Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2358
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳尊賢
dc.contributor.authorHsin-Yu Chenen
dc.contributor.author陳歆妤zh_TW
dc.date.accessioned2021-05-13T06:39:25Z-
dc.date.available2019-08-25
dc.date.available2021-05-13T06:39:25Z-
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citation克思忠。1988。臺灣地區蛇紋石結晶構造與礦物化學之研究。國立臺灣大學地質學研究所碩士論文。
李家興。2011。可溶性有機碳對兩種土壤吸脫附銅鋅鎘之影響。國立臺灣大學生物資源暨農學院農業化學系博士論文。
吳景翰。2009。不同施肥條件下蛇紋石土壤中重金屬之溶出特性與水稻吸收量。國立屏東科技大學環境工程與科學系碩士學位論文。
許正一、蔡衡。2011。蛇紋岩土壤之特性及其重金屬含量偏高問題。臺灣礦業。63(1): 12-26頁。
陳怡君。2005。台東池上地區蛇紋岩土壤中鉻及鎳之生物地質化學特徵。國立屏東科技大學環境工程與科學系碩士學位論文。
陳培源、劉德慶、黃怡楨。2004。臺灣之礦物。臺灣地質系列第14號。232-239頁。
陳肇夏。1998。台灣的變質岩。經濟部中央地質調查所。144-179頁。
張英琇。2007。海岸山脈蛇紋岩土壤金屬元素之生物地質化學性質。國立屏東科技大學環境工程與科學系碩士學位論文。
劉滄棽、郭鴻裕、朱戩良、連深。2007。臺灣東部蛇紋岩母質化育土壤地區重金屬特性之初探。台灣農業研究。65-78頁。
賴鴻裕、陳尊賢。2005。由國內外之試驗結果探討環保署土壤重金屬污染法規標準之合宜性。台灣土壤及地下水環境保護協會簡訊。16: 3-12頁。
Abgottspon, F., M. Bigalke, and W. Wilcke. 2015. Fast colloidal and dissolved release of trace elements in a carbonatic soil after experimental flooding. Geoderma 259-260:156-163.
Adamo, P., S. Dudka, M. J. Wilson, and W. J. McHardy. 2002. Distribution of trace elements in soils from the Sudbury smelting area (Ontario, Canada). Water Air Soil Pollut. 137:95-116.
Alexander, E. B., C. C. Ellis, and R. Burke. 2007. A chronosequence of soils and vegetation on serpentine terraces in the Klamath Mountains. Soil Sci. 172:565-576.
Alexander, E. B., R. G. Coleman, T. Keeler-Wolf, and S. Harrison. 2006. Serpentine Geoecology of Western North America. Oxford University Press, New York, pp. 7, 49-68, 108-110.
Alexander, E. B., W. E. Wildman, and W. C. Lynn. 1985. Ultramafic (serpentinitic) mineralogy class. Mineral Classification of Soils. Soil Sci. Soc. Am. J. 16:135-146.
Alexander, E. B. 1988. Morphology, fertility and classification of productive soils on serpentinized peridotite in California, (USA). Geoderma 41:337-351.
Antić-Mladenović, S., J. Rinklebe, T. Frohne, H. J. Stärk, R. Wennrich, Z. Tomić, and V. Ličina. 2011. Impact of controlled redox conditions on nickel in a serpentine soil. J. Soils Sediments 11:406-415.
Antić-Mladenović, S., T. Frohne, M. Kresovic, H. J. Stärk, Z. Tomic, V. Licina, and J. Rinklebe. 2017. Biogeochemistry of Ni and Pb in a periodically flooded arable soil: Fractionation and redox-induced (im)mobilization. J. Environ. Manage. 186:141-150.
Arai, Y. 2008. Spectroscopic evidence for Ni(II) surface speciation at the iron oxyhydroxides-water interface. Environ. Sci. & Technol. 42:1151-1156.
Ashworth, D. J., and B. J. Alloway. 2004. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environ. Pollut. 127:137-144.
Barałkiewicz, D., and J. Siepak. 1999. Chromium, Nickel and Cobalt in environmental samples and existing legal norms. Pol. J. Environ. Stud. 8:201-208.
