Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23623
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周綠蘋
dc.contributor.authorJui-Chieh Chenen
dc.contributor.author陳瑞傑zh_TW
dc.date.accessioned2021-06-08T05:06:28Z-
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-07-07
dc.identifier.citation1. SG, C. & M, S. Excerpts from classics in allergy providence. Oceanside publications, 1-211 (1992).
2. VP, C. Allergie. Munch Med Wochenschr 53, 1457 (1906).
3. PGH, G. & RRA, C. Clinical Aspects of Immunology. 1st ed. Oxford, England: Blackwell (1963).
4. Black, C.A. Delayed type hypersensitivity: current theories with an historic perspective. Dermatol Online J 5, 7 (1999).
5. Peden, D. & Reed, C.E. Environmental and occupational allergies. J Allergy Clin Immunol 125, S150-160 (2010).
6. Sicherer, S.H. & Sampson, H.A. Food allergy. J Allergy Clin Immunol 125, S116-125 (2010).
7. Gaspari, A.A. & Katz, S.I. Contact hypersensitivity. Curr Protoc Immunol Chapter 4, Unit 4 2 (2001).
8. Guidelines for the diagnosis and management of asthma. National Heart, Lung, and Blood Institute. National Asthma Education Program. Expert Panel Report. J Allergy Clin Immunol 88, 425-534 (1991).
9. Sly, P.D. & Holt, P.G. Role of innate immunity in the development of allergy and asthma. Curr Opin Allergy Clin Immunol 11, 127-131 (2011).
10. Bartlett, J.A., Fischer, A.J. & McCray, P.B., Jr. Innate immune functions of the airway epithelium. Contrib Microbiol 15, 147-163 (2008).
11. Kim, H.Y., DeKruyff, R.H. & Umetsu, D.T. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol 11, 577-584 (2010).
12. 郭志熙、熊得志、黃建達、郭漢彬 氣道重塑於氣喘之機轉及治療. 內科學誌 20, 129-138 (2009).
13. Elias, J.A., Zhu, Z., Chupp, G. & Homer, R.J. Airway remodeling in asthma. J Clin Invest 104, 1001-1006 (1999).
14. Yamauchi, K. & Inoue, H. Airway remodeling in asthma and irreversible airflow limitation-ECM deposition in airway and possible therapy for remodeling. Allergol Int 56, 321-329 (2007).
15. Sumi, Y. & Hamid, Q. Airway remodeling in asthma. Allergol Int 56, 341-348 (2007).
16. Tagaya, E. & Tamaoki, J. Mechanisms of airway remodeling in asthma. Allergol Int 56, 331-340 (2007).
17. Okada, S., Kita, H., George, T.J., Gleich, G.J. & Leiferman, K.M. Migration of eosinophils through basement membrane components in vitro: role of matrix metalloproteinase-9. Am J Respir Cell Mol Biol 17, 519-528 (1997).
18. Kumagai, K. et al. Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. J Immunol 162, 4212-4219 (1999).
19. Kelly, E.A. & Jarjour, N.N. Role of matrix metalloproteinases in asthma. Curr Opin Pulm Med 9, 28-33 (2003).
20. Marsh, D.G., Goodfriend, L., King, T.P., Lowenstein, H. & Platts-Mills, T.A. Allergen nomenclature. Bull World Health Organ 64, 767-774 (1986).
21. Su, N.Y., Yu, C.J., Shen, H.D., Pan, F.M. & Chow, L.P. Pen c 1, a novel enzymic allergen protein from Penicillium citrinum. Purification, characterization, cloning and expression. Eur J Biochem 261, 115-123 (1999).
22. Chiu, L.-L. et al. Secretome analysis of novel IgE-binding proteins from Penicillium citrinum. (2008).
23. Chow, L.P., Chiou, S.H., Hsiao, M.C., Yu, C.J. & Chiang, B.L. Characterization of Pen n 13, a major allergen from the mold Penicillium notatum. Biochem Biophys Res Commun 269, 14-20 (2000).
24. Chow, L.P. et al. Identification and expression of an allergen Asp f 13 from Aspergillus fumigatus and epitope mapping using human IgE antibodies and rabbit polyclonal antibodies. Biochem J 346 Pt 2, 423-431 (2000).
25. Yu, C.J. et al. Molecular and immunological characterization and IgE epitope mapping of Pen n 18, a major allergen of Penicillium notatum. Biochem J 363, 707-715 (2002).
26. Hinson, K.F., Moon, A.J. & Plummer, N.S. Broncho-pulmonary aspergillosis; a review and a report of eight new cases. Thorax 7, 317-333 (1952).
27. Braedel, S. et al. Aspergillus fumigatus antigens activate innate immune cells via toll-like receptors 2 and 4. Br J Haematol 125, 392-399 (2004).
28. Lamhamedi-Cherradi, S.E. et al. Fungal proteases induce Th2 polarization through limited dendritic cell maturation and reduced production of IL-12. J Immunol 180, 6000-6009 (2008).
29. Nagata, S. & Glovsky, M.M. Activation of human serum complement with allergens. I. Generation of C3a, C4a, and C5a and induction of human neutrophil aggregation. J Allergy Clin Immunol 80, 24-32 (1987).
