請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23629
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛文証(Wen-Jeng Hsueh) | |
dc.contributor.author | Tsung-Lin Tsai | en |
dc.contributor.author | 蔡宗霖 | zh_TW |
dc.date.accessioned | 2021-06-08T05:06:32Z | - |
dc.date.copyright | 2011-07-27 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-05 | |
dc.identifier.citation | [1] P. M. Ajayan and O. Z. Zhou, “Applications of Carbon Nanotubes”, Top. Appl. Phys., vol. 80, pp. 391 – 425 (2001)
[2] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, vol. 354, pp. 56 – 58 (1991) [3] L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. Nicholas G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, Wen-Fang Hwang, R. H. Hauge, J. E. Fischer and R. E. Smalley, “Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers”, Science, vol. 305, pp. 1447 – 1450 (2004) [4] M. Zhang, K. R. Atkinson and H. Baughman, “Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology”, Science, vol. 306, pp. 1358 – 1361 (2004) [5] J. H. Hafner, C. L. Cheung and C. M. Lieber, “Growth of nanotubes for probe microscopy tips”, Nature, vol. 398, pp. 761 – 762 (1999) [6] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert and R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy”, Nature, vol. 384, pp. 147 – 150 (1996) [7] J. Lefebvre, R. D. Antonov, M. Radosavljevic, J. F. Lynch, M. Llaguno and A. T. Johnson, “Single-wall carbon nanotube based devices”, Carbon, vol. 38, pp. 1745 – 1749 (2000) [8] V. N. Popov, “Carbon nanotube: properties and application”, Materials Science and Engineering R, vol. 43, pp. 61 – 102 (2004) [9] P. R. Wallace, “The Band Theory of Graphite”, Physical Review, vol. 71, pp. 622 –634 (1947) [10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, vol. 306, pp. 666 – 669 (2004) [11] E. Osawa, “Superaromaticity”, Kagaku, vol. 25, pp. 854 – 863 (1970) [12] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, “ : Buckminsterfullerene”, Nature, vol. 318, pp. 162 – 163 (1985) [13] W. Andreoni, The Physics of Fullerene-Based and Fullerene-Related Materials. Kluwer Academic, (2000) [14] T. V. Hughes and C. R. Chambers, “Manufacture of Carbon Filaments”, US Patent, vol. 405, pp. 480 (1889) [15] J. A. E. Gibson, “Early nanotubes ?”, Nature, vol. 359, pp. 369 (1992) [16] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, vol. 363, pp. 605 – 607 (1993) [17] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, vol. 363, pp. 603 – 605 (1993) [18] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Mater, vol. 6, pp. 183 – 191 (2007) [19] S. M.-M Dubois, Z. Zanolli, X. Declerck and J.-C. Charlier, “Electronic properties and quantum transport in Graphene-based nanostructures”, The European Physical Journal B, vol. 72, pp. 1 – 24 (2009) [20] H. S. P. Wong and D. Akinwande, Carbon Nanotube and Graphene Device Physics. Cambridge University Press, (2011) [21] A. Cresti, N. Nemec, B. Biel, G. Niebler, F. Triozon, G. Cuniberti and S. Roche, “Charge Transport in Disordered Graphene-Based Low Dimensional Materials”, Nano Research, vol. 1, pp. 361 – 394 (2008) [22] M. S. Dresselhaus, G. Dresselhaus and R. Saito, “Physics of carbon nanotubes”, Carbon, vol. 33, pp. 883 – 891 (1995) [23] M. J. O’Connell, Carbon Nanotubes Properties and Applications. CRC Press, (2006) [24] S. Reich, C. Thomsen and J. Maultzsch, Carbon Nanotubes Basic Concepts and Physical Properties. WILEY-VCH Verlag GmbH & Co. KGaA Weinheim, (2004) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23629 | - |
dc.description.abstract | 本論文主要目的在探討無外加任何場的情況下,一維奈米石墨帶與奈米碳管之電子特性。首先對石墨烯的觀念和理論做基本的介紹,之後針對這兩種不同的結構(奈米石墨帶和奈米碳管),沿著高對稱性切口方向所獲得的鋸齒狀與手椅狀結構中,利用緊束模型近似法來計算色散關係式,接著再從這些色散關係式去探討能帶結構的一些物理特性。透過數值分析結果顯示,對於奈米石墨帶而言,它的電子特性是由邊界結構與寬度所決定。所有的鋸齒狀結構都是金屬特性,而手椅狀結構只有在寬度為 是金屬(其中 是一個正整數),其餘的情況下皆會有能隙產生,且能隙是隨著奈米石墨帶寬度的增加而減小。此外,對於奈米碳管來說,導電特性主要是由本身自己的幾何結構所決定。藉著改變螺旋角及直徑的不同,單壁奈米碳管會呈現出金屬或半導體特性。在半導體性質的奈米碳管中,會發現到直徑與能隙之間的關係是成反比。因此,可以非常容易地調節其能隙大小。 | zh_TW |
dc.description.abstract | The main purpose of this thesis is to investigate the electronic properties of 1D graphene nanoribbons and carbon nanotubes without applied fields. At first, the concept of grapheme is introduced, and then two different structures(graphene nanoribbons and carbon nanotubes) is cut in the ideal sheet along the highly symmetric directions to obtain zigzag and armchair edge. Some physical properties of energy dispersion relations can be discussed by tight-binding approximation. The numerical analysis shows that the electronic properties of graphene nanoribbons are dominated by the edge structures and ribbon widths. Even though all of the zigzag nanoribbons are metallic, armchair nanoribbons are metallic only for N=3m+2 (where m is a positive integer), and which generates band gaps in the other case. The band gaps decrease as the widths of the armchair graphene nanoribbons increase. Furthermore, for carbon nanotubes, the electronic properties are determined by their geometry. The metallic or semiconducting characters of SWCNT are decided by changing the diameter and chirality. In semiconducting carbon nanotubes, the band gaps of the tubes are inversely proportional to the diameter. Therefore, the band gaps can be adjusted easily. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:06:32Z (GMT). No. of bitstreams: 1 ntu-100-R98525024-1.pdf: 963128 bytes, checksum: f772186bf073ec55c4826d2f5f3aba34 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目 錄
中文摘要...................................................i 英文摘要..................................................ii 目錄.....................................................iii 圖目錄.....................................................v 表目錄..................................................viii 符號表....................................................ix 第一章 導論.............................................1 1.1 背景與研究動機..................................1 1.2 文獻回顧 ........................................3 1.3 論文架構 ........................................4 第二章 石墨烯材料基本特性...............................6 2.1 晶格結構........................................6 2.1.1 碳原子..........................................6 2.1.2 蜂巢狀晶格......................................8 2.2 布洛赫定理(Bloch theorem)......................10 2.3 能帶結構.......................................11 2.3.1 緊束模型(Tight-binding model)..................11 (a)無overlap的影響.............................13 (b)有overlap的影響.............................15 (c)數值分析與討論..............................16 第三章 奈米石墨帶的能帶結構............................22 3.1 奈米石墨帶.....................................22 3.2 鋸齒狀奈米石墨帶(zigzag nanoribbon)............23 3.2.1 緊束模型(Tight-binding model)..................23 3.2.2 數值分析與討論.................................28 3.3 手椅狀奈米石墨帶(armchair nanoribbon)..........35 3.3.1 緊束模型(Tight-binding model)..................35 3.3.2 數值分析與討論.................................39 第四章 奈米碳管的能帶結構 ..............................47 4.1 單壁奈米碳管(SWCNT)的晶體結構與電子特性........47 4.2 手椅狀單壁奈米碳管(a-SWCNT)....................53 4.2.1 緊束模型(Tight-binding model)..................53 4.2.2 數值分析與討論.................................55 4.3 鋸齒狀單壁奈米碳管(z-SWCNT)....................63 4.3.1 緊束模型(Tight-binding model)..................63 4.3.2 數值分析與討論.................................64 第五章 結論與未來展望...................................75 5.1 結論...........................................75 5.2 未來展望 .......................................76 參考文獻.................................................77 | |
dc.language.iso | zh-TW | |
dc.title | 石墨烯與奈米碳管之電子特性 | zh_TW |
dc.title | Electronic properties in graphene and carbon nanotubes | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳國在,余宗興,林志昌 | |
dc.subject.keyword | 石墨烯,奈米石墨帶,奈米碳管,鋸齒狀,手椅狀,緊束模型近似法,折疊近似法,能帶結構, | zh_TW |
dc.subject.keyword | graphene,graphene nanoribbons,carbon nanotubes,zigzag,armchair,tight-binding approximation,zone-folding approximation,band structure, | en |
dc.relation.page | 79 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-07-05 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 940.55 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。