and have unique mode of action. Based on the structure-activity relationship of these unique molecules, they may be used as tools for diagnosis of hemostatic disorders and for development of new classes of therapeutics. For example, the snaclec family has diverse targets including platelet glycoprotein (GP) Ib, GPVI and integrin α2β1, and affect platelet function in a various way. In this report, we purified a novel snake venom protein, trowaglerix from venom of Tropidolaemus wagleri and used this protein and another well-known snake venom protein, aggretin from Calloselama rhodostoma venom as the tools for investigating their opportunity as new drug-designing candidates. Both of these snake venom proteins belong to snaclec family and exhibit platelet-aggregating activity.
Exposure of matrix protein collagen after vessel injury provides a substrate for platelet adhesion and triggers platelet activation, which recruits additional platelets to area of injured vessel wall, thereby initiating thrombus formation. Binding of von Willebrand factor (vWF) to platelet GPIb complex and collagen to platelet GPVI and integrin α2β1 both mediate platelet activation in the early stage of thrombus formation. Trowaglerix has two distinct subunits and belongs to snaclec family. Trowaglerix induced platelet aggregation of washed human platelets and platelet-rich plasma (PRP) in a concentration-dependent manner. Biotinylated trowaglerix specifically bound to platelet membrane GPVI, but not to GPIb or α2 integrin. Treatment with trowaglerix induced GPVI loss in human platelets in vitro, and specifically impaired the platelet aggregation of mouse PRP ex vivo in response to collagen. However, GM6001, a matrix metalloproteinase (MMP) inhibitor, inhibited trowaglerix-induced GPVI cleavage and restored the platelet responsiveness of PRP to collagen. Because platelet surface GPVI is an important receptor for platelet adhesion and activation to exposed collagen, and previous study has shown that patients with GPVI-deficient platelets lack response to collagen-induced aggregation and adhesion and only have a mild bleeding disorder. Recently, elevated platelet GPVI expression is found in acute coronary syndromes, transient ischemic attack and stroke, indicating that GPVI may provide as a biomarker for acute atherothrombotic events. Our previous data showed that the binding sites of snaclecs toward their receptors are different and probably located in C-terminal. Therefore, we determined the partial amino acid sequences of trowaglerix and synthesized several hexapeptides derived from these snaclecs C-terminal. We found that the hexapeptide of trowaglerix α subunit specifically exhibited marked inhibitory activity on platelet aggregation caused by collagen via interacting with GPVI in vitro and also displayed antithrombotic activity in animal model. Macrophages are major immune cells and play an important role in modulating homeostasis and the immune defense mechanism. In inflammatory responses to the infection of pathogens, macrophages are activated, producing various inflammatory mediators. Snaclecs have diverse targets, including platelet GPVI, GPIb, integrin α2β1 or CLEC-2 expressed in platelets, endothelial cells or myeloid cells. In this study, we evaluated the effects of various snaclecs on monocytes and macrophages. We found that aggretin increased the production of TNF-α and IL-6 in both RAW264.7 and THP-1 cells; however, the other snaclecs did not. Aggretin induced extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) tyrosine phosphorylation of RAW264.7 cells. Pretreatments with inhibitor of ERK, JNK, p38 or NF-κB abolished cytokine release caused by aggretin. Aggretin bound to THP-1 cells in a concentration-dependent manner and it displaced the CLEC-2 mAb binding to THP-1 cells, and the immobilized aggretin selectively bound to CLEC-2 of both platelets and THP-1 cell lysates. Furthermore, aggretin elevated the plasma level of IL-6 in ICR mice as it was administered intramuscularly. Some perspective studies regarding their detail mechanism of action and signal transduction pathway involved are still under investigation. Furthermore, small molecules derived from aggretin and trowaglerix are being explored as anti-inflammatory and anti-thrombotic agents. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:07:45Z (GMT). No. of bitstreams: 1 ntu-100-D95443001-1.pdf: 2165610 bytes, checksum: 3475b0d650512c4850821221f423ebc1 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Contents
口試委員審定書.....................................................i 致謝...............................................................ii 中文摘要.......................................................... iv Abstract...........................................................vii Abbreviations........................................................x CHAPTER 1 INTRODUCTION..................................................1 CHAPTER 2 2.1 The highly specific platelet glycoprotein (GP) VI agonist trowaglerix impaired collagen-induced platelet aggregation ex vivo through matrix metalloproteinase-dependent GPVI shedding..........................35 2.2 Anti-thrombotic agent derived from trowaglerix.....................41 CHAPTER 3 A novel mechanism of cytokine release in phagocytes induced by aggretin, a snake venom C-type lectin protein, through CLEC-2 ligation...............71 CHAPTER 4 PERSPECTIVES..................................................98 References.........................................................102 Publication List.....................................................111 | |
| dc.language.iso | en | |
| dc.title | 蛇毒蛋白C 型凝集素在血栓和發炎之研究 | zh_TW |
| dc.title | Studies of Snake Venom C-type lectins (Snaclecs) on
Thrombosis and Inflammation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄧哲明,顏茂雄,楊春茂,吳文彬 | |
| dc.subject.keyword | 蛇毒蛋白,血栓,發炎, | zh_TW |
| dc.subject.keyword | snake venom,thrombosis,inflammation, | en |
| dc.relation.page | 112 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-05-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