30. Karp, C.L. et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat Immunol 1, 221-226 (2000).
31. Yu, C.K., Shieh, C.M. & Lei, H.Y. Repeated intratracheal inoculation of house dust mite (Dermatophagoides farinae) induces pulmonary eosinophilic inflammation and IgE antibody production in mice. J Allergy Clin Immunol 104, 228-236 (1999).
32. Chen, C.L. et al. House dust mite Dermatophagoides farinae augments proinflammatory mediator productions and accessory function of alveolar macrophages: implications for allergic sensitization and inflammation. J Immunol 170, 528-536 (2003).
33. Chen, C.L. et al. Serine protease inhibitors nafamostat mesilate and gabexate mesilate attenuate allergen-induced airway inflammation and eosinophilia in a murine model of asthma. J Allergy Clin Immunol 118, 105-112 (2006).
34. Reed, C.E. & Kita, H. The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol 114, 997-1008; quiz 1009 (2004).
35. Wan, H. et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104, 123-133 (1999).
36. Shakib, F., Ghaemmaghami, A.M. & Sewell, H.F. The molecular basis of allergenicity. Trends Immunol 29, 633-642 (2008).
37. Kauffman, H.F., Tomee, J.F., van de Riet, M.A., Timmerman, A.J. & Borger, P. Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol 105, 1185-1193 (2000).
38. Johnson, J.R. et al. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med 169, 378-385 (2004).
39. Fattouh, R. et al. House dust mite facilitates ovalbumin-specific allergic sensitization and airway inflammation. Am J Respir Crit Care Med 172, 314-321 (2005).
40. Cates, E.C. et al. Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism. J Immunol 173, 6384-6392 (2004).
41. Gough, L., Campbell, E., Bayley, D., Van Heeke, G. & Shakib, F. Proteolytic activity of the house dust mite allergen Der p 1 enhances allergenicity in a mouse inhalation model. Clin Exp Allergy 33, 1159-1163 (2003).
42. Sudha, V.T., Arora, N. & Singh, B.P. Serine protease activity of Per a 10 augments allergen-induced airway inflammation in a mouse model. Eur J Clin Invest 39, 507-516 (2009).
43. Kurup, V.P. et al. Alkaline serine proteinase from Aspergillus fumigatus has synergistic effects on Asp-f-2-induced immune response in mice. Int Arch Allergy Immunol 129, 129-137 (2002).
44. Montealegre, F. et al. Exposure levels of asthmatic children to allergens, endotoxins, and serine proteases in a tropical environment. J Asthma 41, 485-496 (2004).
45. Chavanas, S. et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25, 141-142 (2000).
46. O'Regan, G.M. & Irvine, A.D. The role of filaggrin loss-of-function mutations in atopic dermatitis. Curr Opin Allergy Clin Immunol 8, 406-410 (2008).
47. Dery, O., Corvera, C.U., Steinhoff, M. & Bunnett, N.W. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274, C1429-1452 (1998).
48. Coughlin, S.R. Thrombin signalling and protease-activated receptors. Nature 407, 258-264 (2000).
49. Hou, L., Howells, G.L., Kapas, S. & Macey, M.G. The protease-activated receptors and their cellular expression and function in blood-related cells. Br J Haematol 101, 1-9 (1998).
50. Vergnolle, N., Wallace, J.L., Bunnett, N.W. & Hollenberg, M.D. Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol Sci 22, 146-152 (2001).
51. Cocks, T.M. & Moffatt, J.D. Protease-activated receptor-2 (PAR2) in the airways. Pulm Pharmacol Ther 14, 183-191 (2001).
52. Berger, P., Tunon-De-Lara, J.M., Savineau, J.P. & Marthan, R. Selected contribution: tryptase-induced PAR-2-mediated Ca(2+) signaling in human airway smooth muscle cells. J Appl Physiol 91, 995-1003 (2001).
53. Cairns, J.A. & Walls, A.F. Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. J Immunol 156, 275-283 (1996).
54. Cairns, J.A. & Walls, A.F. Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. J Clin Invest 99, 1313-1321 (1997).
55. Gruber, B.L. et al. Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J Immunol 158, 2310-2317 (1997).
56. Schechter, N.M., Brass, L.F., Lavker, R.M. & Jensen, P.J. Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. J Cell Physiol 176, 365-373 (1998).
57. Rubinstein, I., Nadel, J.A., Graf, P.D. & Caughey, G.H. Mast cell chymase potentiates histamine-induced wheal formation in the skin of ragweed-allergic dogs. J Clin Invest 86, 555-559 (1990).
58. Chiu, L.L., Perng, D.W., Yu, C.H., Su, S.N. & Chow, L.P. Mold allergen, pen C 13, induces IL-8 expression in human airway epithelial cells by activating protease-activated receptor 1 and 2. J Immunol 178, 5237-5244 (2007).
59. Miyoshi, J. & Takai, Y. Molecular perspective on tight-junction assembly and epithelial polarity. Adv Drug Deliv Rev 57, 815-855 (2005).
60. Hartsock, A. & Nelson, W.J. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778, 660-669 (2008).
61. Matter, K. & Balda, M.S. Signalling to and from tight junctions. Nat Rev Mol Cell Biol 4, 225-236 (2003).
62. Matter, K., Aijaz, S., Tsapara, A. & Balda, M.S. Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr Opin Cell Biol 17, 453-458 (2005).
63. Barnes, P.J., Pedersen, S. & Busse, W.W. Efficacy and safety of inhaled corticosteroids. New developments. Am J Respir Crit Care Med 157, S1-53 (1998).
64. Van Ganse, E. et al. Effects of antihistamines in adult asthma: a meta-analysis of clinical trials. Eur Respir J 10, 2216-2224 (1997).
65. Tantisira, K.G. & Drazen, J.M. Genetics and pharmacogenetics of the leukotriene pathway. J Allergy Clin Immunol 124, 422-427 (2009).
66. Holgate, S. et al. The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol 115, 459-465 (2005).
67. Barnes, P.J. Cytokine-directed therapies for the treatment of chronic airway diseases. Cytokine Growth Factor Rev 14, 511-522 (2003).
68. Frew, A.J. Allergen immunotherapy. J Allergy Clin Immunol 125, S306-313 (2010).
69. Marsh, D.G., Lichtenstein, L.M. & Campbell, D.H. Studies on 'allergoids' prepared from naturally occurring allergens. I. Assay of allergenicity and antigenicity of formalinized rye group I component. Immunology 18, 705-722 (1970).
70. Corrigan, C.J., Kettner, J., Doemer, C., Cromwell, O. & Narkus, A. Efficacy and safety of preseasonal-specific immunotherapy with an aluminium-adsorbed six-grass pollen allergoid. Allergy 60, 801-807 (2005).
71. Williams, A., Henzgen, M. & Rajakulasingam, K. Additional benefit of a third year of specific grass pollen allergoid immunotherapy in patients with seasonal allergic rhinitis. Eur Ann Allergy Clin Immunol 39, 123-126 (2007).
72. Gawchik, S.M. & Saccar, C.L. Pollinex Quattro Tree: allergy vaccine. Expert Opin Biol Ther 9, 377-382 (2009).
73. Jutel, M. et al. Allergen-specific immunotherapy with recombinant grass pollen allergens. J Allergy Clin Immunol 116, 608-613 (2005).
74. Pauli, G. et al. Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis. J Allergy Clin Immunol 122, 951-960 (2008).
75. Watanabe, A. et al. Transfer of allergic airway responses with antigen-primed CD4+ but not CD8+ T cells in brown Norway rats. J Clin Invest 96, 1303-1310 (1995).
76. De Sanctis, G.T. et al. T-lymphocytes regulate genetically determined airway hyperresponsiveness in mice. Nat Med 3, 460-462 (1997).
77. Haselden, B.M., Kay, A.B. & Larche, M. Immunoglobulin E-independent major histocompatibility complex-restricted T cell peptide epitope-induced late asthmatic reactions. J Exp Med 189, 1885-1894 (1999).
78. Akbari, O., DeKruyff, R.H. & Umetsu, D.T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2, 725-731 (2001).
79. Lambrecht, B.N. et al. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest 106, 551-559 (2000).
80. Bryan, S.A. et al. Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2149-2153 (2000).
81. Leckie, M.J. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2144-2148 (2000).
82. Rocklin, R.E., Sheffer, A.L., Greineder, D.K. & Melmon, K.L. Generation of antigen-specific suppressor cells during allergy desensitization. N Engl J Med 302, 1213-1219 (1980).
83. Secrist, H., Chelen, C.J., Wen, Y., Marshall, J.D. & Umetsu, D.T. Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals. J Exp Med 178, 2123-2130 (1993).
84. Jutel, M. et al. Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-gamma secretion in specific allergen-stimulated T cell cultures. J Immunol 154, 4187-4194 (1995).
85. McHugh, S.M., Deighton, J., Stewart, A.G., Lachmann, P.J. & Ewan, P.W. Bee venom immunotherapy induces a shift in cytokine responses from a TH-2 to a TH-1 dominant pattern: comparison of rush and conventional immunotherapy. Clin Exp Allergy 25, 828-838 (1995).
86. Ebner, C. et al. Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative responses to allergen and shift from TH2 to TH1 in T-cell clones specific for Phl p 1, a major grass pollen allergen. Clin Exp Allergy 27, 1007-1015 (1997).
87. Akdis, C.A. et al. Epitope-specific T cell tolerance to phospholipase A2 in bee venom immunotherapy and recovery by IL-2 and IL-15 in vitro. J Clin Invest 98, 1676-1683 (1996).
88. Akdis, C.A., Joss, A., Akdis, M. & Blaser, K. Mechanism of IL-10-induced T cell inactivation in allergic inflammation and normal response to allergens. Int Arch Allergy Immunol 124, 180-182 (2001).
89. Hoyne, G.F., O'Hehir, R.E., Wraith, D.C., Thomas, W.R. & Lamb, J.R. Inhibition of T cell and antibody responses to house dust mite allergen by inhalation of the dominant T cell epitope in naive and sensitized mice. J Exp Med 178, 1783-1788 (1993).
90. Briner, T.J., Kuo, M.C., Keating, K.M., Rogers, B.L. & Greenstein, J.L. Peripheral T-cell tolerance induced in naive and primed mice by subcutaneous injection of peptides from the major cat allergen Fel d I. Proc Natl Acad Sci U S A 90, 7608-7612 (1993).
91. Norman, P.S. et al. Treatment of cat allergy with T-cell reactive peptides. Am J Respir Crit Care Med 154, 1623-1628 (1996).
92. Simons, F.E., Imada, M., Li, Y., Watson, W.T. & HayGlass, K.T. Fel d 1 peptides: effect on skin tests and cytokine synthesis in cat-allergic human subjects. Int Immunol 8, 1937-1945 (1996).
93. Pene, J. et al. Immunotherapy with Fel d 1 peptides decreases IL-4 release by peripheral blood T cells of patients allergic to cats. J Allergy Clin Immunol 102, 571-578 (1998).
94. Worm, M. et al. Development and preliminary clinical evaluation of a peptide immunotherapy vaccine for cat allergy. J Allergy Clin Immunol 127, 89-97, 97 e81-14 (2011).
95. Oldfield, W.L., Kay, A.B. & Larche, M. Allergen-derived T cell peptide-induced late asthmatic reactions precede the induction of antigen-specific hyporesponsiveness in atopic allergic asthmatic subjects. J Immunol 167, 1734-1739 (2001).
96. Muller, U. et al. Successful immunotherapy with T-cell epitope peptides of bee venom phospholipase A2 induces specific T-cell anergy in patients allergic to bee venom. J Allergy Clin Immunol 101, 747-754 (1998).
97. Fellrath, J.M. et al. Allergen-specific T-cell tolerance induction with allergen-derived long synthetic peptides: results of a phase I trial. J Allergy Clin Immunol 111, 854-861 (2003).
98. Tarzi, M. et al. Induction of interleukin-10 and suppressor of cytokine signalling-3 gene expression following peptide immunotherapy. Clin Exp Allergy 36, 465-474 (2006).
99. Lai, C.K. et al. Asthma control in the Asia-Pacific region: the Asthma Insights and Reality in Asia-Pacific Study. J Allergy Clin Immunol 111, 263-268 (2003).
100. Rabe, K.F. et al. Worldwide severity and control of asthma in children and adults: the global asthma insights and reality surveys. J Allergy Clin Immunol 114, 40-47 (2004).
101. Jacquet, A. Interactions of airway epithelium with protease allergens in the allergic response. Clin Exp Allergy 41, 305-311 (2011).
102. Deban, L. et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat Immunol 11, 328-334 (2010).
103. Ryan, T.P. et al. Pulmonary ferritin: differential effects of hyperoxic lung injury on subunit mRNA levels. Free Radic Biol Med 22, 901-908 (1997).
104. Orino, K. et al. Ferritin and the response to oxidative stress. Biochem J 357, 241-247 (2001).
105. Chen, X.L. & Kunsch, C. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: a new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des 10, 879-891 (2004).
106. Comhair, S.A. et al. Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma. Am J Respir Crit Care Med 172, 306-313 (2005).
107. Inoue, K. et al. Peroxiredoxin I is a negative regulator of Th2-dominant allergic asthma. Int Immunopharmacol 9, 1281-1288 (2009).
108. Dustin, M.L. & Cooper, J.A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 1, 23-29 (2000).
109. Foger, N., Rangell, L., Danilenko, D.M. & Chan, A.C. Requirement for coronin 1 in T lymphocyte trafficking and cellular homeostasis. Science 313, 839-842 (2006).
110. Cooper, J.A. & Schafer, D.A. Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol 12, 97-103 (2000).
111. de Hostos, E.L. The coronin family of actin-associated proteins. Trends Cell Biol 9, 345-350 (1999).
112. Hashimoto, S. et al. Dysregulation of lung injury and repair in moesin-deficient mice treated with intratracheal bleomycin. Am J Physiol Lung Cell Mol Physiol 295, L566-574 (2008).
113. Young, C.L., Feierstein, A. & Southwick, F.S. Calcium regulation of actin filament capping and monomer binding by macrophage capping protein. J Biol Chem 269, 13997-14002 (1994).
114. Rudiger, M. Vinculin and alpha-catenin: shared and unique functions in adherens junctions. Bioessays 20, 733-740 (1998).
115. Watabe-Uchida, M. et al. alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J Cell Biol 142, 847-857 (1998).
116. Peng, X., Cuff, L.E., Lawton, C.D. & DeMali, K.A. Vinculin regulates cell-surface E-cadherin expression by binding to beta-catenin. J Cell Sci 123, 567-577 (2010).
117. Shen, H.D., Tam, M.F., Tang, R.B. & Chou, H. Aspergillus and Penicillium allergens: focus on proteases. Curr Allergy Asthma Rep 7, 351-356 (2007).
118. Tai, H.Y. et al. Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells. Allergy 61, 382-388 (2006).
119. Bisht, V. et al. Epi p 1, an allergenic glycoprotein of Epicoccum purpurascens is a serine protease. FEMS Immunol Med Microbiol 42, 205-211 (2004).
120. Tripathi, P., Kukreja, N., Singh, B.P. & Arora, N. Serine protease activity of Cur l 1 from Curvularia lunata augments Th2 response in mice. J Clin Immunol 29, 292-302 (2009).
121. Gough, L., Schulz, O., Sewell, H.F. & Shakib, F. The cysteine protease activity of the major dust mite allergen Der p 1 selectively enhances the immunoglobulin E antibody response. J Exp Med 190, 1897-1902 (1999).
122. Sun, G., Stacey, M.A., Schmidt, M., Mori, L. & Mattoli, S. Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells. J Immunol 167, 1014-1021 (2001).
123. Sudha, V.T., Arora, N., Gaur, S.N., Pasha, S. & Singh, B.P. Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy 63, 768-776 (2008).
124. Matsuwaki, Y. et al. Recognition of fungal protease activities induces cellular activation and eosinophil-derived neurotoxin release in human eosinophils. J Immunol 183, 6708-6716 (2009).
125. Shpacovitch, V., Feld, M., Bunnett, N.W. & Steinhoff, M. Protease-activated receptors: novel PARtners in innate immunity. Trends Immunol 28, 541-550 (2007).
126. Asokananthan, N. et al. Activation of protease-activated receptor (PAR)-1, PAR-2, and PAR-4 stimulates IL-6, IL-8, and prostaglandin E2 release from human respiratory epithelial cells. J Immunol 168, 3577-3585 (2002).
127. Yu, C.C. et al. Thrombin-induced connective tissue growth factor expression in human lung fibroblasts requires the ASK1/JNK/AP-1 pathway. J Immunol 182, 7916-7927 (2009).
128. Fan, W.H. & Karnovsky, M.J. Increased MMP-2 expression in connective tissue growth factor over-expression vascular smooth muscle cells. J Biol Chem 277, 9800-9805 (2002).
129. Wynn, T.A. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 4, 583-594 (2004).
130. Wynn, T.A. et al. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 376, 594-596 (1995).
131. Sandler, N.G., Mentink-Kane, M.M., Cheever, A.W. & Wynn, T.A. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J Immunol 171, 3655-3667 (2003).
132. Paul, W.E. & Zhu, J. How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol 10, 225-235 (2010).
133. Kouzaki, H., O'Grady, S.M., Lawrence, C.B. & Kita, H. Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J Immunol 183, 1427-1434 (2009).
134. Sokol, C.L., Barton, G.M., Farr, A.G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 9, 310-318 (2008).
135. Tang, H. et al. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11, 608-617 (2010).
136. Chen, H.Y. et al. Role of galectin-3 in mast cell functions: galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression. J Immunol 177, 4991-4997 (2006).
137. Zuberi, R.I. et al. Critical role for galectin-3 in airway inflammation and bronchial hyperresponsiveness in a murine model of asthma. Am J Pathol 165, 2045-2053 (2004).
138. Lopez, E. et al. Inhibition of chronic airway inflammation and remodeling by galectin-3 gene therapy in a murine model. J Immunol 176, 1943-1950 (2006).
139. Ge, X.N. et al. Allergen-induced airway remodeling is impaired in galectin-3-deficient mice. J Immunol 185, 1205-1214 (2010).
140. Saegusa, J. et al. Galectin-3 is critical for the development of the allergic inflammatory response in a mouse model of atopic dermatitis. Am J Pathol 174, 922-931 (2009).
141. Cosmi, L., Liotta, F., Maggi, E., Romagnani, S. & Annunziato, F. Th17 cells: new players in asthma pathogenesis. Allergy (2011).
142. Radosavljevic, G. et al. Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity. Clin Exp Metastasis 28, 451-462 (2011).
143. Altraja, A. et al. Expression of laminins in the airways in various types of asthmatic patients: a morphometric study. Am J Respir Cell Mol Biol 15, 482-488 (1996).
144. Ward, C. et al. Airway inflammation, basement membrane thickening and bronchial hyperresponsiveness in asthma. Thorax 57, 309-316 (2002).
145. Smith, P.K. & Harper, J.I. Serine proteases, their inhibitors and allergy. Allergy 61, 1441-1447 (2006).
146. Yu, C.J., Chiou, S.H., Lai, W.Y., Chiang, B.L. & Chow, L.P. Characterization of a novel allergen, a major IgE-binding protein from Aspergillus flavus, as an alkaline serine protease. Biochem Biophys Res Commun 261, 669-675 (1999).
147. Shen, H.D. et al. Alkaline serine proteinase: a major allergen of Aspergillus oryzae and its cross-reactivity with Penicillium citrinum. Int Arch Allergy Immunol 116, 29-35 (1998).
148. Schramm, G. et al. 'Allergen engineering': variants of the timothy grass pollen allergen Phl p 5b with reduced IgE-binding capacity but conserved T cell reactivity. J Immunol 162, 2406-2414 (1999).
149. Liu, J., Zhang, S., Tan, S., Zheng, B. & Gao, G.F. Revival of the identification of cytotoxic T-lymphocyte epitopes for immunological diagnosis, therapy and vaccine development. Exp Biol Med (Maywood) 236, 253-267 (2011).
150. Valenta, R. et al. From allergen genes to allergy vaccines. Annu Rev Immunol 28, 211-241 (2010).
151. Campbell, J.D. et al. Peptide immunotherapy in allergic asthma generates IL-10-dependent immunological tolerance associated with linked epitope suppression. J Exp Med 206, 1535-1547 (2009).
152. 邱莉莉 以蛋白質體學鑑定及免疫分析橘青黴菌分泌性過敏原,並探討 Pen c 13 誘導人類肺上皮細胞的發炎反應. 國立台灣大學 醫學院 生物化學暨分子生物學研究所 博士論文 (2007)
153. 蘇育逸 探討青黴菌屬過敏原Pen c 13引發人類上皮細胞之緊密連結蛋白質的降解. 國立台灣大學 醫學院 生物化學暨分子生物學研究所 碩士論文 (2007)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23623-
dc.description.abstract第一部份
黴菌過敏原與氣喘的病程發展有關,其中有些黴菌過敏原已被鑑定為蛋白水解酶,在此,我們建立一個過敏性氣道發炎動物模式,經由連續支氣管注射具有蛋白水解酶活性之Pen c 13,該蛋白為橘青黴菌所分泌的一種主要過敏原。在功能性的分析中發現,當暴露於Pen c 13會導致肺部組織中發生一些病理性的變化包括:氣道過度反應性增加、發炎細胞浸潤、黏液過度分泌以及膠原蛋白沉積;在血清分析試驗中發現總量IgE以及Pen c 13-特異性IgE和IgG1有顯著上升的情形;另外體外培養暴露於Pen c 13小鼠的脾臟細胞,當給予不具有蛋白水解酶活性的Pen c 13刺激後,會促使第二型輔助性T 細胞的細胞激素IL-4、IL-5和IL-13的分泌增加。
為了探討此致病機制,我們使用差異性螢光標記二維電泳,並結合液相層析串聯質譜儀,接著再利用生物反應路徑資料庫暨分析平台軟體加以進行研究,配對出數個具意義性的功能性生物訊息路徑。其中電腦預測分數最高的訊息路徑,以功能和疾病來分類,是與急性過敏肺部嗜酸性白血球增多症和細胞移動有關,接著將此路徑做為進一步的詳細剖析探討。結果指出許多的典型途徑也牽涉於此路徑中,其中包括:肌動蛋白骨架訊號、白血球外滲訊號、整合素訊號、NRF2-調控的氧化壓力反應、黏著斑激酶訊號、緊密連接訊號以及急性期反應訊號。接著,利用生物反應路徑資料庫暨分析平台軟體的一些搜尋附加工具,找出與過敏性發炎相關的可能蛋白分子,結果發現半乳糖凝集素-3以及層黏蛋白可能參與在此致病機制中。最後我們將研究重點放在細胞間連接蛋白上,因為透過環境中的蛋白水解酶作用下,除了使得上皮屏障打開,可能成為氣喘發展的第一步外,這一些連接蛋白也與肌動蛋白的重新排列有關。總之,當持續暴露於Pen c 13會引起細胞間的連接結構改變和肌動蛋白骨架的重新排列,最後導致上皮細胞通透性的增加和氣道結構的改變。這些影響或許轉變了肺部的微環境並且加速過敏性致敏作用。
第二部份
目前臨床上已被使用的特異性免疫治療主要是給予患者過敏原的萃取物,使患者對於過敏原臨床上的耐受性增加以消除過敏症狀。然而該治療方式會造成副作用風險以至於無法廣泛被運用。最近的研究顯示過敏原萃取物的抗原決定位之複雜性,能夠使用基因重組技術來製造,設計低過敏性的衍生物以增加治療的安全性。在本研究中,我們發展衍生於Pen c 13之B細胞抗原決定位的胜肽,此Pen c 13是由橘青黴菌所分泌的一個人類主要過敏原,並且已被鑑定為一個鹼性絲胺酸蛋白水解酶,能夠當作過敏疾病治療的應用策略。
為了找尋位於Pen c 13的線性抗原決定位,藉由化學或是酵素方式來切割蛋白,產生涵蓋幾乎整個Pen c 13蛋白序列之不同序列的切割胜肽,進一步來繪製過敏性的抗原決定位,研究結果發現,至少有十個不同的線性IgE結合抗原決定位在Pen c 13蛋白的序列之中,其中胜肽S16 (A148-E166) 及胜肽S22 (A243-K274) 能夠分別被90%和100%測試的過敏病人之血清辨識。此外再經由ELISA抑制試驗來對S16、S22胜肽之IgE結合特異性加以驗證。接著本研究挑選胜肽S22來詳細查究其與IgE結合的能力,我們使用分子模擬以及B細胞抗原決定位預測軟體,預測發現有六個胺基酸最可能參與IgE結合。此外,將S22胜肽的N-端 (A243-A260) 與 C-端 (T261-K274) 兩部份分別與GST形成融合蛋白,經過病人血清的篩選之後,實驗結果顯示主要IgE結合能力是位於C-端的胺基酸上。最後在S22胜肽的C-端其最可能參與此IgE結合的胺基酸,經由點突變分別替換成丙胺酸,其中胺基酸274的位置以丙胺酸替換的突變型,有顯著降低與IgE的反應性,實驗推論這個突變型也許能夠設計成為低過敏性的過敏原,以作為未來發展治療人類過敏疾病的安全及有效之治療策略。
zh_TW
dc.description.abstractPart I
Fungal allergens are associated with the development of asthma, and some have been characterized as proteases. Here, we established an animal model of allergic airway inflammation in response to continuous exposure to proteolytically active Pen c 13, a major allergen secreted by Penicillium citrinum. In functional analyses, Pen c 13 exposure led to increased airway hyperresponsiveness, significant inflammatory cell infiltration, mucus overproduction, and collagen deposition in the lung, dramatically elevated serum levels of total IgE and Pen c 13-specific IgE and IgG1, and increased production of the Th2 cytokines IL-4, IL-5, and IL-13 by splenocytes stimulated in vitro with Pen c 13.
To examine the mechanisms, we performed two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) analysis combined with nano-LC-MS-MS, followed by Ingenuity Pathways Analysis (IPA) to map significant functional networks. The highest-scoring network that associated with acute allergic pulmonary eosinophilia and cell movement in the Functions and Diseases analysis was selected for further dissection. Additionally, canonical pathways, including actin cytoskeleton, leukocyte extravasation, integrin, NRF2-mediated oxidative stress response, FAK, tight junction, and acute phase response, were also highlighted. Using IPA tools to identify potential targets, galectin-3 and laminin might be involved in novel pathogenic mechanisms. Finally, we focused on junctional proteins, because, in addition to opening of the epithelial barrier by environmental proteases possibly being the initial step in the development of asthma, these proteins are also associates with actin rearrangement. Taken together, Pen c 13 exposure causes junctional structure alterations and actin cytoskeletal rearrangements, resulting in increased permeability and airway structural changes. These effects probably change the lung microenvironment and foster the allergic sensitization.
Part II
Specific immunotherapy (SIT) that is in use at present involves the administration of allergen extracts to patients leading to the clinical tolerance of the allergens and cure for allergic symptoms. However, the risk of therapy-induced side effects limits its broad application. Recent studies have revealed that the epitope complexity of allergen extracts can be recreated using recombinant allergens, and hypoallergenic derivatives of these can be engineered to increase treatment safety. In present study, we developed the nonanaphylactic peptides derived from B cell epitopes of Pen c 13, an immunodominant human allergen secreted by Penicillium citrinum identified as an alkaline serine protease, to be a generally applicable strategy for the therapy of allergy.
To find linear epitopes on Pen c 13, mapping of allergenic epitopes was performed by cleaved peptides which cover most of the protein sequence. The results showed that at least ten different linear IgE-binding epitopes located throughout the Pen c 13. Of these, peptide S16 (A148-E166) and S22 (A243-K274) were recognized by sera from 90% and 100% of the patients tested. In addition, the specificity of IgE binding was confirmed by ELISA inhibition assays. The peptide S22 was selected for dissection of its IgE-binding ability, and therefore we exerted molecular modeling and B-cell epitope predicted server to predict six most possible residues involved in IgE binding. Furthermore, the peptide S22 was split into two parts which comprise N-terminal (A243-A260) or C-terminal (T261-K274) part fused to GST. The result of the serum screening showed that the majority of IgE-binding ability resides indeed in its C-terminal fragment. Final, six most possible residues within C-terminus of the peptide S22 were substituted for alanine individual by point mutations; one of the mutants of Pen c 13 (T261-K274), K274A, had dramatically reduced IgE reactivity and may be designed hypoallergenic forms of the allergen, which develop a safe and efficient therapeutic strategy for treating human allergic diseases in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:06:28Z (GMT). No. of bitstreams: 1
ntu-100-D95442003-1.pdf: 27845617 bytes, checksum: ac6ae9f454efde0beaaa3a687aac3120 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 (第一部份) I
中文摘要 (第二部份) II
Abstract (Part I) III
Abstract (Part II) IV
縮寫 V
圖目錄 X
表目錄 XII
第一章 導論 1
第一節 過敏疾病與其致病機轉 1
1.1過敏疾病的介紹 1
1.2過敏反應的類型 2
1.3過敏原的種類 3
第二節 氣喘 4
2.1氣喘的介紹 4
2.2呼吸器官的防禦機制 4
2.3氣道重塑 5
第三節 具有蛋白水解酶活性的黴菌過敏原對於過敏的影響 7
3.1黴菌過敏原 7
3.2具有蛋白水解酶活性的過敏原 7
3.3蛋白水解酶與其抑制劑在過敏反應中的角色 9
3.4黏合連接與緊密連接 11
第四節 過敏性氣喘疾病的治療藥物策略與研究 13
4.1過敏性氣喘疾病的治療藥物 13
4.2特異性免疫治療 17
第五節 研究背景、目標與實驗設計 24
第二章 第壹部份研究 26
第一節 動機與目的 26
第二節 實驗材料與方法 28
2.1實驗材料 28
2.2 儀器及裝置 28
2.3 藥品試劑與抗體 32
2.4 橘青黴菌過敏原Pen c 13 之純化及活化測試 40
2.4.1 天然型Pen c 13的製備與純化 40
2.4.2 重組型Pen c 13的製備與純化 42
2.4.3 蛋白水解酶活性測試 43
2.5 小鼠試驗 43
2.5.1 氣管內接種 43
2.5.2 氣道過度反應 44
2.5.3 血清中總IgE以及Pen c 13-特異性IgE、IgG1、IgG2a的測定 45
2.5.4 肺灌洗液之細胞學檢驗 47
2.5.5 肺部組織病理切片與染色 48
2.5.6 膠原蛋白的定量 48
2.5.7 脾臟細胞之細胞激素測定 51
2.5.8 反轉錄酶聚合酶連鎖反應 52
2.5.9 蛋白質體學的分析 54
2.5.10 生物反應路徑資料庫暨分析平台軟體分析 61
2.5.11 西方墨點法分析 61
2.6 Pen c 13對於細胞間連結影響之試驗 65
2.6.1 細胞的培養 65
2.6.2 以西方墨點法偵測細胞連結的斷裂 67
2.6.3 單層細胞電阻值的測量 68
2.6.4 共軛焦顯微鏡顯微鏡觀察 68
2.7 統計分析 69
第三節 實驗結果 70
3.1 小鼠氣管內暴露Pen c 13誘導在肺部中的過敏反應 70
3.2 肺部病變的組織學評估 72
3.3 利用差異性螢光標記二維電泳分析PBS或是n-Pen c 13注射的小鼠肺部組織 73
3.4 鑑定有差異性表現蛋白的身份 73
3.5 生物反應路徑資料庫暨分析平台軟體分析 74
3.6 西方墨點法確認蛋白變化的結果 75
3.7 n-Pen c 13 破壞細胞間防禦線的評估 76
第四節 討論 78
第五節 圖表與說明 84
第三章 第貳部份研究 123
第一節 動機與目的 123
第二節 實驗材料與方法 123
2.1 實驗材料 123
2.2 儀器及裝置 124
2.3 藥品試劑與抗體 124
2.4 r-Pen c 13的還原與水解反應 126
2.5 高壓液相層析法分離 128
2.6 質量分析 129
2.7 N-端蛋白質序列分析 130
2.8 點轉漬免疫分析法 130
2.9 IgE結合抑制試驗 131
2.10 GST-Pen c 13短胜肽融合蛋白之表現與純化 132
2.11 GST-Pen c 13突變短胜肽融合蛋白之表現與純化 134
2.12 以西方墨點法偵測不同類型之融合蛋白與血清中IgE之間的結合關係 136
第三節 實驗結果 137
3.1 病人血清篩選 137
3.2 r-Pen c 13胜肽的純化與鑑定 137
3.3 r-Pen c 13的線性IgE結合抗原決定位之鑑定 138
3.4 利用競爭抑制ELISA試驗法驗證主要IgE結合抗原決定位 138
3.5 分子動態模擬其IgE結合抗原決定位的位置 138
3.6 線性B細胞抗原決定位的預測 139
3.7 利用GST-短胜肽融合蛋白來驗證IgE結合之抗原決定位 139
第四節 討論 141
第五節 圖表與說明 143
第四章 結論與未來展望 157
參考文獻 159
附錄 168
dc.language.isozh-TW
dc.subject特異性免疫治療zh_TW
dc.subject動物模式zh_TW
dc.subject生物資訊學zh_TW
dc.subject細胞連接zh_TW
dc.subject蛋白質體學zh_TW
dc.subject絲胺酸蛋白質水解&#37238zh_TW
dc.subject過敏原zh_TW
dc.subject黴菌zh_TW
dc.subject融合蛋白zh_TW
dc.subjectIgE 結合的抗原決定位zh_TW
dc.subject過敏性氣道發炎zh_TW
dc.title第一部份:結合蛋白質體學與生物資訊學工具來分析Pen c 13蛋白水解酶誘導過敏性氣道發炎小鼠模式之肺部蛋白質體差異;第二部份:Pen c 13之B細胞抗原決定位的低過敏性融合蛋白運用於過敏原特異性免疫治療法zh_TW
dc.titlePart I: Integration of proteomics and bioinformatics tools to analyze the differential lung proteome in a mouse model of Pen c 13 allergen-induced allergic airway inflammation;Part II: Hypoallergenic fusion protein derived from B cell epitopes of the Pen c 13 for potential usage in allergen-specific immunotherapyen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee林建煌,繆希椿,江伯倫,余佳慧,郭敏玲
dc.subject.keyword過敏性氣道發炎,動物模式,生物資訊學,細胞連接,蛋白質體學,絲胺酸蛋白質水解&#37238,過敏原,黴菌,融合蛋白,IgE 結合的抗原決定位,特異性免疫治療,zh_TW
dc.subject.keywordallergic airway inflammation,animal models,bioinformatics,cell junction,proteomics,serine protease,allergen,fungi,fusion protein,IgE-binding epitopes,specific immunotherapy,en
dc.relation.page173
dc.rights.note未授權
dc.date.accepted2011-07-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
27.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved