請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23624完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇銘嘉(Ming?Jai Su) | |
| dc.contributor.author | Chi‐Hsuan Chen | en |
| dc.contributor.author | 陳麒亘 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:06:29Z | - |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-06 | |
| dc.identifier.citation | Ananthakrishnan R, Hallam K, Li Q, Ramasamy R. JAK-STAT pathway in cardiac ischemic stress. Vascular Pharmacology. 2005; 43:353-356.
Armstrong SC. Protein kinase activation and myocardial ischemia / reperfusion injury. Cardiovascular Research. 2004; 61:427-436. Balligand JL, Kelly RA, Marsden PA, Smith TW, Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci USA. 1993; 90:347-351. Barry SP, Townsend PA, Latchman DS, Stephanou A. Role of the JAK-STAT pathway in myocardial injury. Trends in Molecular Medicine. 2006; 13:82-89. Bodh IJ. Nitric oxide and cardioprotection during ischemia-reperfusion. Heart Fail Rev. 2002; 7:391-405. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH. Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circulation Research. 1996; 79:162-173. Bolli R, Triana F, Jeroudi MO. Postischemic mechanism and vascular dysfunction (myocardial “stunning and microvascular “stunning”) and the effect of calcium-channel blocker on ischemia/reperfusion injury. Clin Cardiol. 1989; 141:3657-3667. Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a overview of a decade of research. J Mol Cell Cardiol. 2001; 33:1897-1918. Borutaite V, Jekabsone A, Morkuniene R, Brown GC. Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia. Journal of Molecular and Cellular Cardiology. 2003; 35:357-366. Buja LM. Myocardial ischemia and reperfusion injury. Cardiovascular Pathology. 2005; 14:170-175. Chiao CW, Lee SS, Wu CC, Su MJ. Thaliporphine increase survival rate and attenuates multiple organ injury in LPS-induced endotoxaemia. Naunyn Schmiedebergs Arch Pharmacol. 2005; 371:34-43. Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning. Staccato reperfusion reintroduces oxygen and perpetuates myocardial myocardial acidosis. Circulation. 2007; 115:1895-1903. Di Lisa F, Bernardi P. Mitochondria and ischemia-reperfusion injury of the heart: Fixing a hole. Cardiovasc Res. 2006; 70:199-209. Engler RL, Schmid-Schonbein GW, Pavelec RS. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol. 1983; 111:98-111. Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury and preconditioning. Br J Pharmacol. 2003; 138:532-543. Fleet WF, Johnson TA, Graebner CA, Gettes LS. Effect of serial brief ischemic episodes on extracellular K+, pH, and activation in the pig. Circulation. 1985; 72:922-932. Gateau-Roesch O, Argaud L, Ovize M. Mitochondrial permeability transition pore and postconditioning. Cardiovasc Res. 2006; 70:264-273. Go Lo, Murry CE, Richard VJ, Weischedel GR, Jennings RB, Reimer KA. Myocardial neutrophil accumulation during reperfusion after reversible or irreversible injury. Am J Physiol. 1988; 255:H188-H198. Gross ER, Gross GJ. Ischemic preconditioning and myocardial infarction: an update and perspective. Drug Discov Today Dis Mech. 2007; 4:165-174. Gurevitch J, Frolkis I, Yuhas Y, Paz Y, Matsa M, Mohr R Yakirevich V. Tumor necrosis factor-alpha is released from the isolated heart undergoing ischemia and reperfusion. J Am Coll Cardiol. 1996; 28:247-252. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion – a target for cardioprotection. Cardiovascular Research. 2004; 61:372-385. Hansen PR. Role of neutrophils in myocardial ischemia and reperfusion. Circulation. 1995; 91:1872-1885. Hare JM, Colucci WS. Role of nitric oxide in the regulation of myocardial function. Prog Cardiovasc Dis. 1995; 38:155-166. Harrison R. Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med. 2002; 33:774-797. Hartman JC, Anderson DC, Wiltse AL, Lane CL, Rosenbloom CL, Manning AM, Humphrey WR, Wall TM, Shebuski RJ. Protection of ischemic/reperfused canine myocardium by CL18/6, a monoclonal antibody to adhesion molecule ICAM-1. Cardiovasc Res. 1995; 30:47–54. Hattori Y, Akimoto K, Murakami Y, Kasai K. Pyrrolidine dithiocarbamate inhibits cytokine-induced VCAM-1 gene expression in rat cardiac myocytes. Mol Cell Biochem. 1997; 177:177-181. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia–reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovascular Research. 2004; 61:448-460. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trendsin Cardiovascular Medicine. 2005; 15:69-75. Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signaling: taking a RISK for cardioprotection. Heart Failure Reviews. 2007; 12:217-234. Hausenloy DJ, Scorrano L. Targeting cell death. Clin Pharmacol Ther. 2007; 82:370-373. Henninger DD, Panes J, Eppihimer M, Russell J, Gerritsen M, Anderson DC, Granger DN. Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol. 1997; 158:1825-1832. Henson PM, Johnston RB Jr. Tissue injury in inflammation. Oxidants, proteinases, and cationic proteins. J Clin Invest. 1987; 79:669-674 Honda HM, Korge P, Weiss JN. Mitochondria and ischemia/reperfusion injury. The New York Academy of Sciences. 2005; 1047:248-258. Hung LM, Lee MJ, Su MJ. Cardioprotective effect of thaliporphine on ischemic reperfusion rat heart. The eighth Southeast Asian-Western Pacific Regional Meeting of Pharmacologist. 1999. Abstract No P005. Hung LM, Lee MJ, Chen JK, Huang SS, Su MJ. Thaliporphine protects ischemic and ischemic-reperfused rat hearts via an NO-dependent mechanism. Drug Development Research. 2001; 52:446-453. Javadov S, Karmazyn M. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cellular Physiology and Biochemistry. 2007; 20:1-22. Kacimi R, Karliner JS, Koudssi F, Long CS. Expression and regulation of adhesion molecules in cardiac cells by cytokines: response to acute hypoxia. Circ Res. 1998; 82:576-586. Kang S, Yang Y. Coronary microvascular reperfusion injury and no-reflow in acute myocardial infarction. Clinical & Investigative Medicine. 2007; 30:E133-E145. Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation. 2001; 104:2981-2989. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, and Sabbadini RA. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest. 1996; 98:2854-2865. Lee SS, Yang HC. Isoquinoline alkaloids from Neolitsea Konishii. Chin Chem Soc. 1992; 39:189. Lefer DJ, Flynn DM, Anderson DC, Buda AJ. Combined inhibition of P-selectin and ICAM-1 reduces myocardial injury following ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 1996; 271:H2421-H2429. Lefer DJ, Granger DN. Oxidative stress and cardiac disease. Am J Med. 2000; 109:315-323. Libby P, Thersoux P. Pathophysiology of coronary artery disease. Circulation. 2005; 111: 3481-3488. Luster AD. Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med. 1998; 338:436-445. Ma XL, Lefer DJ, Lefer AM, Rothlein R. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion. Circulation. 1992; 86:937-946. Ma XL, Weyrich AS, Lefer DJ, Leter AM. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res. 1993; 72:403-412. Martinou JC, Green DR. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol. 2001; 2:63-67. Maxwell SRJ, Lip GYH. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol. 1997; 58:95-117. McCord JM. Free radicals and myocardial ischemia: overview an outlook. Free Radic Biol Med. 1988; 4:9-14. Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol Regul Integr Comp Physiol. 1998; 274:R577-R595. Miura T, Miki T. GSK-3β, a therapeutic target for cardiomyocyte protection. Circulation Journal. 2009; 73:1184-1192. Miyamoto S, Murphy AN, Browmn JH. Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue. Journal of Bioenergetics and Biomembranes. 2009; 41:169-180. Moens AL, Claeys MJ, Timmermans JP, Vrints CJ. Myocardial ischemia/reperfusion – injury, a clinical view on a complex pathophysiological process. International Journal of Cardiology. 2005; 100:179-190. Monassier JP. Reperfusion injury in acute myocardial infarction. From bench to cath lab. Part 1:Basic considerations. Archives of Cardiovascular Disease. 2008; 101:491-500. Murphy E, Steenbergen C. Mechanism underlying acute protection from cardiac ischemia-reperfusion injury. Physiological Reviews. 2008; 88:581-609. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74:1124-1136. Nikolaos GF, Wayne SC, Mark LE. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002; 53:31-47. Node K, Kitakaze M, Kosaka H, Komamura K, Minamino T, Inoue M, Tada M, Hori M, Kamada T. Increased release of NO during ischemia reduces myocardial contractility and improves metabolic dysfunction. Circulation. 1996; 93:356-364. Pankuweit S, Jobmann M, Crombach M, Portig I, Alter P, Kruse T, Hufnagel G, Maisch B. Cell death in inflammatory heart muscle disease—apoptosis or necrosis? Herz. 1999; 24:211-218. Park JL, Lucchesi BR. Mechanisms of myocardial reperfusion injury. Ann Thorac Surg. 1999; 68:1905-1912. Pepine CJ, Nichols WW. The pathophysiology of chronic ischemic heart disease. Clin Cardiol. 2007; 30:I-4-9. Piper HM, Meuter K, Schäfer C. Cellular mechanism of ischemia-reperfusion injury. Ann Thorac Surg. 2003; 75:S644-648. Powers SK, Murlasits Z, Wu M, Kavazis AN. Ischemia-reperfusion-induced cardiac injury: a brief review. Med Sci Sports Exerc. 2007; 39:1529-1536. Rainer S, Malte K, Gerd H. Nitric oxide in myocardial ischemia-reperfusion injury. Cardiovasc Res. 2004; 61:402-413. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999; 340:115-126. Ryan GM, Joanne S, Paul H. Cardiac markers and point-of-care testing: a perfect fit. Crit Care Nurs. 2001; 24:54-61. Sack M. Tumor necrosis factor-alpha in cardiovascular biology and the potential role for anti-tumor necrosis factor-alpha therapy in heart disease. Pharmacol Ther. 2002; 94:123-135. Shames BD, Barton HH, Reznikov LL, Cairns CB, Banerjee A, Harken AH Meng X. Ischemia alone is sufficient to induce TNF-alpha mRNA and peptide in the myocardium. Shock. 2002; 17:114-119. Silverman HM, Stern MD. Ionic basis of ischemic cardiac injury: insight from cellular studies. Cardiovasc Res. 1994; 28:581-597. Simpson PJ, Lusshesi BR. Free radicals and myocardial ischemia and reperfusion injury. J Lab Clin Med. 1987; 110: 13-30. Smith EF 3rd, Egan JW, Bugelski PJ, Hillegass LM, Hill DE, Griswold DE. Temporal relation between neutrophil accumulation and myocardial reperfusion injury. Am J Physiol. 1988; 255:H1060-H1068. Smith CW, Entman ML, Lane CL, Beaudet AL, Ty TI, Youker K, Hawkins HK, Anderson DC. Adherence of neutrophils to canine cardiac myocytes in vitro is dependent on intercellular adhesion molecule-1. J Clin Invest. 1991; 88:1216-1223. Su MJ, Chang YM, Chi JF, Lee SS. Thaliporphine, a positive inotropic agent with a negative chronotropic action. Eur J Pharmacol. 1994; 254:141-150. Terada LS, Rubinstein JD, Lesnefsky EJ, Horwitz LD, Leff JA. Repine JE. Existence and participation of xanthine oxidase in reperfusion injury of ischemia rabbit myocardium. Am J Physiol. 1991; 260:H805-H810. Tsao PS, Aoki N, Lefer DJ, Johnson G 3rd, Lefer AM. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation. 1990; 82:1402-1412. Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res. 2004; 61:481-497. Vinten-Johansen J, Zhao ZQ, Zatta AJ, Kin H, Halkos ME, KerendiF. Postconditioning a new link in nature’s armor against myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2005; 100:295-310. Walker MJ, Curtis MJ, Hearse DJ, Campbell RW, Janse MJ, Yellon DM, Cobbe SM, Coker SJ, Harness JB, Harron DW, et al. The Lambeth Conventions: guidelines for the study of arrhythmias in ischemia infarction, and reperfusion. Cardiovasc Res. 1988; 22:447-455. Werns SW, Luchiesi BR. Myocardial ischemia and reperfusion: the role of oxygen radicals in tissue injury. Card Drug Therp. 1989; 2:761-769. Xie YW, Wolin MS. Role of nitric oxide and its interaction with superoxide in the suppression of cardiac muscle mitochondrial respiration. Involvement in response to hypoxia/reoxygenation. Circulation. 1996; 94:2580-2586. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007; 257:1121-1135. Yoshiki N. The role of nitric oxide in cardiac ischemia-reperfusion injury. Jpn Circ J. 1997; 61:119-132. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH. Inhibition of extracellular signal - regulated kinase enhances ischemia/reoxygenation–induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ. Res. 2000; 86:692-699. Zhao ZQ, Vinten-Johansen J. Myocardial apoptosis and ischemic preconditioning. Cardiovasc Res. 2002; 55:438-455. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. American Journal of Physiology – Heart and Circulatory Physiology. 2003; 285:H579-H588. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23624 | - |
| dc.description.abstract | 背景:心肌梗塞是現在世界上導致死亡的重要原因之一;在過去,急性心肌梗塞之後最常做的治療即是進行冠狀動脈再灌流 (reperfusion),然而,恢復原先缺血心肌之血流往往會造成所謂的缺血-再灌流損傷 (ischemia-reperfusion injury)。心肌缺血-再灌流損傷與急性發炎反應有關,其原本是有利於組織修復之起始及痂 (scar) 的形成,但是另一方面又會惡化心肌損傷的情形;而且通常再灌流所造成之傷害更甚於缺血所導致的。缺血-再灌流之病理成因十分複雜,像是氧化壓力之產生 (會導致DNA斷裂以及脂質和蛋白質的過氧化) 及發炎反應 (會使得補體與嗜中性白血球活化) 皆會導致再灌流損傷。如何減少再灌流損傷便成為現今治療上的重要課題。TM-1-1 DP是一種結構為phenolic aporphine生物鹼之衍生物,其為(+)-thaliporphine之新衍生物。之前的研究發現(+)-thaliporphine之衍生物TM-1及TM-1-1皆具有減少缺血-再灌流損傷之效果,但由於其中樞副作用太高,較不具臨床上之實用價值,本篇研究使用新合成之(+)-thaliporphine水溶性衍生物TM-1-1 DP,測試其是否亦具有心臟保護作用及其是否具有更好之安全性。
方法:本篇實驗使用已麻醉之公的SD大鼠,使其心肌遭受到一小時缺血-兩小時再灌流,並於再灌流或缺血前十分鐘投予各種劑量 (0.005-1 mg/kg) 之TM-1-1 DP或是只給生理食鹽水,來觀察大鼠之平均動脈血壓、心跳、心電圖以及心肌壞死區域有何變化;且抽血去測量血清中之CK-MB、LDH和NO是否會受到影響;另外,本篇實驗也於此模式中收取大鼠之缺血部位組織,進行西方點墨法來測試一些與缺血-再灌流有關的蛋白質,觀察其是否會受到TM-1-1 DP之影響而發生改變以探究其機轉;再者,對正常大鼠尾靜脈注射高劑量的TM-1-1 DP,測試其是否具有安全性。 結果:由實驗結果顯示,TM-1-1 DP在濃度為0.015到0.15 mg/kg之間能夠減少心肌壞死區域;而其濃度在0.05 mg/kg時展現了減少心肌壞死區域之最佳療效。而在有效劑量之下,TM-1-1 DP並不會對活體大鼠之平均動脈血壓及心跳造成影響;而且在注射了TM-1-1 DP有效劑量之六十倍藥物後,並不會造成實驗動物有任何死亡之情形出現;更甚者,TM-1-1 DP能夠減少細胞壞死指標CK-MB和LDH,且能夠增加eNOS、NO及其他有助於增進心肌細胞存活之分子 (如AKT和ERK等),而且還可以降低一些發炎物質 (如TNFα) 和其他會導致細胞死亡蛋白之表現量。 結論:本篇研究發現,TM-1-1 DP能夠減少缺血-再灌流所導致之損傷,其機轉可能是藉由活化eNOS、NO、AKT、ERK而產生心臟保護之效果,並且能夠降低iNOS、TNFα、VCAM、P38、Caspase 3等蛋白之表現而使得心肌細胞死亡之情形減少,進而抑制心肌缺血-再灌流之損傷;然而,更多的心臟保護機制仍有待更深入之研究來釐清。 | zh_TW |
| dc.description.abstract | Background: Myocardial infarction is the major cause of death in the world. In the past, coronary artery reperfusion therapy has become an established management for acute myocardial infarction. However, restoration of blood flow to previously ischemic myocardium results in the so-called ischemia-reperfusion (I/R)-injury. Myocardial ischemia-reperfusion injury is associated with an acute inflammatory process that may be beneficial in initiating tissue repair and scar formation, but it is also known to extend myocardial injury. It is well known that injury from reperfusion could be more serious than ischemia. The pathogenesis of ischemia-reperfusion injury consists of many mechanisms. For example, generation of reactive oxygen (breaking DNA , peroxidizing lipid or protein) or inflammatory responses (complement or neutrophil activation) might cause reperfusion injury. Therapy to reduce reperfusion injury has become an important topic today. TM-1-1 DP, an aporphine alkaloid derivative, is a new molecular derivative of thaliporphine. Previous studies have demonstrated that TM-1 and TM-1-1 which are the derivatives of thaliporphine had beneficial effects for the treatment of ischemia-reperfusion injury. However, they may cause central side effects such as tremor when infused at 3 to 5 folds of therapeutic doses. This study used TM-1-1 DP which is a new water-soluble derivative of thaliporphine in order to investigate its protective effects of cardiovascular system and its safety.
Method: The male anaesthetized Sprague-Dawley (SD) rats subjected to myocardial ischemia (60 min) and reperfusion (2 h) were treated with TM-1-1 DP (0.005-1 mg/kg) or with vehicle (saline only) at 10 min before ischemia or reperfusion. We observed their mean arterial blood pressure, heart rate, ECG and infract size during and after the periods of ischemia-reperfusion. The CK-MB, LDH and NO of the serum were measured and the western blot was also used in the present study to characterize the mechanism of TM-1-1 DP effect. Moreover, the normal rats were injected with TM-1-1 DP of high doses so as to test its security. Results: TM-1-1 DP at 0.015 to 0.15 mg/kg was found to reduce the infarct size. TM-1-1 DP at 0.05 mg/kg was found to possess maximal effects on reducing the infarct size. At the effective dose, TM-1-1 DP does not affect the mean arterial blood pressure and heart rate in vivo. No experimental animal died in the study when given 60 times of effective dose of TM-1-1 DP. In addition, TM-1-1 DP could reduce the CK-MB and LDH which are the indicators of the cell necrosis. Furthermore, TM-1-1 DP not only increased the contents of eNOS, NO and the cell survival proteins (AKT and ERK) but also decreased the expression of the inflammatory mediators (TNFα) and the cell death proteins. Conclusion: The results of this study suggest that TM-1-1 DP is beneficial for the treatment of reperfusion-induced myocardial damage. The cardioprotective mechanism is that TM-1-1 DP can activate the eNOS, NO, AKT and ERK as well as inhibit the iNOS, TNFα, VCAM, P38 and Caspase 3 in ischemia-reperfusion heart. However, the molecular mechanisms remain to be clarified in further studies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:06:29Z (GMT). No. of bitstreams: 1 ntu-100-R98443002-1.pdf: 7958112 bytes, checksum: ed5a3f2ca147694445de6db370f67dc6 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書………….….……...I
誌謝……………………………….………..II 縮寫對照表……………………….………….III 中文摘要………………………….….………..V 英文摘要………………………….….........VII 第一章 緒論…………………………………...1 Table I……………………….…1 Figure I……………………………...3 Figure II…………….…………......4 Figure III……………………………………...6 Figure IV………………………...6 Figure V…………………….……..………...7 Figure VI……………………….………..…...8 Figure VII…………………………..……...9 Figure VIII…………...………...11 Figure IX…………………….…………...12 Figure X…………………………..…....…………...12 Figure XI…………………….….…………...14 Figure XII………………………………...14 Figure XIII…………......……...16 Figure XIV…………………..………...17 Figure XV………………………………...18 Figure XVI………………………...………...20 文獻回顧………………….…………...20 Figure XVII…………………….…………...21 研究動機與目的……………….…………...22 第二章 實驗材料與方法………………………...23 實驗模式一 & 二…………………...……25 第三章 實驗結果……………….32 圖表………………….............38 Figure 1………………….….…………...39 Table 1…………….…………….….…………...41 Figure 2………………….….……………..……...42 Figure 3……………….………...44 Figure 4…………………………..………...46 Figure 5…………………………….………...47 Figure 6………………..………...49 Figure 7…………….…………...50 Figure 8……………….….…………...51 Figure 9………………….…………...52 Figure 10……………………..…………...53 Figure 11………………………...54 Figure 12……………………..……………...55 Table 2……………………..………………...56 第四章 討論………………….………….57 Figure XVIII……………..………...63 第五章 結論………………….66 參考文獻……………….………..67 | |
| dc.language.iso | zh-TW | |
| dc.title | Thaliporphine衍生物對心臟缺血‐再灌流之保護與心血管作用評估 | zh_TW |
| dc.title | Evaluation of the cardiovascular and cardioprotective effects of thaliporphine derivative against ischemia‐reperfusion injury | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顏茂雄(Mao-Hsiung Yen),林正一(Cheng-I Lin),賴凌平(Ling-Ping Lai),陳文彬(Wen-Pin Chen) | |
| dc.subject.keyword | 心肌缺血-再灌流損傷,TM-1-1 DP,NO,eNOS,TNFα,AKT,ERK, | zh_TW |
| dc.subject.keyword | Myocardial ischemia/reperfusion injury,TM-1-1 DP,NO,eNOS,TNFα,AKT,ERK, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-07 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 7.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
