Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23666
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林怡成(Yi-Cheng Lin)
dc.contributor.authorYao-Wen Hsuen
dc.contributor.author許耀文zh_TW
dc.date.accessioned2021-06-08T05:06:57Z-
dc.date.copyright2011-07-07
dc.date.issued2011
dc.date.submitted2011-06-28
dc.identifier.citation[1] P. Burghignoli, G. Lovat, and D. Jackson, “Analysis and optimization of leaky-wave radiation at broadside from a class of 1-d periodic structures,” IEEE Trans. Antennas and Propag., vol. 54, no. 9, pp. 2593 –2604, 2006.
[2] M. Guglielmi and D. Jackson, “Broadside radiation from periodic leaky-wave antennas,” IEEE Trans. Antennas and Propag., vol. 41, no. 1, pp. 31 –37, Jan. 1993.
[3] R. S. Elliott, Antenna Theory and Design, revised ed. Wiley-IEEE Press, 2003.
[4] G. Lovat, P. Burghignoli, and D. Jackson, “Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas,” IEEE Trans. Antennas and Propag., vol. 54, no. 5, pp. 1442 –1452, May 2006.
[5] A. Sutinjo, M. Okoniewski, and R. Johnston, “Beam-splitting condition in a broadside symmetric leaky-wave antenna of finite length,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 609 –612, 2008.
[6] R. F. Harrington, “Propagation along a slotted cylinder,” Journal of Applied Physics, vol. 24, pp. 1366–71, Nov. 1953.
[7] A. Oliner and K. Lee, “The nature of the leakage from higher modes on microstrip line,” in Microwave Symposium Digest, 1986 IEEE MTT-S International, 1986, pp. 57 –60.
[8] A. Oliner and K. Lee, “Microstrip leaky wave strip antennas,” in Antennas and Propagation Society International Symposium, 1986, vol. 24, Jun. 1986, pp. 443 – 446.
[9] J. Bagby, C.-H. Lee, D. Nyquist, and Y. Yuan, “Identification of propagation regimes on integrated microstrip transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 41, no. 11, pp. 1887 –1894, Nov. 1993.
[10] D. M. Pozar, Microwave Engineering, 3rd ed. Wiley, 2004.
[11] W. Menzel, “A new travelling wave antenna in microstrip,” in Microwave Conference, 1978. 8th European, 1978, pp. 302 –306.
[12] Y. Qian, B. Chang, T. Itoh, K. Chen, and C. Tzuang, “High efficiency and broadband excitation of leaky mode in microstrip structures,” in Microwave Symposium Digest, 1999
IEEE MTT-S International, vol. 4, 1999, pp. 1419 –1422 vol.4.
[13] Y.-D. Lin, J.-W. Sheen, and C.-K. Tzuang, “Analysis and design of feeding structures for microstrip leaky wave antenna,” in Microwave Symposium Digest, 1995., IEEE MTT-S
International, May 1995, pp. 149 –152 vol.1.
[14] C.-N. Hu and C.-K. Tzuang, “Analysis and design of large leaky-mode array employing the coupled-mode approach,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 4, pp.
629 –636, Apr. 2001.
[15] T. Itoh, “Application of gratings in a dielectric waveguide for leaky-wave antennas and band-reject filters (short papers),” IEEE Trans. Microwave Theory Tech., vol. 25, no. 12, pp. 1134 – 1138, Dec. 1977.
[16] A. Lai, T. Itoh, and C. Caloz, “Composite right/left-handed transmission line metamaterials,” IEEE Microwave Mag., vol. 5, no. 3, pp. 34 – 50, 2004.
[17] A. Feresidis, G. Goussetis, S. Wang, and J. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans.
Antennas and Propag., vol. 53, no. 1, pp. 209 – 215, 2005.
[18] D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “Highimpedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Mi-
crowave Theory Tech., vol. 47, no. 11, pp. 2059 –2074, Nov. 1999.
[19] R. Yahiaoui, S. Burokur, and A. de Lustrac, “Enhanced directivity of ultra-thin metamaterial-based cavity antenna fed by multisource,” Electronics Letters, vol. 45, no. 16,
pp. 814 –816, 30 2009.
[20] A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas,” Applied Physics Letters, vol. 88, no. 8, pp. 084 103 –084 103–3, Feb. 2006.
[21] d. L. A. Ourir, A. and Lourtioz, “Optimization of metamaterial based subwavelength cavities for ultracompact directive antennas,” IEEE Microwave and Optical Technology
Letters, vol. 48, no. 12, pp. 2573–2577, Dec. 2006.
[22] A. Ip and D. Jackson, “Radiation from cylindrical leaky waves,” IEEE Trans. Antennas and Propag., vol. 38, no. 4, pp. 482 –488, Apr. 1990.
[23] S. Podilchak, A. Freundorfer, and Y. Antar, “Surface-wave launchers for beam steering and application to planar leaky-wave antennas,” IEEE Trans. Antennas and Propag., vol. 57, no. 2, pp. 355 –363, 2009.
[24] S. Podilchak, A. Freundorfer, and Y. Antar, “A planar cavity based antenna by leaky parallel-plate wave guiding and practical surface-wave launching,” in Antennas and Propagation Society International Symposium (APS/URSI), 2010 IEEE, 2010, pp. 1 –4.
[25] P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, “Effects of leaky-wave propagation in metamaterial grounded slabs excited by a dipole source,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 32 – 44, jan. 2005.
[26] A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering. Prentice Hall, 1991.
[27] R. E. Collin, Field Theory of Guided Waves. IEEE Press, 1991.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23666-
dc.description.abstract本篇論文提出一種新型高指向性之部分反射面(partially reflective surface)漏波線。此單一饋入的天線是設計和製作在印刷電路板(PCB)上。利用圓形平板天線(patch antenna)作饋入,此天線在上層覆蓋有在徑向和側向具週期性分割之部分反射面。在中心頻率5GHz 邊射(broadside)方向增益有14.8dB。另一稍作修改之設計由一圓形極化的平板天線饋入,可產生11dB 邊射方向增益與20%之3dB軸長比(axial ratio)頻寬。此種天線可利用垂直嵌入和水平嵌入之片狀金屬達到縮小化,雖然增益衰減約3dB,但與原設計相比面積可縮小約60%。最後,本文利用圓柱傳輸線方程式提出一等效電路模型,計算柱面波之傳播係數及遠場場形。此模型所得之結果與全波模擬的結果呈現出相當好的一致性。zh_TW
dc.description.abstractThis thesis presents a new type of partially reflective surface (PRS) antennas for high gain applications. This single-fed antenna was designed and fabricated with Printed Circuit Board(PCB) technology. The antenna was fed by a patch and covered by a PRS which consist of periodic partitions in radical and lateral directions. A broadside gain of 14.8dB was obtained at the center frequency 5GHz. Another slightly modified design was fed by a circularly polarized patch generating 11dB broadside gain and 20% axial ratio bandwidth. The antenna could be miniaturized with embedded vertical walls and horizontal pads, the maximum broadside gain was dropped by around 3dB but the size reduction is 60% compared to the original design. Finally, an equivalent circuit model had been proposed by employing cylindrical transmission line equations. The wave number of the cylindrical leaky wave had been calculated and the far field patterns were predicted. The presented model achieved a very good consistency with the full wave simulated results.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:06:57Z (GMT). No. of bitstreams: 1
ntu-100-R98942011-1.pdf: 6661296 bytes, checksum: 7b937d16857f293142df062bbd00300a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Leaky Wave Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Implementation of Leaky Wave Antennas . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Uniform Leaky Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Periodic Leaky Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Cylindrical Leaky Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Motivation and Framework of this Thesis . . . . . . . . . . . . . . . . . . . . . . 13
2 Antennas with Cylindrically Shaped PRSs 15
2.1 Geometry and Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Parametric Study (Linearly Polarized Case) . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Radius of Center Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Width of the Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Number of Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.5 Simulated Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Parametric Study (Circularly Polarized Case) . . . . . . . . . . . . . . . . . . . 31
2.4 Simulation and Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Linearly Polarized Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Circularly Polarized Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Dual-port Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3 Miniaturization of Cylindrical PRS Antenna with Embedded Structure 51
3.1 Geometry and Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Parametric Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Influence by the Vertical Walls . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Influence by the Horizontal Pads . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Simulated and Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Overlapping Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4 Modal Solution by Means of Cylindrical Equivalent Circuit 67
4.1 Cylindrical Transmission Line Equations . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Cylindrical Periodic Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Dispersion Relation of Cylindrically Shaped PRSs . . . . . . . . . . . . . . . . . 80
4.4 Far Field Estimation Using modified Array Factor . . . . . . . . . . . . . . . . . 89
4.4.1 H-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.2 E-plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5 Conclusion 103
Appendices 105
A TE and TM Cylindrical Leaky Wave 105
B Comparison between Traditional and Modied Array Factor 111
Bibliography 115
dc.language.isoen
dc.title印刷電路板柱狀漏波天線之研製zh_TW
dc.titleDesign and Implementation of Cylindrical Leaky-wave Antennas with PCB Substratesen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江簡富,林育德,黃瑞彬
dc.subject.keyword漏波天線,部分反射面,高增益天線,zh_TW
dc.subject.keywordLeaky wave,Partially reflected surface(PRS),high gain antenna,en
dc.relation.page118
dc.rights.note未授權
dc.date.accepted2011-06-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
6.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved