Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23662
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor譚婉玉
dc.contributor.authorTzu-Wei Chuangen
dc.contributor.author莊子瑋zh_TW
dc.date.accessioned2021-06-08T05:06:54Z-
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-06-28
dc.identifier.citation1. Dreyfuss, G., Kim, V. N., and Kataoka, N. (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3, 195-205
2. Lei, E. P., and Silver, P. A. (2002) Protein and RNA export from the nucleus. Dev Cell 2, 261-272
3. Degot, S., Le Hir, H., Alpy, F., Kedinger, V., Stoll, I., Indling, C., Seraphin, B., Rio, M. C., and Tomasetto, C. (2004) Association of the breast cancer
protein MLN51 with the exon junction complex via its speckle localizer and RNA binding module. J Biol Chem 279, 33702-33715
4. Gehring, N. H., Lamprinaki, S., Kulozik, A. E., and Hentze, M. W. (2009) Disassembly of exon junction complexes by PYM. Cell 137, 536-548
5. Palacios, I. M., Gatfield, D., St Johnston, D., and Izaurralde, E. (2004) An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753-757
6. Gehring, N. H., Neu-Yilik, G., Schell, T., Hentze, M. W., and Kulozik, A. E. (2003) Y14 and hUpf3b form an NMD-activating complex. Mol Cell 11,
939-949
7. Hachet, O., and Ephrussi, A. (2001) Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr Biol 11,
1666-1674
8. Mohr, S. E., Dillon, S. T., and Boswell, R. E. (2001) The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize
oskar mRNA during Drosophila oogenesis. Genes Dev 15, 2886-2899
9. Tange, T. O., Shibuya, T., Jurica, M. S., and Moore, M. J. (2005) Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein
core. RNA 11, 1869-1883
10. Kashima, I., Yamashita, A., Izumi, N., Kataoka, N., Morishita, R., Hoshino, S., Ohno, M., Dreyfuss, G., and Ohno, S. (2006) Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev 20, 355-367
11. Kataoka, N., and Dreyfuss, G. (2004) A simple whole cell lysate system for in vitro splicing reveals a stepwise assembly of the exon-exon junction complex. J Biol Chem 279, 7009-7013
12. Fribourg, S., Gatfield, D., Izaurralde, E., and Conti, E. (2003) A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat Struct Biol 10, 433-439
13. Hsu Ia, W., Hsu, M., Li, C., Chuang, T. W., Lin, R. I., and Tarn, W. Y. (2005) Phosphorylation of Y14 modulates its interaction with proteins involved in
mRNA metabolism and influences its methylation. J Biol Chem 280, 34507-34512
14. Bedford, M. T., and Richard, S. (2005) Arginine methylation an emerging regulator of protein function. Mol Cell 18, 263-272
15. Ghosh, S. K., Paik, W. K., and Kim, S. (1988) Purification and molecular identification of two protein methylases I from calf brain. Myelin basic
protein- and histone-specific enzyme. J Biol Chem 263, 19024-19033
16. Najbauer, J., Johnson, B. A., Young, A. L., and Aswad, D. W. (1993) Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J Biol Chem 268, 10501-10509
17. Rho, J., Choi, S., Seong, Y. R., Cho, W. K., Kim, S. H., and Im, D. S. (2001)
Prmt5, which forms distinct homo-oligomers, is a member of the protein-arginine methyltransferase family. J Biol Chem 276, 11393-11401
18. Pal, S., Baiocchi, R. A., Byrd, J. C., Grever, M. R., Jacob, S. T., and Sif, S. (2007) Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J 26, 3558-3569
19. Kwak, Y. T., Guo, J., Prajapati, S., Park, K. J., Surabhi, R. M., Miller, B., Gehrig, P., and Gaynor, R. B. (2003) Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol Cell 11, 1055-1066
20. Pal, S., Yun, R., Datta, A., Lacomis, L., Erdjument-Bromage, H., Kumar, J., Tempst, P., and Sif, S. (2003) mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad. Mol Cell Biol 23, 7475-7487
21. Friesen, W. J., Paushkin, S., Wyce, A., Massenet, S., Pesiridis, G. S., Van Duyne, G., Rappsilber, J., Mann, M., and Dreyfuss, G. (2001) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21, 8289-8300
22. Meister, G., Eggert, C., Buhler, D., Brahms, H., Kambach, C., and Fischer, U. (2001) Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11, 1990-1994
23. Friesen, W. J., Wyce, A., Paushkin, S., Abel, L., Rappsilber, J., Mann, M., and Dreyfuss, G. (2002) A novel WD repeat protein component of the methylosome binds Sm proteins. J Biol Chem 277, 8243-8247
24. Pesiridis, G. S., Diamond, E., and Van Duyne, G. D. (2009) Role of pICLn in methylation of Sm proteins by PRMT5. J Biol Chem 284, 21347-21359
25. Brahms, H., Meheus, L., de Brabandere, V., Fischer, U., and Luhrmann, R. (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7, 1531-1542
26. Meister, G., and Fischer, U. (2002) Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J 21, 5853-5863
27. Chari, A., Golas, M. M., Klingenhager, M., Neuenkirchen, N., Sander, B., Englbrecht, C., Sickmann, A., Stark, H., and Fischer, U. (2008) An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs. Cell 135, 497-509
28. Fornerod, M., Ohno, M., Yoshida, M., and Mattaj, I. W. (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051-1060
29. Urlaub, H., Raker, V. A., Kostka, S., and Luhrmann, R. (2001) Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J 20, 187-196
30. Kambach, C., Walke, S., Young, R., Avis, J. M., de la Fortelle, E., Raker, V. A., Luhrmann, R., Li, J., and Nagai, K. (1999) Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96, 375-387
31. Paushkin, S., Gubitz, A. K., Massenet, S., and Dreyfuss, G. (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14, 305-312
32. Raker, V. A., Plessel, G., and Luhrmann, R. (1996) The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J 15, 2256-2269
33. Pellizzoni, L., Yong, J., and Dreyfuss, G. (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298, 1775-1779
34. Friesen, W. J., Massenet, S., Paushkin, S., Wyce, A., and Dreyfuss, G. (2001) SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol Cell 7, 1111-1117
35. Friesen, W. J., and Dreyfuss, G. (2000) Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). J Biol Chem 275, 26370-26375
36. Palacios, I., Hetzer, M., Adam, S. A., and Mattaj, I. W. (1997) Nuclear import of U snRNPs requires importin beta. EMBO J 16, 6783-6792
37. Huber, J., Cronshagen, U., Kadokura, M., Marshallsay, C., Wada, T., Sekine, M., and Luhrmann, R. (1998) Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J 17, 4114-4126 38. Luhrmann, R. (1990) Functions of U-snRNPs. Mol Biol Rep 14, 183-192
39. Will, C. L., and Luhrmann, R. (2001) Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 13, 290-301
40. Diem, M. D., Chan, C. C., Younis, I., and Dreyfuss, G. (2007) PYM binds the cytoplasmic exon-junction complex and ribosomes to enhance translation of spliced mRNAs. Nat Struct Mol Biol 14, 1173-1179
41. Bono, F., Ebert, J., Unterholzner, L., Guttler, T., Izaurralde, E., and Conti, E. (2004) Molecular insights into the interaction of PYM with the Mago-Y14 core of the exon junction complex. EMBO Rep 5, 304-310
42. Bono, F., Cook, A. G., Grunwald, M., Ebert, J., and Conti, E. (2010) Nuclear import mechanism of the EJC component Mago-Y14 revealed by structural studies of importin 13. Mol Cell 37, 211-222
43. Kataoka, N., Yong, J., Kim, V. N., Velazquez, F., Perkinson, R. A., Wang, F., and Dreyfuss, G. (2000) Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol Cell 6, 673-682
44. Reichert, V. L., Le Hir, H., Jurica, M. S., and Moore, M. J. (2002) 5' exon interactions within the human spliceosome establish a framework for exon junction complex structure and assembly. Genes Dev 16, 2778-2791
45. Richard, S., Morel, M., and Cleroux, P. (2005) Arginine methylation regulates IL-2 gene expression: a role for protein arginine methyltransferase 5 (PRMT5). Biochem J 388, 379-386
46. Krapivinsky, G., Pu, W., Wickman, K., Krapivinsky, L., and Clapham, D. E. (1998) pICln binds to a mammalian homolog of a yeast protein involved in regulation of cell morphology. J Biol Chem 273, 10811-10814
47. Tan, E. M. (1989) Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol 44, 93-151
48. Reuter, R., Rothe, S., Habets, W., Van Venrooij, W. J., and Luhrmann, R.(1990) Autoantibody production against the U small nuclear ribonucleoprotein particle proteins E, F and G in patients with connective tissue diseases. Eur J Immunol 20, 437-440
49. Brahms, H., Raymackers, J., Union, A., de Keyser, F., Meheus, L., andLuhrmann, R. (2000) The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J Biol Chem 275, 17122-17129
50. Pu, W. T., Krapivinsky, G. B., Krapivinsky, L., and Clapham, D. E. (1999) pICln inhibits snRNP biogenesis by binding core spliceosomal proteins. MolCell Biol 19, 4113-4120
51. Mattaj, I. W. (1986) Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding. Cell 46, 905-911
52. Zhang, Z., Lotti, F., Dittmar, K., Younis, I., Wan, L., Kasim, M., and Dreyfuss, G. (2008) SMN deficiency causes tissue-specific perturbations in the
repertoire of snRNAs and widespread defects in splicing. Cell 133, 585-600 53. van Hoof, A., and Parker, R. (2002) Messenger RNA degradation: beginning at the end. Curr Biol 12, R285-287
54. Waterhouse, P. M., Wang, M. B., and Lough, T. (2001) Gene silencing as an adaptive defence against viruses. Nature 411, 834-842
55. Chen, C. Y., Gherzi, R., Ong, S. E., Chan, E. L., Raijmakers, R., Pruijn, G. J., Stoecklin, G., Moroni, C., Mann, M., and Karin, M. (2001) AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451-464
56. Mukherjee, D., Gao, M., O'Connor, J. P., Raijmakers, R., Pruijn, G., Lutz, C. S., and Wilusz, J. (2002) The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21, 165-174
57. Muhlrad, D., and Parker, R. (1992) Mutations affecting stability and deadenylation of the yeast MFA2 transcript. Genes Dev 6, 2100-2111
58. Shyu, A. B., Belasco, J. G., and Greenberg, M. E. (1991) Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev 5, 221-231
59. Larimer, F. W., Hsu, C. L., Maupin, M. K., and Stevens, A. (1992)Characterization of the XRN1 gene encoding a 5'-->3' exoribonuclease:sequence data and analysis of disparate protein and mRNA levels of gene-disrupted yeast cells. Gene 120, 51-57
60. Lykke-Andersen, J. (2002) Identification of a human decapping complexassociated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22, 8114-8121
61. van Dijk, E., Cougot, N., Meyer, S., Babajko, S., Wahle, E., and Seraphin, B. (2002) Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21, 6915-6924
62. Wang, Z., Jiao, X., Carr-Schmid, A., and Kiledjian, M. (2002) The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A 99, 12663-12668
63. Raijmakers, R., Egberts, W. V., van Venrooij, W. J., and Pruijn, G. J. (2003) The association of the human PM/Scl-75 autoantigen with the exosome is dependent on a newly identified N terminus. J Biol Chem 278, 30698-30704
64. Allmang, C., Petfalski, E., Podtelejnikov, A., Mann, M., Tollervey, D., and Mitchell, P. (1999) The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. Genes Dev 13, 2148-2158
65. Beelman, C. A., Stevens, A., Caponigro, G., LaGrandeur, T. E., Hatfield, L.,Fortner, D. M., and Parker, R. (1996) An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382, 642-646
66. Mangus, D. A., Evans, M. C., and Jacobson, A. (2003) Poly(A)-bindingproteins: multifunctional scaffolds for the post-transcriptional control of geneexpression. Genome Biol 4, 223
67. Wang, Z., and Kiledjian, M. (2001) Functional link betIen the mammalian exosome and mRNA decapping. Cell 107, 751-762
68. Caponigro, G., and Parker, R. (1995) Multiple functions for thepoly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev 9, 2421-2432
69. Behm-Ansmant, I., Rehwinkel, J., Doerks, T., Stark, A., Bork, P., andIzaurralde, E. (2006) mRNA degradation by miRNAs and GW182 requiresboth CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. GenesDev 20, 1885-1898
70. Dunckley, T., and Parker, R. (1999) The DCP2 protein is required for mRNAdecapping in Saccharomyces cerevisiae and contains a functional MutT motif.EMBO J 18, 5411-5422
71. LaGrandeur, T. E., and Parker, R. (1998) Isolation and characterization of Dcp1p, the yeast mRNA decapping enzyme. EMBO J 17, 1487-1496
72. Piccirillo, C., Khanna, R., and Kiledjian, M. (2003) Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 9, 1138-1147
73. Steiger, M., Carr-Schmid, A., Schwartz, D. C., Kiledjian, M., and Parker, R. (2003) Analysis of recombinant yeast decapping enzyme. RNA 9, 231-238 74. Stevens, A. (1980) An mRNA decapping enzyme from ribosomes of Saccharomyces cerevisiae. Biochem Biophys Res Commun 96, 1150-1155
75. Fenger-Gron, M., Fillman, C., Norrild, B., and Lykke-Andersen, J. (2005) Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20, 905-915
76. Caponigro, G., and Parker, R. (1996) Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol Rev 60, 233-249
77. Hsu, C. L., and Stevens, A. (1993) Yeast cells lacking 5'-->3' exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5' cap structure. Mol Cell Biol 13, 4826-4835
78. Bashkirov, V. I., Scherthan, H., Solinger, J. A., Buerstedde, J. M., and Heyer,W. D. (1997) A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol 136, 761-773
79. Mitchell, P., and Tollervey, D. (2000) Musing on the structural organization of the exosome complex. Nat Struct Biol 7, 843-846
80. Butler, J. S. (2002) The yin and yang of the exosome. Trends Cell Biol 12, 90-96
81. Le Hir, H., Izaurralde, E., Maquat, L. E., and Moore, M. J. (2000) Thespliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19, 6860-6869
82. Lee, H. C., Choe, J., Chi, S. G., and Kim, Y. K. (2009) Exon junction complex enhances translation of spliced mRNAs at multiple steps. Biochem Biophys Res Commun 384, 334-340
83. Ivanov, P. V., Gehring, N. H., Kunz, J. B., Hentze, M. W., and Kulozik, A. E. (2008) Interactions betIen UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J 27, 736-747
84. Singh, G., Jakob, S., Kleedehn, M. G., and Lykke-Andersen, J. (2007)Communication with the exon-junction complex and activation of nonsense-mediated decay by human Upf proteins occur in the cytoplasm. Mol Cell 27, 780-792
85. Gatfield, D., and Izaurralde, E. (2002) REF1/Aly and the additional exon junction complex proteins are dispensable for nuclear mRNA export. J Cell Biol 159, 579-588
86. Dostie, J., and Dreyfuss, G. (2002) Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr Biol 12, 1060-1067
87. Ishigaki, Y., Li, X., Serin, G., and Maquat, L. E. (2001) Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607-617
88. Lejeune, F., Ishigaki, Y., Li, X., and Maquat, L. E. (2002) The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J 21, 3536-3545
89. Zhang, J., Sun, X., Qian, Y., and Maquat, L. E. (1998) Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA
4, 801-815
90. Nagy, E., and Maquat, L. E. (1998) A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 23, 198-199
91. Le Hir, H., Gatfield, D., Izaurralde, E., and Moore, M. J. (2001) The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 20, 4987-4997
92. Schwartz, D. C., and Parker, R. (2000) mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E. Mol Cell Biol 20, 7933-7942
93. Wilusz, C. J., Gao, M., Jones, C. L., Wilusz, J., and Peltz, S. W. (2001) Poly(A)-binding proteins regulate both mRNA deadenylation and decapping in yeast cytoplasmic extracts. RNA 7, 1416-1424
94. Wang, Z., Day, N., Trifillis, P., and Kiledjian, M. (1999) An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol 19, 4552-4560
95. Khanna, R., and Kiledjian, M. (2004) Poly(A)-binding-protein-mediated regulation of hDcp2 decapping in vitro. EMBO J 23, 1968-1976
96. Brengues, M., Teixeira, D., and Parker, R. (2005) Movement of eukaryotic mRNAs betIen polysomes and cytoplasmic processing bodies. Science 310, 486-489 97. Parker, R., and Sheth, U. (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25, 635-646
98. Cougot, N., Babajko, S., and Seraphin, B. (2004) Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165, 31-40
99. Ingelfinger, D., Arndt-Jovin, D. J., Luhrmann, R., and Achsel, T. (2002) The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 8, 1489-1501
100. Sheth, U., and Parker, R. (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808
101. Yu, J. H., Yang, W. H., Gulick, T., Bloch, K. D., and Bloch, D. B. (2005) Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11, 1795-1802
102. Eulalio, A., Behm-Ansmant, I., and Izaurralde, E. (2007) P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8, 9-22
103. Kshirsagar, M., and Parker, R. (2004) Identification of Edc3p as an enhancer of mRNA decapping in Saccharomyces cerevisiae. Genetics 166, 729-739
104. Franks, T. M., and Lykke-Andersen, J. (2007) TTP and BRF proteins nucleate processing body formation to silence mRNAs with AU-rich elements. Genes Dev 21, 719-735
105. Sheth, U., and Parker, R. (2006) Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell 125, 1095-1109
106. Unterholzner, L., and Izaurralde, E. (2004) SMG7 acts as a molecular link betIen mRNA surveillance and mRNA decay. Mol Cell 16, 587-596
107. Franks, T. M., Singh, G., and Lykke-Andersen, J. (2010) Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense- mediated mRNA decay. Cell 143, 938-950
108. Ferraiuolo, M. A., Lee, C. S., Ler, L. W., Hsu, J. L., Costa-Mattioli, M., Luo, M. J., Reed, R., and Sonenberg, N. (2004) A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc Natl Acad Sci U S A 101, 4118-4123
109. Shibuya, T., Tange, T. O., Sonenberg, N., and Moore, M. J. (2004) eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat Struct Mol Biol 11, 346-351
110. Lau, C. K., Diem, M. D., Dreyfuss, G., and Van Duyne, G. D. (2003) Structure of the Y14-Magoh core of the exon junction complex. Curr Biol 13, 933-941
111. Teixeira, D., Sheth, U., Valencia-Sanchez, M. A., Brengues, M., and Parker, R. (2005) Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11, 371-382
112. Coller, J., and Parker, R. (2005) General translational repression by activators of mRNA decapping. Cell 122, 875-886
113. Andrei, M. A., Ingelfinger, D., Heintzmann, R., Achsel, T., Rivera-Pomar, R., and Luhrmann, R. (2005) A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 11, 717-727
114. Eulalio, A., Behm-Ansmant, I., SchIizer, D., and Izaurralde, E. (2007) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27, 3970-3981
115. Denning, G., Jamieson, L., Maquat, L. E., Thompson, E. A., and Fields, A. P. (2001) Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 276, 22709-22714
116. Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y., and Ohno, S. (2001) Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is 65
involved in the regulation of nonsense-mediated mRNA decay. Genes Dev 15, 2215-2228
117. Isken, O., Kim, Y. K., Hosoda, N., Mayeur, G. L., Hershey, J. W., and Maquat, L. E. (2008) Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 133, 314-327
118. Gallie, D. R. (1998) A tale of two termini: a functional interaction betIen the termini of an mRNA is a prerequisite for efficient translation initiation. Gene 216, 1-11
119. Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2, 135-140
120. Mendell, J. T., Medghalchi, S. M., Lake, R. G., Noensie, E. N., and Dietz, H. C. (2000) Novel Upf2p orthologues suggest a functional link betIen translation initiation and nonsense surveillance complexes. Mol Cell Biol 20, 8944-8957
121. Vilela, C., Velasco, C., Ptushkina, M., and McCarthy, J. E. (2000) The eukaryotic mRNA decapping protein Dcp1 interacts physically and functionally with the eIF4F translation initiation complex. EMBO J 19, 4372-4382
122. Schwartz, D. C., and Parker, R. (1999) Mutations in translation initiation factors lead to increased rates of deadenylation and decapping of mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 19, 5247-5256
123. Kahvejian, A., Svitkin, Y. V., Sukarieh, R., M'Boutchou, M. N., and Sonenberg, N. (2005) Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 19, 104-113
124. Aizer, A., Brody, Y., Ler, L. W., Sonenberg, N., Singer, R. H., and Shav-Tal, Y. (2008) The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell 19, 4154-4166
125. Chen, Q., Adams, C. C., Usack, L., Yang, J., Monde, R. A., and Stern, D. B. (1995) An AU-rich element in the 3' untranslated region of the spinach chloroplast petD gene participates in sequence-specific RNA-protein complex formation. Mol Cell Biol 15, 2010-2018
126. Bakheet, T., Frevel, M., Williams, B. R., Greer, W., and Khabar, K. S. (2001) ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res 29, 246-254
127. Fukami, M., Kirsch, S., Schiller, S., Richter, A., Benes, V., Franco, B., Muroya, K., Rao, E., Merker, S., Niesler, B., Ballabio, A., Ansorge, W., Ogata, 66 T., and Rappold, G. A. (2000) A member of a gene family on Xp22.3, VCX-A, is deleted in patients with X-linked nonspecific mental retardation. Am J Hum Genet 67, 563-573
128. Jiao, X., Wang, Z., and Kiledjian, M. (2006) Identification of an mRNA-decapping regulator implicated in X-linked mental retardation. Mol Cell 24, 713-722
129. Tarpey, P. S., Raymond, F. L., Nguyen, L. S., Rodriguez, J., Hackett, A., Vandeleur, L., Smith, R., Shoubridge, C., Edkins, S., Stevens, C., O'Meara, S., Tofts, C., Barthorpe, S., Buck, G., Cole, J., Halliday, K., Hills, K., Jones, D., Mironenko, T., Perry, J., Varian, J., Ist, S., Widaa, S., Teague, J., Dicks, E., Butler, A., Menzies, A., Richardson, D., Jenkinson, A., Shepherd, R., Raine, K., Moon, J., Luo, Y., Parnau, J., Bhat, S. S., Gardner, A., Corbett, M., Brooks, D., Thomas, P., Parkinson-Lawrence, E., Porteous, M. E., Warner, J. P., Sanderson, T., Pearson, P., Simensen, R. J., Skinner, C., Hoganson, G., Superneau, D., Wooster, R., Bobrow, M., Turner, G., Stevenson, R. E., Schwartz, C. E., Futreal, P. A., Srivastava, A. K., Stratton, M. R., and Gecz, J. (2007) Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nat Genet 39, 1127-1133
130. Black, D. L., and Pinto, A. L. (1989) U5 small nuclear ribonucleoprotein: RNA structure analysis and ATP-dependent interaction with U4/U6. Mol Cell Biol 9, 3350-3359
131. Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12, 7035-7056
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23662-
dc.description.abstract核醣核酸(RNA)結合蛋白Y14 會和Mago 形成穩定的heterodimer,並為外顯子接合複合體(exon junction complex)當中的核心蛋白,會參與訊息核醣核酸(mRNA)的剪接(splicing)以及在細胞質裡進行的mRNA 品質管理過程中扮演重要的角色。我利用Y14/Magoh heterodimer 來尋找可能會與其產生交互作用的蛋白質,我發現Y14/Magoh 會和甲基轉移酶5(PRMT5)以及由PRMT5、pICln、MEP50 所組成的甲基轉移酶複合體(methylosome)有交互作用。我證明Y14 會促進PRMT5 的酵素活性,並形成大型的蛋白複合體。當過度表現Y14 時,PRMT5 之受質Sm 蛋白的甲基化程度有增加的情形,當Y14 的表現被抑制後,Sm 蛋白的甲基化程度會下降。Sm 蛋白為剪接核醣小體(small nuclear ribonucleoprotein, snRNP)之核心蛋白,我的研究結果指出Y14 會經由促進甲基轉移酶複合體之酵素活性,提高Sm 蛋白的甲基化程度,進而調節snRNP 在細胞質中的組合反應。
此外,我也探討Y14 之磷酸化在mRNA 剪接後的代謝過程中所扮演的角色。我發現磷酸化之後的Y14 會與mRNA 降解(mRNA decay)有關的蛋白質有較好的交互作用,包括去蓋蛋白複合體(decapping complex)、外切酶(exonuclease)、以及外切酶複合體(exosome)。另一個會與Y14/Magoh 有交互作用的PYM 蛋白也會與mRNA 降解有關的蛋白產生反應。經過實驗證實,我發現Y14 是一個cap結合蛋白,會利用其N 端蛋白區域與mRNA 的cap 結構結合。當過度表現Y14時,含有AU-rich element 之reporter 的半衰期會有增加的情形,此結果說明Y14會參與調節mRNA 的穩定性,也許是經由Y14 與cap 結構結合能力所控制。觀察細胞質內的核醣核酸降解體(processing body, P-body)是否會受到Y14 的影響時發現當Y14 的表現被抑制後,P-body 的數量會大幅下降,而當磷酸化的Y14過度表現時會促使P-body 在細胞質內聚集。我的研究結果顯示Y14 提供P-body形成與mRNA 降解之間的連結,Y14 之磷酸化可能會調節mRNA 剪接後蛋白複合體的形成以及Y14 參與mRNA 降解之反應。
zh_TW
dc.description.abstractThe RNA-binding protein Y14 heterodimerizes with Mago as the core of the exon junction complex (EJC) during precursor mRNA splicing and plays a role in mRNA surveillance in the cytoplasm. Using the Y14/Magoh heterodimer as bait in a screening for its interacting partners, I identified the protein-arginine methyltransferase PRMT5 as a candidate. I show that Y14 and Magoh, but not other factors of the EJC, interact with the cytoplasmic PRMT5-containing methylosome. I further provide evidence that Y14 promoted the activity of PRMT5 in ethylation of Sm proteins of the small nuclear ibonucleoprotein (snRNP) core, whereas knockdown of Y14 reduced their methylation level. Moreover, Y14 overexpression induced the formation of a large, active, and snRNP-associated methylosome complex.
However, Y14 may only transiently associate with the snRNP assembly complex in the cytoplasm. Together, my results suggest that Y14 facilitates Sm protein methylation probably by its activity in promoting the formation or stability of the methylosome-containing complex. I am currently exploring the roles of phosphorylation of Y14 in the post-splicing mRNA metabolism pathways. I found that the phosphomimetic Y14 preferred to interact with several mRNA degradation factors, including the mRNA decapping complex, decapping activators, 5’-3’ exonuclease, and the exosome-associated protein. Moreover, PYM, a partner of Y14 and Magoh, also associated with mRNA decay factors, and such associations were not dependent on Y14. In contrast, PYM competed for the interactions of mRNA decay factors with Y14. I also examined the cap-binding ability of Y14. I observed that Y14 directly bound the mRNA cap structure via its amino-terminal region and neither Magoh nor PYM abolished this interaction. The prolonged half-life of AU-rich element-containing reporter mRNA in Y14-overexpressing cells indicated that Y14 might be involved in regulation of mRNA stability. Furthermore, depletion of Y14 resulted in processing body (P-body) disappearance and overexpression of the phosphomimetic Y14 increased P-body accumulation suggesting a link between P-body formation and mRNA degradation. Taken together, I characterized the roles of Y14 in the post-splicing complexes and the activity of Y14 in mRNA decay pathway probably is regulated by its phosphorylation status.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:06:54Z (GMT). No. of bitstreams: 1
ntu-100-D95448009-1.pdf: 74311744 bytes, checksum: 6f37622b810e818ca26c59bc0148e347 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Section I: The role of Y14 in snRNP biogenesis 1
1. Introduction 2
2. Results 6
3. Discussion 14
Section II: The role of Y14 in post-splicing complex assembly 19
1. Introduction 20
2. Results 25
3. Discussion 34
Materials and methods 41
Abbreviations 54
References 57
Figures 68
Supplemental Figures 92
dc.language.isoen
dc.title核醣核酸結合蛋白 Y14 參與剪接核醣小體生合成
與剪接後複合體組成之研究
zh_TW
dc.titleThe role of the RNA-binding protein Y14 in snRNP biogenesis and post-splicing complex assemblyen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee呂勝春,李芳仁,鄭淑珍,張典顯
dc.subject.keyword外顯子接合複合體,剪接核醣小體,甲基轉移&#37238,複合體,核醣核酸降解,核醣核酸降解體,zh_TW
dc.subject.keywordexon junction complex,snRNP,methylosome,mRNA decay,processing body,en
dc.relation.page93
dc.rights.note未授權
dc.date.accepted2011-06-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
72.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved