Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23719
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜宜殷
dc.contributor.authorI-Hui Linen
dc.contributor.author林宜慧zh_TW
dc.date.accessioned2021-06-08T05:07:40Z-
dc.date.copyright2011-09-21
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citation陳涵葳. 2005. 苦瓜EDR1及CAN1同源基因之選殖與啟動子活性分析. 國立台灣大學園藝學系碩士論文.
Aoyagi, S., M. Sugiyama, and H. Fukuda. 1998. BEN1 and ZEN1 cDNAs encoding S1-type DNases that are associated with programmed cell death in plants. FEBS Lett. 429:134-138.
Blank, A. and T.A. McKeon. 1989. Single-strand-preferring nuclease activity in wheat leaves is increased in senescence and is negatively photoregulated. Proc. Natl. Acad. Sci. USA 86:3169-3173.
Buchanan, B.B., W. Gruissem, and R.L. Jones. 2000. Biochemistry & Molecular Biology of Plants. Courier Companies, Inc. Rockville, MD.
Brown, P.H. and T.H.D. Ho. 1986. Barley aleurone layers secrete a nuclease in response to gibberellic acid. Plant Physiol. 82:801-806.
Chicas, A. and G. Macino. 2001. Characteristics of post-transcriptional gene silencing. EMBO Rep. 2:992-996.
Dellaporta, S.L., J. Wood, and J.B. Hicks. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1:19-21.
Dominguez, F. and F.J. Cejudo. 2006. Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells. Biochem. J. 397:529-536.
Farage-Barhom, S., S. Burd, L. Sonego, R. Perl-Treves, and A. Lers. 2008. Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes. J. Exp. Bot. 59:3247-3258.
Farage-Barhom, S., S. Burd, L. Sonego, A. Mett, E. Belausov, D. Gidoni, and A. Lers. 2011. Localization of the Arabidopsis senescence- and cell death-associated BFN1 nuclease: from the ER to fragmented nuclei. Mol. Plant doi:10.1093/mp/ssr045
Fath, A., P. Bethke, J. Lonsdale, R. Meza-Romero, and R. Jones. 2000. Programmed cell death in cereal aleurone. Plant Mol. Biol. 44:255-266.
Friml, J., J. Wisniewska, E. Benkova, K. Mendgen, and K. Palme. 2002. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806-809.
Frye, C.A. and R.W. Innes. 1998. An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10:947-956.
Frye, C.A., D. Tang, and R.W. Innes. 2001. Negative regulation of defense response in plant by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA 95:373-378.
Groover, A., N. DeWitt, A. Heidel, and A. Jones. 1997. Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma 196:197-211.
Isono, K., K. Satoh, and H. Kobayashi. 2000. Molecular cloning of a cDNA encoding a novel Ca2+-dependent nuclease of Arabidopsis that is similar to staphylococcal nuclease. Biochim. Biophys. Acta 1491:267-272.
Jiang, A.L., Y. Cheng, J. Li, and W. Zhang. 2008. A zinc-dependent nuclear endonuclease is responsible for DNA laddering during salt-induced programmed cell death in root tip cells of rice. J. Plant Physiol. 165: 1134-1141.
Jorgensen, J.H. 1992. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141-152.
Kim, J.A., G.K. Agrawal, R. Rakwal, K.S. Han, K.N. Kim, C.H. Yun, S. Heu, S.Y. Park, Y.H. Lee, and N.S. Jwa. 2003. Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signaling pathways and development. Bioch. Biophy. Res. Commun. 300:868-876.
Kuriyama, H. and H. Fukuda. 2002. Developmental programmed cell death in plants. Curr. Opin. Plant Biol. 5:568-573.
Mittler, R. and E. Lam. 1995. Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell 7:1951-1962.
Muramoto, Y., A. Watanabe, T. Nakamura, and T. Takabe. 1999. Enhanced expression of a nuclease gene in leaves of barley plants under salt stress. Gene 234:315-321.
Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497.
Nakamura, S., K. Ogawa, and T. Kuroiwa. 1987. Survey of Ca2+-dependent nuclease in green plants. Plant Cell Physiol. 28: 545-548.
Nelson, B.K., X. Cai, and A. Nebenfuhr. 2007. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51:1126-1136.
Nishimura, M.T., M. Stein, B.H. Hou, J.P. Vogel, H. Edwards, and S.C. Somerville. 2003. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301:969-972.
Niu, J.S., L.N. Zhang, D.F. Hong, and Y.H. Wang. 2005. Cloning, characterization and expression of wheat EDR1 (Enhanced Disease Resistance) gene. J. Plant Physiol. Mol. Biol. 31:477-484.
Perez-Amador, M.A., M.L. Abler, E.J.D. Rocher, D.M. Thompson, A. van Hoof, N.D. LeBrasseur, A. Lers, and P.J. Green. 2000. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiol. 122:169-180.
Shen, X., H. Liu, B. Yuan, X. Li, C. Xu, and S. Wang. 2011. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ. 34:179-191.
Singh, M.P., F.N. Lee, P.A. Counce, and J.H. Gibbons. 2004. Mediation of partial resistance to rice blast through anaerobic induction of ethylene. Phytopathology 94:819-825.
Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503-517.
Sugiyama, M., J. Ito, S. Aoyagi, and H. Fukuda. 2000. Endonucleases. Plant Mol. Biol. 44:387-397.
Tang, D. and R.W. Innes. 2002. Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J. 32:975-983.
Tang, D., K.M. Christiansen, and R.W. Innes. 2005. Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol. 138:1018-1026.
Thelen, M.P. and D.H. Northcote. 1989. Identification and purification of a nuclease from Zinnia elegans L.: a potential molecular marker for xylogenesis. Planta 179:181-195.
Wang, M., B.J. Oppedijk, X. Lu, B.V. Duijn, and R.A. Schilperoort. 1996. Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Mol. Biol. 32:1125-1134.
Wawrzynska, A., K.M. Christiansen, Y. Lan, N.L. Rodibaugh, and R.W. Innes. 2008. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling. Plant Physiol. 148:1510-1522.
Wawrzynska, A., N.L. Rodibaugh, and R.W. Innes. 2010. Synergistic activation of defense responses in Arabidopsis by simultaneous loss of the GSL5 callose synthase and the EDR1 protein kinase. Mol. Plant Microb. Interact. 23:578-584.
Wilson, C.M. 1975. Plant nucleases. Annu. Rev. Plant Physiol. 26:187-208.
Wolff, T., R.E. O'Neill, and P. Palese. 1998. NS1-binding protein (NS1-BP): a novel human protein that interacts with the influenza A virus nonstructural NS1 protein is relocalized in the nuclei of infected cells. J. Virol. 72:7170-7180.
Wolter, M., K. Hollricher, F. Salamini, and P. Schulze-Lefert. 1993. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defense mimic phenotype. Mol. Gen. Genet. 239:122-128.
Wood, M., J.B. Power, M.R. Davey, K.C. Lowe, and B.J. Mulligan. 1998. Factors affecting single strand-preferring nuclease activity during leaf aging and dark-induced senescence in barley (Hordeum vulgare L.). Plant Sci. 131:149-159.
Yoo, S., Y. Cho, and J. Sheen. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2:1565-1572.
You, M.K., H.Y. Shin, Y.J. Kim, S.H. Ok, S.K. Cho, J.U. Jeung, S.D. Yoo, J.K. Kim, and J.S. Shin. 2010. Novel bifunctional nucleases, OmBBD and AtBBD1, are involved in abscisic acid-mediated callose deposition in Arabidopsis. Plant Physiol. 152:1015-1029.
Young, T.E., D.R. Gallie, and D.A. DeMason. 1997. Ethylene mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes. Plant Physiol. 115:737-751.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23719-
dc.description.abstract為瞭解苦瓜抗白粉病相關基因McEDR1與核酸分解酶基因McCAN1之基因表現調控情形,本研究將以農桿菌媒介法穩定性轉殖之阿拉伯芥,進行不同發育階段、植物生長調節劑、及非生物性逆境誘導試驗,經GUS活性組織化學染色分析啟動子之活性表現。McEDR1啟動子於阿拉伯芥根尖、下胚軸、生長點、子葉、幼葉、及成熟葉皆有表現。植物生長調節劑IAA、BA、GA3、ABA、MeJA、與SA皆會抑制啟動子之表現,惟有ACC可明顯促進於根尖之活性表現。逆境誘導以高鹽、低溫、及低溫黑暗處理,可提升於新生葉之活性,而以乾燥、高鹽、黑暗、及低溫黑暗處理,根尖亦有明顯之促進效果。McCAN1啟動子表現部位於阿拉伯芥根部、下胚軸、生長點、子葉、幼葉、及成熟葉。植物生長調節劑除SA促進子葉葉脈、及ACC促進地上部葉片之表現,其餘皆抑制啟動子之表現。逆境處理高鹽和低溫黑暗會促進根部之活性表現,而創傷、乾燥、高鹽、低溫、黑暗、及低溫黑暗則會誘導子葉和地上部葉片之啟動子表現。此外,為進一步瞭解McCAN1之基因功能,構築過量表現及默化McCAN1基因、及前後端分別融合綠色螢光蛋白之蛋白質定位用轉殖載體。基因過量表現之構築目前尚未成功獲得菸草及阿拉伯芥轉殖株。基因默化之構築目前已穩定性轉殖於菸草及阿拉伯芥,並以GUS活性組織化學染色及聚合酶連鎖反應確認轉殖株。蛋白質定位將McCAN1暫時性表達於洋蔥表皮細胞及阿拉伯芥原生質體,以共軛焦螢光顯微鏡觀察得知,皆於轉殖後19至22小時表達於細胞之細胞膜上。zh_TW
dc.description.abstractThe regulation mechanism of McEDR1 and McCAN1 promoters and gene expression analysis of McCAN1 were done in the present study. For promoter analysis, McEDR1 and McCAN1 promoter sequences were constructed to drive b-glucuronidase GUS reporter gene and the promoter activity was observed by GUS histochemical staining at different developmental stages and in response to different plant growth regulators and abiotic stresses in transgenic Arabidopsis pure line. Promoter activity of McEDR1 was expressed in root tips, hypocotyls, shoot meristem, cotyledons, young leaves and mature leaves of Arabidopsis. IAA, BA, GA3, ABA, MeJA, and SA play the inhibitory role on McEDR1 promoter activity. On the contrary, ACC enhanced the promoter activity of McEDR1. High salt, cold, and cold combined with dark treatment enhanced promoter activity in young leaves. Drought, high salt, dark, and cold combined with dark treatment enhanced promoter activity in root tips. McCAN1 promoter was expressed in root tips, hypocotyls, shoot meristem, cotyledons, young leaves and mature leaves of Arabidopsis. All the treated plant growth regulators suppressed promoter activity except SA, which enhanced the activity in veins of cotyledons, and ACC enhanced in leaves. Promoter activity in leaves was enhanced by high salt treatment and cold combined with dark treatment enhanced activity in root. Wound, drought, high salt, cold, dark, and cold combined with dark treatment enhanced promoter activity in leaves. For McCAN1 functional analysis, McCAN1-overexpression plasmid was transformed into tobacco and Arabidopsis and yet to obtain transgenic tobacco or Arabidopsis. Moreover, short interference RNA (siRNA) strategy was used to silence CAN1 genes both in bitter gourd and tobacco. Stable transformation for siRNA construct of 6 lines of tobacco and 3 lines of Arabidopsis were confirmed by GUS histochemical staining and polymerase chain reaction, through the morphological observation of transgenic plants might further elucidate the function of genes. For localization, McCAN1 cDNA was fused with green fluorescent protein (GFP) at front end and rear end, respectively. When co-localized with organelle-specific fluorescent protein markers in onion epidermal cell and Arabidopsis protoplast, the localization of McCAN1 was found on cell membrane.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:07:40Z (GMT). No. of bitstreams: 1
ntu-100-R98628139-1.pdf: 2386807 bytes, checksum: cfd9eeda485fa7033055beb8390796ec (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
壹、前言 1
貳、前人研究 3
一、植物抗白粉病相關基因EDR1之研究 3
(一)、EDR1基因之特性 3
(二)、edr1突變株性狀及抗病表現 4
(三)、EDR1路徑與植物生長調節劑之交互作用 5
二、植物核酸分解酶之相關研究 7
(一)、核酸分解酶之分類 7
(二)、核酸分解酶參與植物體之分化 8
1、植物核酸分解酶調控胚乳養分降解 8
2、植物核酸分解酶參與木質部形成 10
3、植物核酸分解酶於葉片老化 11
4、植物核酸分解酶調控過敏性抗病反應 12
參、材料與方法 13
一、試驗材料 13
(一)、植物材料 13
(二)、質體材料 13
二、試驗方法 15
(一)、基因之次選殖 (Subcloning) 15
1、聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 15
2、回收DNA 15
3、大腸桿菌勝任細胞 (Competent cell) 之製備 15
4、接合反應 (ligation) 及轉型 (transformation) 16
5、質體DNA小量製備 16
6、DNA補平反應 17
7、質體DNA之大量製備 17
(二)、轉殖質體之構築 18
1、McCAN1基因過量表達 (overexpression) 質體之構築 18
2、McCAN1基因默化 (silencing) 質體之構築 18
(1)、寡核苷酸之黏合 18
(2)、默化質體之構築 22
3、McCAN1基因蛋白質定位 (protein localization) 質體之構築 22
(1)、蛋白質定位McCAN1:gfp之構築 22
(2)、蛋白質定位gfp:McCAN1之構築 26
(三)、農桿菌轉型 26
1、農桿菌勝任細胞之製備 26
2、轉型反應 26
3、農桿菌質體DNA之小量製備 29
(四)、阿拉伯芥之穩定性轉殖 29
1、阿拉伯芥之種植 29
2、阿拉伯芥之花序轉殖 30
3、阿拉伯芥轉殖株之抗生素篩選 30
(五)、菸草之穩定性轉殖 31
1、菸草之種植 31
2、菸草基因轉殖及轉殖株之篩選 31
(六)、轉殖株之檢測 31
1、GUS活性組織化學染色法 31
2、南方氏雜交分析 (Southern hybridization analysis) 32
(1)、植物基因組DNA之抽取 32
(2)、探針之製備 32
(3)、預雜合反應 (pre-hybridization) 與雜合反應 (hybridization) 33
(七)、啟動子誘導試驗 33
1、阿拉伯芥轉殖株之誘導處理 33
(1)、不同發育階段之啟動子活性分析 33
(2)、不同植物生長調節劑之處理 34
(3)、不同環境逆境之處理 34
(八)、螢光蛋白表達之觀察 34
1、阿拉伯芥原生質體分離 34
2、阿拉伯芥原生質體轉殖 35
3、微粒子製備與DNA之包覆 35
4、基因槍轉殖 36
肆、結果 37
一、McEDR1基因啟動子活性分析 37
(一)、McEDR1啟動子活性於阿拉伯芥轉殖株發育時間及部位之表現 37
(二)、植物生長調節劑對阿拉伯芥轉殖株McEDR1啟動子活性之影響 37
(三)、逆境因子對阿拉伯芥轉殖株McEDR1啟動子活性之影響 42
二、McCAN1基因功能分析 42
(一)、McCAN1基因啟動子活性分析 42
1、McCAN1啟動子活性於阿拉伯芥轉殖株發育時間及部位之表現 42
2、植物生長調節劑對阿拉伯芥轉殖株McCAN1啟動子活性之影響 47
3、逆境因子對阿拉伯芥轉殖株McCAN1啟動子活性之影響 47
(二)、McCAN1基因過量表現之轉殖株分析 52
(三)、McCAN1基因默化之分析 52
1、siMcCAN1之暫時性表現分析 52
2、siMcCAN1之穩定性轉殖分析 52
(四)、McCAN1基因蛋白質定位分析 55
1、McCAN1:gfp之暫時性表達分析 55
2、gfp:McCAN1之暫時性表達分析 61
伍、討論 66
一、McEDR1基因之啟動子活性 66
(一)、McEDR1啟動子表現特性 66
(二)、植物生長調節劑調控McEDR1啟動子 66
(三)、逆境因子調控McEDR1啟動子 67
二、McCAN1之基因功能 67
(一)、McCAN1基因之啟動子活性 67
1、McCAN1啟動子表現特性 67
2、植物生長調節劑調控McCAN1啟動子 68
3、逆境因子調控McCAN1啟動子 69
(二)、過量表現McCAN1基因之影響 69
(三)、默化McCAN1基因之穩定性轉殖株檢測 69
(四)、McCAN1之細胞內蛋白質定位 70
陸、結語 72
柒、參考文獻 73
dc.language.isozh-TW
dc.title苦瓜EDR1同源基因啟動子活性及CAN1同源基因功能之分析zh_TW
dc.titleAnalyses of Promoter Activity in EDR1 and Gene Function in CAN1 from Momordica charantiaen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor黃鵬林
dc.contributor.oralexamcommittee黃銓珍,林崇熙
dc.subject.keyword抗病,核酸分解&#37238,基因過&#63870,表現,基因默化,蛋白質定位,zh_TW
dc.subject.keyworddisease resistance,nuclease,gene overexpression,gene silencing,protein localization,en
dc.relation.page77
dc.rights.note未授權
dc.date.accepted2011-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved