請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23708完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王倫(Lon Wang) | |
| dc.contributor.author | Hsiao-Yuh Wang | en |
| dc.contributor.author | 王曉淯 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:07:30Z | - |
| dc.date.copyright | 2011-09-15 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | [1] C. Y. Lin and L. A. Wang, 'Loss-tunable long period fibre grating made from etched corrugation structure,' Electronics Letters, vol. 35, pp. 1872-1873, Oct 14 1999.
[2] 林品仲, '鋸齒狀長週期光纖光柵之新製法及其對光學特性的影響,' 博士論文, 光電工程學研究所, 臺灣大學, 2006. [3] 陳禎祐, '非對稱性長週期光纖光柵之製法及其光學特性,' 碩士論文, 光電工程學研究所, 臺灣大學, 2007. [4] 詹文霖, '對稱以及非對稱鋸齒狀長週期光纖光柵之新製法及其光學特性,' 碩士論文, 光電工程學研究所, 臺灣大學, 2008. [5] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, 'Long-period fiber gratings as band-rejection filters,' Journal of Lightwave Technology, vol. 14, pp. 58-65, Jan 1996. [6] V. Bhatia and A. M. Vengsarkar, 'Optical fiber long-period grating sensors,' Opt Lett, vol. 21, pp. 692-4, May 1 1996. [7] H. J. Patrick, A. D. Kersey, and F. Bucholtz, 'Analysis of the response of long period fiber gratings to external index of refraction,' Journal of Lightwave Technology, vol. 16, pp. 1606-1612, Sep 1998. [8] S. W. James and R. P. Tatam, 'Optical fibre long-period grating sensors: Characteristics and application,' Measurement Science & Technology, vol. 14, pp. R49-R61, May 2003. [9] B. O. Guan, H. Y. Tam, S. L. Ho, S. Y. Liu, and X. Y. Dong, 'Growth of long-period gratings in H-2-loaded fiber after 193-nm UV inscription,' IEEE Photonics Technology Letters, vol. 12, pp. 642-644, Jun 2000. [10] D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, 'Long-period fibre grating fabrication with focused CO2 laser pulses,' Electronics Letters, vol. 34, pp. 302-303, Feb 1998. [11] S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, 'Tunable mechanically induced long-period fiber gratings,' Optics Letters, vol. 25, pp. 710-712, May 2000. [12] I. K. Hwang, S. H. Yun, and B. Y. Kim, 'Long-period fiber gratings based on periodic microbends,' Opt Lett, vol. 24, pp. 1263-5, Sep 15 1999. [13] Y. Jiang, Q. Li, C. H. Lin, E. Lyons, I. Tomov, and H. P. Lee, 'A novel strain-induced thermally tuned long-period fiber grating fabricated on a periodic corrugated silicon fixture,' IEEE Photonics Technology Letters, vol. 14, pp. 941-943, Jul 2002. [14] M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, 'Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,' Journal of Applied Physics, vol. 88, pp. 5534-5537, Nov 2000. [15] L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, 'Long-period grating fabricated by periodically tapering standard single-mode fiber,' Applied Optics, vol. 47, pp. 1549-1552, Apr 1 2008. [16] M. Vaziri and C. L. Chen, 'Etched fibers as strain gauges,' Lightwave Technology, Journal of, vol. 10, pp. 836-841, 1992. [17] C. C. Chiang, T. C. Cheng, H. J. Chang, and L. R. Tsai, 'Sandwiched long-period fiber grating filter based on periodic SU8-thick photoresist technique,' Optics Letters, vol. 34, pp. 3677-3679, Dec 2009. [18] O. V. Ivanov, S. A. Nikitov, and Y. V. Gulyaev, 'Cladding modes of optical fibers: properties and applications,' Physics-Uspekhi, vol. 49, pp. 167-191, Feb 2006. [19] Y. P. Wang, 'Review of long period fiber gratings written by CO(2) laser,' Journal of Applied Physics, vol. 108, Oct 2010. [20] N. S. Kapany, 'High-Resolution Fibre Optics Using Sub-Micron Multiple Fibres,' Nature, vol. 184, pp. 881-883, 1959. [21] L. Tong and M. Sumetsky, Subwavelength and nanometer diameter optical fibers. Berlin; London: Springer, 2010. [22] G. Brambilla, 'Optical fibre nanowires and microwires: a review,' Journal of Optics, vol. 12, Apr 2010. [23] L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, 'Subwavelength-diameter silica wires for low-loss optical wave guiding,' Nature, vol. 426, pp. 816-819, Dec 2003. [24] S. M. Chuo, M. H. Wan, L. A. Wang, and J. S. Wang, 'Multistage Modified Fiber Drawing Process and Related Diameter Measuring System,' Journal of Lightwave Technology, vol. 27, pp. 2983-2988, Aug 2009. [25] 張致達, '低損耗光纖角錐和電弧融接技術 應用於微奈米導光線及微光學元件製作,' 碩士論文, 光電工程學研究所, 臺灣大學, 2010. [26] A. Martinez-Rios, D. Monzon-Hernandez, and I. Torres-Gomez, 'Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing,' Optics Communications, vol. 283, pp. 958-962, Mar 2010. [27] W. Ding and S. R. Andrews, 'Modal coupling in surface-corrugated long-period-grating fiber tapers,' Optics Letters, vol. 33, pp. 717-719, Apr 2008. [28] K. C. Hsu, N. K. Chen, C. L. Lee, Y. S. Chih, P. J. Jhuang, Y. Lai, and C. Lin, 'Spectral Response of Long-Period Fiber Grating Based on Tapered Fiber With Side-Contacted Metal Grating,' Journal of Lightwave Technology, vol. 28, pp. 1057-1063, Apr 2010. [29] H. F. Xuan, W. Jin, and M. Zhang, 'CO2 laser induced long period gratings in optical microfibers,' Optics Express, vol. 17, pp. 21882-21890, Nov 2009. [30] H. F. Xuan, W. Jin, and S. J. Liu, 'Long-period gratings in wavelength-scale microfibers,' Optics Letters, vol. 35, pp. 85-87, Jan 2010. [31] C. Y. Lin, L. A. Wang, and G. W. Chern, 'Corrugated long-period fiber gratings as strain, torsion, and bending sensors,' Journal of Lightwave Technology, vol. 19, pp. 1159-1168, Aug 2001. [32] J. F. Nye, Physical properties of crystals : their representation by tensors and matrices. New York: Oxford University Press, 1957. [33] A. W. Snyder and J. D. Love, Optical waveguide theory. New York: Chapman and Hall, 1983. [34] T. Erdogan, 'Cladding-mode resonances in short- and long-period fiber grating filters,' Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 14, pp. 1760-1773, Aug 1997. [35] L. S. Lerner, Physics for scientists and engineers. Boston: Jones and Bartlett, 1997. [36] D. Marcuse, 'Gaussian approximation of the fundamental modes of graded-index fibers,' J. Opt. Soc. Am., vol. 68, pp. 103-109, 1978. [37] J. H. Chang, F. S. Cheng, C. C. Chao, Y. C. Weng, S. Y. Yang, and L. A. Wang, 'Direct imprinting using soft mold and gas pressure for large area and curved surfaces,' Journal of Vacuum Science & Technology A, vol. 23, pp. 1687-1690, Nov-Dec 2005. [38] A. del Campo and C. Greiner, 'SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,' Journal of Micromechanics and Microengineering, vol. 17, pp. R81-R95, Jun 2007. [39] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, 'Imprint lithography with 25-nanometer resolution,' Science, vol. 272, pp. 85-87, Apr 1996. [40] H. Kikyuama, N. Miki, K. Saka, J. Takano, I. Kawanabe, M. Miyashita, and T. Ohmi, 'PRINCIPLES OF WET CHEMICAL-PROCESSING IN ULSI MICROFABRICATION,' IEEE Transactions on Semiconductor Manufacturing, vol. 4, pp. 26-35, Feb 1991. [41] L. M. Tong, J. Y. Lou, and E. Mazur, 'Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,' Optics Express, vol. 12, pp. 1025-1035, Mar 2004. [42] A. Ladicicco, S. Campopiano, M. Giordano, and A. Cusano, 'Spectral behavior in thinned long period gratings: Effects of fiber diameter on refractive index sensitivity,' Applied Optics, vol. 46, pp. 6945-6952, Oct 2007. [43] J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, 'TAPERED SINGLE-MODE FIBERS AND DEVICES .1. ADIABATICITY CRITERIA,' Iee Proceedings-J Optoelectronics, vol. 138, pp. 343-354, Oct 1991. [44] 林俊彥, '鋸齒狀長週期光纖光柵在軸向應變,扭曲及彎曲下之光學特性研究,' 博士論文, 光電工程學研究所, 台灣大學, 2001. [45] U. L. Block, V. Dangui, M. J. F. Digonnet, and M. M. Fejer, 'Origin of apparent resonance mode splitting in bent long-period fiber gratings,' Journal of Lightwave Technology, vol. 24, pp. 1027-1034, Feb 2006. [46] R. Slavik, 'Coupling to circularly asymmetric modes via long-period gratings made in a standard straight fiber,' Optics Communications, vol. 275, pp. 90-93, 2007. [47] M. Vaziri and C. L. Chen, 'Optical-fiber strain sensors with asymmetric etched structures,' Applied Optics, vol. 32, pp. 6399-6406, Nov 1993. [48] T. Zhu, Y. J. Rao, Y. Song, K. S. Chiang, and M. Liu, 'Highly Sensitive Temperature-Independent Strain Sensor Based on a Long-Period Fiber Grating With a CO(2)-Laser Engraved Rotary Structure,' Ieee Photonics Technology Letters, vol. 21, pp. 543-545, Apr 2009. [49] X. S. Liu, M. Yan, L. Zhan, S. Y. Luo, Z. M. Zhang, and Y. X. Xia, 'Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings singe-side induced by long-pulse CO(2) laser,' Optics Communications, vol. 284, pp. 1232-1237, Mar 2011. [50] H. J. Patrick, C. C. Chang, and S. T. Vohra, 'Long period fibre gratings for structural bend sensing,' Electronics Letters, vol. 34, pp. 1773-1775, Sep 1998. [51] J. S. Petrovic, H. Dobb, V. K. Mezentsev, K. Kalli, D. J. Webb, and I. Bennion, 'Sensitivity of LPGs in PCFs fabricated by an electric arc to temperature, strain, and external refractive index,' Journal of Lightwave Technology, vol. 25, pp. 1306-1312, May 2007. [52] G. B. Hocker, 'Fiber-optic sensing of pressure and temperature,' Appl. Opt., vol. 18, pp. 1445-1448, 1979. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23708 | - |
| dc.description.abstract | 此論文結合壓印微影製程與濕蝕刻技術的新方法,可以比過去方法還更容易製作出鋸齒狀長週期光纖光柵(C-LPFGs)。此方法主用是利用壓壓印微影製程技術將聚碳酸酯(PC)製作成光纖的濕蝕刻擋罩。不僅如此,在鋸齒狀長週期光纖光柵被重新壓入另一個聚碳酸酯中後,聚碳酸酯還可以當作鋸齒狀長週期光纖光柵的包覆材料。因為此種方式可以讓聚碳酸酯提供給鋸齒狀長週期光纖光柵一些內部的應力,使光纖內部的折射率產生變化而製造出埋入式鋸齒狀長週期光纖光柵(EC-LPFGs),此種埋入式鋸齒狀長週期光纖光柵不像鋸齒狀長週期光纖光柵,它不需要預先給予拉力即可作為拉伸應變、彎曲與溫度的感測器。
除此之外,我們利用蝕刻鋸齒狀長週期光纖光柵至直徑約數十微米可以成功製作出鋸齒狀長週期微光纖光柵(C-LPMFGs)。此種光纖光柵主要是因為鋸齒狀的結構造成有效折射率週期的變化,而且也不需要像鋸齒狀長週期光纖光柵要預先給予一拉伸應力。在蝕刻鋸齒狀長週期微光纖光柵時,共振波長在即時監控下被觀察到會隨著蝕刻進行迅速地飄移。此鋸齒狀長週期微光纖光柵作為溫度感測器時有每攝氏上升一度飄移負一百四十六皮米的靈敏度(-146 pm/°C),且其對折射率的靈敏度也成功提升至約周遭折射率每上升一單位時飄移兩千一百奈米(2100 nm/RIU)。 | zh_TW |
| dc.description.abstract | We demonstrate a new method that could make possible the mass production of corrugated long period fiber gratings (C-LPFGs) more easily than previous works by utilizing imprint lithography on polycarbonate (PC) and wet etching techniques. Besides, PC is used not only as a mask of wet etching but also as an embedding material of C-LPFGs. After re-imprinting the C-LPFG into another PC to make embedded corrugated long period fiber gratings (EC-LPFGs), a built-in compressive stress can change the refractive indices of fibers based on the induced photo-elastic effect, and it can serve as strain, bending and temperature sensors without applying a pre-tensile strain.
In addition, a corrugated long period microfiber grating (C-LPMFG) is fabricated by etching a C-LPFG down to tens of micrometers in diameter. It can be a grating because of the periodic effective index difference caused by the corrugated structures, which also has no need of applied pre-tensile strain. During the etching of C-LPMFGs, the result of in-situ monitoring of resonant wavelength shows that the wavelength shift varies rapidly. The C-LPMFG is shown as a temperature sensor with sensitivity of -146 pm/°C, and the SRI sensitivity is successfully enhanced to about 2100 nm/RIU. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:07:30Z (GMT). No. of bitstreams: 1 ntu-100-R98941078-1.pdf: 5451796 bytes, checksum: a363a732513f219c8161f2dd3a304cf7 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
Acknowledgements i 摘要 ii Abstract iii Statement of Contributions iv Contents v List of Figures vii List of Tables xv List of Symbols xvi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 1.3 Organization of the Thesis 10 Chapter 2 Working Principles of the C-LPFGs 11 2.1 Overview 11 2.2 Working Principle of C-LPFG 12 2.2.1 Photo-Elastic Theory 12 2.2.2 Coupled-Mode Theory 13 2.2.3 Integration of Both Theories for C-LPFG 14 2.3 Thermal Expansion 18 2.4 Coupling Loss of Mode Field Diameter Mismatch 19 2.5 Summary 24 Chapter 3 New Methods for the Fabrication of EC-LPFGs and C-LPMFGs 25 3.1 Overview 25 3.2 New Fabrication Method for C-LPFGs 26 3.2.1 PDMS Mask 26 3.2.2 Imprint Lithography 29 3.2.3 HF Etching 34 3.2.4 THF Dissolving 35 3.3 Fabrication of EC-LPFGs 38 3.4 Fabrication of Corrugated Long Period Microfiber Gratings 47 3.5 Summary 53 Chapter 4 Optical Characteristics of EC-LPFGs and C-LPMFGs 54 4.1 Overview 54 4.2 Optical Characteristics of symmetric and asymmetric C-LPFGs 55 4.3 Optical Characteristics of EC-LPFGs 63 4.4 Optical Characteristics of C-LPMFGs 77 4.4.1 Thinner C-LPMFG 84 4.5 Summary 93 Chapter 5 Conclusion 94 References 96 | |
| dc.language.iso | en | |
| dc.title | 兩種改良型鋸齒狀長週期光纖光柵元件 | zh_TW |
| dc.title | Two Kinds of Refined Corrugated Long Period Fiber Gratings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉文豐(Wen-Fung Liu),王立康(L. K. Wang),李百祺(Pai-Chi Li) | |
| dc.subject.keyword | 鋸齒狀長週期光纖光柵,壓印,微光纖,光纖感測器, | zh_TW |
| dc.subject.keyword | Corrugated Long Period Fiber Grating,Imprint Lithography,Microfiber,Fiber Sensor, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