Behl, M., M. D. Stout, R. A. Herbert, J. A. Dill, G. L. Baker, B. K. Hayden, J. H. Roycroft, J. R. Bucher, and M. J. Hooth. 2015. Comparative toxicity and carcinogenicity of soluble and insoluble cobalt compounds. Toxicology 333:195-205.
Burt, R., M. Fillmore, M. A. Wilson, E. R. Gross, R. W. Langridge, and D. A. Lammers. 2001. Soil properties of selected pedons on ultramafic rocks in Klamath mountains, Oregon. Commun. Soil Sci. Plan. 32:2145-2175.
Bonifacio, E., E. Zanini, V. Boero, and M. Franchini-Angela. 1997. Pedogenesis in soil catena on serpentine in northwestern Italy. Geoderma 75:33-51.
Brain, J. A. 2013. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (3rd ed). Blackie Academic & Professional, London, pp. 53-75.
Bohn, H. L., B. L. McNeal, and G. A. O’Connor. 2001. Soil Chemistry (3rd ed). John Wiley & Sons, New York, pp. 107-126.
Chaney, R. L. 1983. Potential effects of waste constituents on the food chain. Land Treatment of Hazardous Wastes, NoyesData Corporation, Park Ridge, New Jersey, pp. 50-76.
Cheng, C. H., S. H. Jien, H. Tsai, Y. H. Chang, Y. C. Chen, and Z. Y. Hseu. 2009. Geochemical element differentiation in serpentine soils from the ophiolite complexes, eastern Taiwan. Soil Sci. 174:283-291.
Chin, Y. P., G. Aiken, and E. O'Loughlin. 1994. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 28:1853-1858.
Cleaves, E. T., D. W. Fisher, and O.P. Bricker.1974. Chemical weathering of serpentinite in the eastern Piedmont of Maryland. Geol. Soc. Am. Bull. 85:437-444.
Collins, R. N. and A. S. Kinsela. 2011. Pedogenic factors and measurements of the plant uptake of cobalt. Plant Soil 339:499-512.
Corti, G., F. C. Ugolini, A. Agnelli, G. Certini, R. Cuniglio, F. Berna, and M. J. Fernández Sanjurjo. 2002. The soil skeleton, a forgotten pool of carbon and nitrogen in soil. Eur. J. Soil Sci. 53:283-298.
Contin, M., C. Mondini, L. Leita, and M. D. Nobili. 2007. Enhanced soil toxic metal fixation in iron (hydr)oxides by redox cycles. Geoderma 140:164-175.
Denkhaus, E., and K. Salnikow. 2002. Nickel essentiality, toxicity, and carcinogenicity. Hematology 42:35-56.
Dorau, K., and T. Mansfeldt. 2016. Manganese and iron oxide-coated redox bars as a tool to in situ study the element sorption in wet soils. J. Soils Sediments 16:976-986.
Doubková, P., J. Suda, and R. Sudová. 2012. The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biol. Biochem. 44:56-64.
Duffus, J. H. 2005. Chemical speciation terminology: chromium chemistry and cancer. Mineral. Mag. 69(5):557-562.
Du Laing, G., J. Rinklebe, B. Vandecasteele, E. Meers, and F.M.Tack. 2009. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci. Total Environ. 407:3972-3985.
Fest, E. P. M. J., E. J. M. Temminghoff, R. N. J. Comans, and W. H. vanRiemsdijk. 2008. Partitioning of organic matter and heavy metals in a sandy soil: effects of extracting solution, solid to liquid ratio and pH. Geoderma 146:66-74.
Fischer, L., G. W. Brummer, and N. J. Barrow. 2007. Observations and modelling of the reactions of 10 metals with goethite: Adsorption and diffusion processes. Eur. J. Soil Sci. 58:1304-1315.
Frierdich, A. J., M. M. Scherer, J. E. Bachman, M. H. Engelhard, B. W. Rapponotti, and J. G. Catalano. 2012. Inhibition of Trace Element Release During Fe(II)-Activated Recrystallization of Al‑, Cr‑, and Sn-Substituted Goethite and Hematite. Environ. Sci. Technol. 46:10031-10039.
Frohne, T., J. Rinklebe, and R. A. Diaz-Bone. 2014. Contamination of floodplain soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil Sediment Contam. 23:779-799.
Gransee, A., and H. Führs. 2013. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 368:5-21.
Grybos, M., M. Davranche, G. Gruau, and P. Petitjean. 2007. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J. Colloid Interf. Sci. 314:490-501.
Guggenberger, G., B. Glaser, and W. Zech. 1994. Heavy metal binding by hydrophobic and hydrophilic dissolved organic carbon fractions in a spodosol A and B horizon. Water Air Soil Pollut. 72:111-127.
Gustavsson, M., S. Karlsson, G. Öberg, P. Sandén, T. Svensson, S. Valinia, Y. Thiry, and D. Bastviken. 2012. Organic Matter Chlorination Rates in Different Boreal Soils: The Role of Soil Organic Matter Content. Environ. Sci. Technol. 46:1504-1510.
Jenne, E. A. 1977. Trace element sorption by sediments and soils-sites and processes, in Molybdenum in the Environment. Marcel Dekker, New York, pp. 555.
Kabata-Pendias, A. 1993. Behavioural properties of traces metals in soils. Appl. Geochem. 2:3-9.
Kabata-Pendias, A. 2011. Trace elements in soils and plants (4th ed). CRC Press, Boca Raton, London, New York, pp. 37-89, 181-189, 227-233, 237-245.
Kabata-Pendias A. and W. Sadurski. 2004. Elements and Their Compounds in the Environment (2nd ed). Wiley-VCH, Weinheim. pp. 77-79.
Kierczak, J., A. Pędziwiatr, J. Waroszewski, and M. Modelska. 2016. Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate. Geoderma 268:78-91.
Kikuchi, T., Manabu F., Koumei T., Ran J., Ying-Ping L., Chihiro Y. 2017. Correlations between aromaticity of dissolved organic matter and trace metal concentrations in natural and effluent waters: A case study in the Sagami River Basin, Japan. Sci. Total Environ. 576: 36-45.
Kunhikrishnan, A., G. Choppala, B. Seshadri, H. Wijesekara, N. S. Bolan , K. Mbene, and W. Kim. 2017. Impact of wastewater derived dissolved organic carbon on reduction, mobility, and bioavailability of As(V) and Cr(VI) in contaminated soils. J. Environ. Manage. 186:183-191.
Laborga, F., M. P. Gorriz, E. Bolea, and J. R. Castillo. 2007. Mobilization snd speciation of chromium in compost: A methodological approach. Sci. Total. Environ. 373:383-390.
Lago-Vila, M., D. Arenas-Lago, A. Rodríguez-Seijo, M. L. Andrade Couce, and F. A. Vega. 2015. Cobalt, chromium and nickel contents in soils and plants from a serpentinite quarry. Solid Earth 6:323-335.
Lee, B. D., R. C. Graham, T. E. Laurent, C. Amrhein, and R. M. Creasy. 2001. Spatial distribution of soil chemical conditions in a serpentinitic wetland and surrounding landscape. Soil Sci. Soc. Am. J. 65:1183-1196.
Li, T., Q. Taoa, C. Liang, M. J. I. Shohag, X. Yang, and D. L. Sparks. 2013. Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environ. Pollut. 182:248-255.
Liu W. J. , Y. G. Zhu, F. A. Smith and S. E. Smith. 2004. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J. Exp. Bot. 55:1707-1713.
Louis Y., B. Pernet-Coudrier, and G. Varrault. 2014. Implications of effluent organic matter and its hydrophilic fraction on zinc(II) complexation in rivers under strong urban pressure: Aromaticity as an inaccurate indicator of DOM–metal binding. Sci. Total Environ. 490:830-837.
Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. chem. 51:844-851.
Tewari, P. H., and W. Lee. 1975. Adsorption of Co(II) at the oxide-water interface. J. Coll. Interf. Sci. 52:77-88.
Tockner, K., M. S. Lorang, J. A. Stanford. 2010. River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts. River Res. Appl. 26:76-86.
McClain, C. N., S. Fendorf, S. M. Webb, and K. Maher. 2017. Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range. Environ. Sci. Technol. 51:141-149.
McKenzie, R. M. 1977. Manganese oxides and hydroxides: in Minerals in Soil Environments. Soil Sci. Soc. Am. J. 181-193.
Merckx, R., K. Brans, and E. Smolders. 2001. Decomposition of dissolved organic carbon after soil drying and rewetting as an indicator of metal toxicity in soils. Soil Biol. Biochem. 33:235-240.
Orsetti, S., Marco-Brown, J.L., Andrade, E.M., Molina, F.V., 2013. Pb(II) binding to humic substances: an equlibrium and spectroscopic study. Environ. Sci. Technol. 47: 8325-8333.
Oze, C., C. Skinner, A. Schroth, and R. G. Coleman. 2008. Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the Central Coast Range of California. Appl. Geochem. 23:391-403.
Patrick, W. H. 1966. Apparatus for controlling the oxidation–reduction potential of waterlogged soils. Nature 212:1278-1279.
Raous, S., G. Echevarria, T. Sterckeman, K. Hanna, F. Thomas, E. S. Martins, and T. Becquer. 2013. Potentially toxic metals in ultramafic mining materials: identification of the main bearing and reactive phases. Geoderma 192:111-119.
Rey-Castro, C., S. Mongin, C. Huidobro, C. David, J. Salvador, J. L. Garces, J. Galceran, F. Mas, and J. Puy. 2009. Effective affinity distribution for the binding of metal ions to a generic fulvic acid in natural waters. Environ. Sci. Technol. 43:7184-7191.
Rinklebe, J. and S. M., Shaheen. 2017. Redox chemistry of nickel in soils: A review. Chemosphere 79:265-278.
Rinklebe, J., S. Antić-Mladenović, T. Frohne, H. J. Staerk, Z. Tomić, V. Ličina, H. J. Staerk, Z. Tomić, and V. Ličina. 2016a. Nickel in a serpentine-enriched Fluvisol: Redox affected dynamics and binding forms. Geoderma 263:203-214.
Rinklebe, J., S. M. Shaheen, and Yu, K. 2016b. Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the U.S.A. and Asia. Geoderma 270:21-32.
Rinklebe, J., S. M. Shaheen, F. Schroter, and T. Rennert. 2016c. Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil. Chemosphere 150:390-397.
Rinklebe, J., S. M. Shaheen, and T. Frohne. 2016d. Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere 142:41-47.
Schreier, H., J. A. Omueti, and L. M. Lavkulich. 1987. Weathering processes of asbeston-rich serpentinitic sediments. Soil Sci. Soc. Am. J. 51:993-999.
Shaheen, S. M., J. Rinklebe, T. Frohne, J. R. White, and R. D. DeLaune. 2014a. Biogeochemical factors governing cobalt, nickel, selenium, and vanadium dynamics in periodically flooded Egyptian North Nile Delta rice soils. Soil Sci. Soc. Am. J. 78:1065-1078.
Shaheen, S. M., J. Rinklebe, H. Rupp, and R. Meissner. 2014b. Temporal dynamics of pore water concentrations of Cd, Co, Cu, Ni, and Zn and their controlling factors in a contaminated floodplain soil assessed by undisturbed groundwater lysimeters. Environ. Pollut. 191:223-231.
Shaheen, S. M., J. Rinklebe, T. Frohme, J. R. White, and R. D. DeLaune. 2016. Redox Effects on Release Kinetics of Arsenic, Cadmium, Cobalt and Vanadium in Wax Lake Deltaic Freshwater Marsh Soils. Chemosphere 150:740-748.
Soil Survey Staff. 2014. Keys to soil taxonomy (12th ed). USDA-Natural Resources Conservation Service, Washington, DC.
Sutherland, R. A., and F. M. G. Tack. 2003. Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Adv. Environ. Res. 8:37-50.
Vermeer, A. W. P., J. K. McCulloch, W. H. van Riemsdijk, and L. K. Koopal. 1999. Metal ion adsorption to complexes of humic acid and metal oxides: Deviations from the additivity rule. Environm. Sci. Technol. 33:3892-3897.
Weishaar, J. L., G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and K. Mopper. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37:4702-4708.
Xu, D., D. D. Shao, C. L. Chen, A. P. Ren, and X. K. Wang. 2006. Effect of pH and fulvic acid on sorption and complexation of cobalt onto bare and FA bound MX-80 bentonite. Radiochim. Acta 94:97-102.
Yu, K., and J. Rinklebe. 2011. Advancement in soil microcosm apparatus for biogeochemical research. Ecol. Eng. 37:2071-2075.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2358-
dc.description.abstract蛇紋岩含有高濃度的鉻、鎳和鈷,可能透過風化或氧化還原作用釋放到土壤中,進而被植物吸收或滲入地下水中,造成環境與人體健康的風險,尤其頻繁浸水的蛇紋岩水田土壤。本研究藉由模擬浸水土壤的氧化還原變化,以了解生物地球化學因子對鉻、鎳及鈷溶解度之影響,並提供蛇紋岩土壤的風險評估參考。供試土壤採自臺東縣池上鄉銅安山 (Ta) 與花蓮縣富里鄉無毛山 (Wm),進行基本土壤特性與金屬全量分析。微系統裝置反應槽中加入風乾土與去離子水,土水比1:8,並添加20%水稻稈作為微生物碳源,另以氮氣與氧氣控制EH從200 mV還原至-200 mV,再氧化至250 mV,採集不同EH下之泥漿樣品,經離心與過濾後,測定濾液中重金屬、可溶性有機碳 (DOC)、陰離子濃度,以及專一性紫外光吸光度 (SUVA254 nm)。結果顯示,兩種土壤pH均隨EH降低而提高,主要受到鐵(氫)氧化物溶解與生成以及微生物活動影響。DOC濃度在氧化還原過程中增加,來自鐵(氫)氧化物溶解釋出、有機質降解與微生物代謝產物,由SUVA254 nm值可看出微生物代謝產物占DOC的比例隨時間增加。鉻主要以Cr2O3(s)沉澱,溶解度極低,而鎳與鈷多以二價陽離子存在,受氧化還原作用影響較明顯,尤其CEC較大的Ta土壤,且當pH大於8.5時,可能發生Co(OH)2沉澱。總體而言,蛇紋岩土壤中可溶性鉻濃度很低,但鉻、鎳及鈷均可能透過與DOC錯合而提高溶解度與穩定性,故蛇紋岩土壤地區水體中若含有高濃度DOC,可能會增加這些重金屬的環境風險問題。zh_TW
dc.description.abstractSerpentine soils are characterized with high concentration of geogenic Cr, Ni, and Co. Although these metals are mainly bound in the mineral frameworks, they could be released into groundwater or absorbed by plant through weathering and oxidation-reduction cycles and further pose potential risk to the environment and human health, in particular paddy soil. The objectives of this study were to monitor the solubility of Cr, Ni and Co under a continuous range of pre-defined redox conditions as well as how soil biogeochemical factors regulate the dynamics of these metals, and to provide critical information on potential risk of metals released from serpentine soil. Two serpentine soils (0-20 cm in depth) were collected from eastern Taiwan and they were Ta and Wm soils. An automated biogeochemical microcosm (MC) system was used to simulate flooding condition in the soil, which equipped with an automatic-valve gas regulation system control of EH by adding N2 to lower EH or O2 to increase EH. Each MC was filled with 300 g soil mixed with 60 g straw powder and ultrapure water in 1:8 ratio. EH was set from 200 mV to -200 mV, then returned to 250 mV. The slurry samples were centrifuged and the supernatants were filtered. Metals, dissolved organic carbon (DOC), specific UV absorbance (SUVA254 nm), and anions were determined in the supernatant.
The experimental results indicated that the temporal course of EH and pH in the MCs revealed converse trends in both soils due to the consumption of H+ accompany with the Fe-(hydr)oxides reductive dissolution. DOC increased along with straw breakdown and further complexed with Fe, Mn, Cr, Ni, and Co, and thus the solubile metals became higher. The SUVA254 nm values indicated the clear aromaticity of DOC but showed different components of DOC in two studied soils. The decline in SUVA254 nm with time was resulted from the increase of organic acid generated by the growth of microbial population. Anion cycles seemed to be related to OM degradation, microbial mineralization, and immobilization. Cr existed as Cr2O3(s) in the tested soils and thus the concentration of soluble Cr was very low depending on redox change and sorption ability. Soluble Co increased with Ni particularly in the Ta soil with higher CEC, indicating that Co and Ni were both controlled by redox process because of their similar ionic diameters and the same adsorptive sites on soil colloid surfaces. However, Co might be precipitated as Co(OH)2 when pH > 8.5 in the Wm soil. The soluble Cr, Ni, and Co trends with time were different in the two soils, because of the soil characteristics and mineral composition identified by the factor analysis. The solubility of Cr was very low and increase with DOC as well as Ni and Co, and thus we should pay attention to the water quality when DOC concentration becomes high in the study area.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:39:25Z (GMT). No. of bitstreams: 1
ntu-106-R04623016-1.pdf: 4080396 bytes, checksum: af268e5c46565d6694b2c35c3ec1bc41 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VI
表目錄 VII
第一章 前言 1
第二章 文獻回顧 3
2.1 蛇紋岩與蛇紋石 3
2.2 臺灣蛇紋岩分布概況 5
2.3 蛇紋岩土壤特性 7
2.3.1 物理與化學性質 7
2.3.2 重金屬來源與移動性 8
2.4 鉻、鎳及鈷的毒性 9
2.5 重金屬在土壤的分佈與有效性 10
2.5.1土壤中之鍵結型態 10
2.5.2 萃取方法與生物有效性 12
2.5.3 水稻吸收風險 13
2.6 重金屬的生物地質化學 15
2.6.1 EH 15
2.6.2 pH 17
2.6.3 鐵錳(氫)氧化物 18
2.6.4 土壤有機質與可溶性有機碳 19
2.6.5 金屬陽離子與陰離子 20
2.7 土壤微系統 21
第三章 材料與方法 22
3.1 土壤樣品採集與製備 22
3.2 供試土壤基本性質分析 25
3.3 生物地質化學微系統試驗 31
3.3.1 生物地質化學微系統裝置 31
3.3.2 微系統操作 33
3.3.3 溶液樣品分析 34
3.3.4 土壤樣品分析 35
3.4 品質保證與品質控制 35
3.5 pH-EH圖與化學物種分布模擬 35
3.6統計分析 36
第四章 結果與討論 37
4.1供試土壤之基本性質 37
4.2兩種土壤之重金屬與生物地質化學因子變化趨勢 39
4.3 Ta土壤微系統 43
4.3.1 EH與pH 43
4.3.2生物地質化學因子 46
4.3.3 重金屬之溶解度 55
4.3.4 序列萃取 59
4.3.5 因素分析 62
4.4 Wm土壤微系統 64
4.4.1 EH與pH 64
4.4.2 生物地質化學因子 66
4.4.3 重金屬之溶解度 73
4.4.4 序列萃取 77
4.4.5 因素分析 79
4.5 可溶性鉻、鎳及鈷之物種變化 81
4.6 蛇紋岩水田系統重金屬溶出假說與風險評估 84
第五章 結論 87
第六章 參考文獻 88
第七章 附錄 94
dc.language.isozh-TW
dc.subject蛇紋岩土壤zh_TW
dc.subject有機質zh_TW
dc.subject氧化還原電位zh_TW
dc.subject微系統裝置zh_TW
dc.subject重金屬zh_TW
dc.subjectheavy metalsen
dc.subjectorganic matteren
dc.subjectredox potentialen
dc.subjectmicrocosm systemen
dc.subjectserpentine soilsen
dc.title蛇紋岩土壤中氧化還原循環對重金屬溶解度的影響zh_TW
dc.titleSolubility of heavy metals controlled by oxidation-reduction cycles in serpentine soilsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor許正一
dc.contributor.oralexamcommittee鄒裕民,劉雨庭,王尚禮
dc.subject.keyword蛇紋岩土壤,重金屬,微系統裝置,氧化還原電位,有機質,zh_TW
dc.subject.keywordserpentine soils,heavy metals,microcosm system,redox potential,organic matter,en
dc.relation.page98
dc.identifier.doi10.6342/NTU201703184
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf3.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved