請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23580
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王淑美(Shue-Mei Wang) | |
dc.contributor.author | Pei-Ching Lo | en |
dc.contributor.author | 羅珮菁 | zh_TW |
dc.date.accessioned | 2021-06-08T05:04:14Z | - |
dc.date.copyright | 2011-02-20 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-02-09 | |
dc.identifier.citation | Aisien, A.O., and Palmer, O.H. (1983). The sorghum embryo in relation to the hydrolysis of the endosperm during germination and seedling growth. J. Sci. Food Agrie. 34: 113–121.
Asatsuma, S., Sawada, C., Itoh, K., Okito, M., Kitajima, A., and Mitsui, T. (2005). Involvement of α-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol. 46: 858–869. Baunsgaard, L., Lütken, H., Mikkelsen, R., Glaring, M.A., Pham, T.T., and Blennow, A. (2005). A novel isoform of glucan, water dikinase phosphorylates prephosphorylated α-glucans and is involved in starch degradation in Arabidopsis. Plant J. 41: 595–605. Blennow, A., Engelsen, S.B., Munck, L., and Moller, B.L. (2000). Starch molecular structure and phosphorylation investigated by a combined chromatographic and chemometric approach. Carbohydr. Polym. 41:163–174. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254. Caspar, T., Lin, T.P., Kakefuda, G., Benbow, L., Preiss, K., and Somerville, C. (1991). Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiol. 95: 1181–1188. Chia, T., Thorneycroft, D., Chapple, A., Messerli, G., Chen, J., Zeeman, S.C., Smith, S.M., and Smith, A.M. (2004). A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant J. 37: 853–863. Clutterbuck, V.J., and Briggs, D.E. (1973). Enzyme formation and release by isolated barley aleurone layers. Phytochemistry 12:537–546. Christiansen, C., Hachem, M.A., Glaring, M.A., Viksø-Nielsen, A., Sigurskjold, B.W., Svensson, B., and Blennow, A. (2009a). A CBM20 low-affinity starch-binding domain from glucan, water dikinase. FEBS Lett. 583: 1159–1163. Christiansen, C., Hachem, M.A., Janeček, S., Viksø-Nielsen, A., Blennow, A., and Svensson, B. (2009b). The carbohydrate-binding module family 20 – diversity, structure, and function. FEBS J. 276: 5006–5029. Comparot-Moss, S., Kötting, O., Stettler, M., Edner, C., Graf, A., Weise, S.E., Streb, S., Lue, W.L., MacLean, D., Mahlow, S., Ritte, G., Steup, M., Chen, J., Zeeman, S.C., and Smith, A.M. (2010). A putative phosphatase, LSF1, is required for normal starch turnover in Arabidopsis leaves. Plant Physiol. 152: 685–697. Critchley, J., Zeeman, S.C., Takaha, T., Smith, A.M., and Smith, S.M. (2001). A critical role for disproportionating enzyme in starch breakdown but not in starch synthesis is revealed by a knock-out mutation in Arabidopsis thaliana. Plant J. 26:89–100. Delatte, T., Trevisan, M., Parker, M.L., and Zeeman, S.C. (2005). Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distribution of amylopectin during starch synthesis. Plant J. 41: 815–830. Delatte, T., Umhang, M., Trevisan, M., Eicke, S., Thorneycroft, D., Smith, S.M., and Zeeman, S.C. (2006). Evidence for distinct mechanisms of starch granule breakdown in plants. J. Biol. Chem. 281: 12050–12059. Edner, C., Li, J., Albrecht, T., Mahlow, S., Hejazi, M., Hussain, H., Kaplan, F., Guy, C., Smith, S. M., Steup, M., and Ritte, G. (2007). Glucan, water dikinase activity stimulates breakdown of starch granules by plastidial β-amylases. Plant Physiol. 145: 17–28. Fincher G.B. (1989). Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 305–346. Fordham-Skelton, A.P., Chilley, P., Lumbreras, V., Reignoux, S., Fenton, T. R., Dahm, C.C., Pages, M., and Gatehous, J. M. (2002). A novel higher plant protein tyrosine phosphatase interacts with SNF1-related protein kinases via a KIS (kinase interaction sequence) domain. Plant J. 29: 705–715. Fulton, D.C., Stettler, M., Mettler, T., Vaughan, C.K., Li, J., Francisco, P., Gil, M., Reinhold, H., Eicke, S., Messerli, G., Dorken, G., Halliday, K., Smith, A.M., Smith, S.M., and Zeeman S.C. (2008). BETA-AMYLASE 4, a noncatalytic protein that is required for starch breakdown, acts upstream of three active β-amylases in Arabidopsis chloroplasts. Plant Cell 20:1040–1058. Jones, G., and Whelan, W.J. (1969). The action pattern of D-enzyme, a transmaltodextrinylase from potato. Carbohydrate Research 9: 483–490. Kaplan, F., and Guy, C.L. (2005). RNA interference of Arabidopsis β-amylase 8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J. 44: 730–743. Keeling, P.L., and Myers, A.M. (2010). Biochemistry and genetics of starch synthesis. Annu. Rev. Food Sci. Technol. 1:271–303. Kötting, O., Kossmann, J., Zeeman, S.C., and Lloyd, J.R. (2010). Regulation of starch metabolism: the age of enlightenment? Curr. Opin. Plant Biol. 13: 321–329. Kötting, O., Pusch, K., Tiessen, A., Geigenberger, P., Steup, M., and Ritte, G. (2005). Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiol. 137: 242–252. Kötting, O., Santelia, D., Edner, C., Eicke, S., Marthaler, T., Gentry, M.S., Comparot-Moss, S., Chen, J., Smith, A.M., Steup, M., Ritte, G., and Zeeman, S.C. (2009). STARCH-EXCESS4 is a laforin-Like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell 21: 334–346. Lao, N.T., Schoneveld, O., Mould, R.M., Hibberd, J.M., Gray, J.C., and Kavanagh, T.A. (1999). An Arabidopsis gene encoding a chloroplast-targeted β-amylase. Plant J. 20: 519–527. Lu, Y., and Sharkey, T.D. (2004). The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218: 466–473. Lu, Y., and Sharkey, T.D. (2006). The importance of maltose in transitory starch breakdown. Plant Cell Environt. 29: 353–366. Luan, S. (2003). Protein phosphatases in plants. Annu. Rev. Plant Biol. 54: 63–92. MacGregor, A.W., and Marchylo, B.A. (1986). α-Amylase components in excised, incubated barley embryos. J. Inst. Brew. 92: 159–161. Maeda, I., Kiribuchi, S., and Nakamura, M. (1978). Digestion of barley starch granules by the combined action of α- and β-amylases purified from barley and barley malt. Agric. Biol. Chem. 42:259–267 Mikkelsen, R., Baunsgaard, L., and Blennow, A. (2004). Functional characterization of α-glucan, water dikinase, the starch phosphorylating enzyme. Biochem. J. 377: 525–532. Miyata, S., Okamoto, K., Watanabe, A., and Akazawa, T. (1981). Enzymic mechanism of starch breakdown in germinating rice seed. 10. In vivo and in vitro synthesis of a-amylase in rice seed scutellum. Plant Physiol. 68: 1314–1318. Niittylä, T., Comparot-Moss, S., Lue, W.L., Messerli, G., Trevisan, M., Seymour, M.D., Gatehouse, J.A., Villadsen, D., Smith, S.M., Chen, J., Zeeman, S.C., and Smith, A.M. (2006). Similar protein phosphatases control starch metabolism in plants and glycogen metabolism in mammals. J. Biol. Chem. 281: 11815–11818. Niittylä, T., Messerli, G., Trevisan, M., Chen, J., Smith, A.M., and Zeeman, S.C. (2004). A previously unknown maltose transporter essential for starch degradation in leaves. Science 303: 87–89. Ritte, G., Eckermann, N., Haebel, S., Lorberth, R., and Steup, M. (2000a). Compartmentation of the starch-related R1 protein in higher plants. Starch Starke 52: 145–149. Ritte, G., Heydenreich, M., Mahlow, S., Haebel, S., Kötting, O., and Steup, M. (2006). Phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases. FEBS Lett. 580:4872–4876. Ritte, G., Lloyd, J.R., Eckermann, N., Rottmann, A., Kossmann, J., and Steup, M. (2002). The starch-related R1 protein is an alpha-glucan, water dikinase. Proc. Natl. Acad. Sci. USA 99: 7166–7171. Ritte, G., Lorberth, R., and Steup, M. (2000b). Reversible binding of the starch-related R1 protein to the surface of transitory starch granules. Plant J. 21: 387–391. Ritte, G., Scharf, A., Eckermann, N., Haebel, S., and Steup, M. (2004). Phosphorylation of transitory starch is increased during degradation. Plant Physiol. 135: 2068–2077. Scheidig, A., Fröhlich, A., Schulze, S., Lloyd, J.R., and Kossmann, J. (2002). Down regulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant J. 30: 581–591. Sokolov, L.N., Dominguez-Solis, J.R., Allary, A.L., Buchanan, B.B., and Luan, S. (2006). A redox-regulated chloroplast protein phosphatase binds to starch diurnally and functions in its accumulation. Proc. Natl. Acad. Sci. USA 103: 9732–9737. Southern, E.M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517. Stanley, D., Farnden, K.J.F., and MacRae, E.A. (2005). Plant α-amylases: functions and roles in carbohydrate metabolism. Biologia (Bratisl.) 60 (Suppl. 16): 65–71. Stanley, D., Fitzgerald, A.M., Farnden, K.J.F., and MacRae, E.A. (2002). Characterisation of putative α-amylases from apple (Malus domestica) and Arabidopsis thaliana. Biologia (Bratisl.) 57 (Suppl. 11): 137–148. Streb, S., Delatte, T., Umhang, M., Eicke, S., Schorderet, M., Reinhardt, D., and Zeeman, S.Z. (2008). Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. Plant Cell 20: 3448–3466. Takeda, Y., and Hizukuri, S. (1981). Studies on starch phosphate. Pt. 5. Re-examination of the action of sweet-potato β-amylase on phosphorylated (1-4)-α-D-glucan. Carbohydr. Res. 89:174–178. Voinnety, O., Rivas, S., Mestre, P., and Baulcombe, D. (2003). An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33: 949–956. Wattebled, F., Dong, Y., Dumez, S., Delvallé, D., Planchot, V., Berbezy, P., Vyas, D., Colonna, P., Chatterjee, M., Ball, S., and D’Hulst, C. (2005). Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin. Plant Physiol. 138: 184–195. Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2: 1565-1572. Yu, T.S., Kofler, H., Häusler, R.E., Hille, D., Flügge, U.I., Zeeman, S.C., Smith, A.M., Kossmann, J., Lloyd, J., Ritte, G., Steup, M., Lue, W.L., Chen, J., and Weber, A. (2001). SEX1 is a general regulator of starch degradation in plants and not the chloroplast hexose transporter. Plant Cell 13: 1907–1918. Yu, T.S., Zeeman, S.C., Thorneycroft, D., Fulton, D.C., Dunstan, H., Lue, W.L., Hegemann, B., Tung, S.Y., Umemoto, T., Chapple, A., Tsai, D.L., Wang, S.M., Smith, A.M., Chen, J., and Smith, S.M. (2005). α-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J. Biol. Chem. 280: 9773–9779. Zeeman, S.C., and ap Rees, T. (1999). Changes in carbohydrate metabolism and assimilate export in starch-excess mutants of Arabidopsis. Plant Cell Environ. 22: 1445–1453. Zeeman, S.C., Delatte, T., Messerli, G., Umhang, M., Stettler, M., Mettler, T., Streb, S., Reinhold, H., and Kötting, O. (2007a). Starch breakdown: Recent discoveries suggest distinct pathways and novel mechanisms. Funct. Plant Biol. 34: 465–473. Zeeman, S.C., Kossmann, J., and Smith, A.M. (2010). Starch: Its metabolism, evolution, and biotechnological modification in plants. Annu. Rev. Plant Biol. 61:209–234. Zeeman, S.C., Northrop, F., Smith, A.M., and ap Rees, T. (1998a). A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme. Plant J. 15: 357–365. Zeeman, S.C., Smith, S.M., and Smith, A.M. (2007b). The diurnal metabolism of leaf starch. The Biochem. J. 401: 13–28. Zeeman, S.C., Umemoto, T., Lue, W.L., Au-Yeung, P., Martin, C., Smith, A.M., and Chen, J. (1998b). A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell 10: 1699–1711. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23580 | - |
dc.description.abstract | 葉澱粉在白天合成於葉綠體中,而在晚上降解以供應植物體所需的糖分。在阿拉伯芥中,AMY3是唯一位於葉綠體內的α-澱粉水解酶。AMY3的胺端有葉綠體導引訊息及與GWD1 (GLUCAN WATER DIKINASE)胺端相似的區段,而在羧端有α-澱粉水解酶活性區段。在一多澱粉突變株sex4 (starch excess 4)中,AMY3的蛋白質含量及酵素活性相較於野生型植株有減少的現象,然而在RNA含量上卻無差異,顯示SEX4透過後轉錄修飾調控AMY3蛋白質穩定度。為了解AMY3在葉澱粉代謝中所扮演的角色及其與SEX4之間的關係,分別構築具有葉綠體導引訊息和AMY3胺端或羧端區段與螢光蛋白(EYFP)序列結合的載體,使其於植物體中表現,並進一步分析轉殖株的蛋白質、澱粉及醣類含量。實驗結果顯示,AMY3N-EYFP與AMY3C-EYFP皆可透由葉綠體導引訊息進入葉綠體,但只有AMY3C-EYFP具水解澱粉的活性。內生性AMY3之蛋白質含量在P35S:AMY3C-EYFP/Col和P35S:AMY3C-EYFP/sex4轉殖株中較之在野生型植株中略微減少,而其在P35S:AMY3N-EYFP/Col和P35S:AMY3N-EYFP/sex4轉殖株中卻有上升的現象。此外在P35S:AMY3C-EYFP/- P35S:AMY3N-EYFP/-和 P35S:AMY3C-EYFP/- P35S:AMY3N-EYFP/- sex4/sex4轉殖株中,內生性AMY3及AMY3N-EYFP蛋白質含量有不同的變化。這些結果顯示AMY3的胺端會受到SEX4影響,而其羧端可能會參與在AMY3蛋白質的降解調控機制中。另一方面,在P35S:AMY3C-EYFP/Col和P35S:AMY3C-EYFP/sex4轉殖株中,有澱粉含量下降和葡萄糖含量上升的現象,然而在P35S:AMY3N-EYFP/Col和P35S:AMY3N-EYFP/sex4轉殖株中卻無此現象,顯示AMY3的羧端在植物體中確實會參與葉澱粉的降解,但其水解澱粉的活性會受本身蛋白質的胺端影響。綜上而言,本研究指出AMY3的胺端可能為SEX4穩定AMY3蛋白質的作用區段且參與其自身蛋白質水解澱粉活性的調控。 | zh_TW |
dc.description.abstract | The Arabidopsis AMY3 gene encodes a plastidial α-amylase with protein features including the chloroplast targeting peptide (TP), GWD1 N-terminal like domain (CBD) and α-amylase (AAD) domains expanding from its N- to C-terminus. Previous studies show that the expression of AMY3 is posttranscriptionally attenuated in a starch-excess mutant, sex4 (starch excess 4). To investigate the role of AMY3 in leaf starch metabolism and to clarify if AMY3 is regulated by its protein features through a SEX4 dependent mechanism, I generated constructs of P35S:AMY3N-EYFP and P35S:AMY3C-EYFP which would express recombinant proteins TP-CBD-EYFP (AMY3N-EYFP) and TP-AAD-EYFP (AMY3C-EYFP) in plant cells, respectively. Interestingly, the chlorotic and reticulate leaves, dwarf, and late-flowering phenotypes were found only in P35S:AMY3C-EYFP/Col and P35S:AMY3C-EYFP/sex4 plants. The amount of endogenous AMY3 protein in P35S:AMY3C-EYFP/Col and P35S:AMY3C-EYFP/sex4 plants was slightly lower than that of wild-type plants, whereas that of P35S:AMY3N-EYFP/Col and P35S:AMY3N-EYFP/sex4 plants was higher. Moreover, there were different changes in protein contents of AMY3 and AMY3N-EYFP in P35S:AMY3C-EYFP/- P35S:AMY3N-EYFP/- and P35S:AMY3C-EYFP/- P35S:AMY3N-EYFP/- sex4/sex4 plants. These results suggest that the N-terminus of AMY3 is the domain subject to the action of SEX4 and the C-terminus of AMY3 may play a role in AMY3 protein turnover. Reduced starch contents and increased glucose contents in the P35S:AMY3C-EYFP/Col and P35S:AMY3C-EYFP/sex4 lines compared to those of wild-type plants indicate that the C-terminal AAD of AMY3 involves in leaf starch degradation and its activity is confined by the N-terminus of AMY3. I hypothesize that the N-terminal domain of AMY3 may regulate AMY3 function by confining the amylolytic activity of the C-terminal catalytic domain and is the targeted domain for SEX4 regulation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:04:14Z (GMT). No. of bitstreams: 1 ntu-100-R97b42007-1.pdf: 3807826 bytes, checksum: 6115c79f9419ebc5e7a47ff4184d2cc5 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Table of contents
Acknowledgments i Abstract ii 中文摘要 iii I. Introduction 1 1.1 Starch metabolism in cereal seeds and Arabidopsis leaves 1 1.2 The pathway of starch degradation in Arabidopsis leaves 2 1.3 The role of AtAMY3 in starch metabolism is not clear 5 II. Materials and methods 9 2.1 Plant materials and growth conditions 9 2.2 Production of P35S:AMY3N-EYFP and P35S:AMY3C-EYFP constructs 9 2.3 Establishment of P35S:AMY3N-EYFP, P35S:AMY3C-EYFP, and P35S:EYFP transgenic plants in both wild-type (Col) and sex4 backgrounds 13 2.4 Establishment of P35S:AMY3C-EYFP/sex4 hemizygous plants 14 2.5 Establishment of P35S:AMY3C-EYFP/- P35S:AMY3N-EYFP/- plants in both wild-type (Col) and sex4 backgrounds 15 2.6 Protoplast isolation and transfection 15 2.7 Agroinfiltration of tobacco leaves for transient expression of proteins 17 2.8 Measurement of chlorophyll contents 18 2.9 Protein isolation 18 2.10 Amylolytic activity assay 19 2.11 Western blot analysis 19 2.12 Measurement of leaf starch contents 20 2.13 Thin layer chromatograph 21 III. Results 23 3.1 AMY3N-EYFP and AMY3C-EYFP proteins are localized in chloroplasts 23 3.2 AMY3C-EYFP protein has amylolytic activity in vitro 24 3.3 Transgenic plants with AMY3C-EYFP proteins have chlorotic and reticulate leaves, dwarf, and late flowering phenotypes 24 3.4 In comparison to the wild type, amount of endogenous AMY3 protein is slightly decreased in P35S:AMY3C-EYFP/Col and P35S:AMY3C-EYFP/sex4 lines and is increased in P35S:AMY3N-EYFP/Col and P35S:AMY3N-EYFP /sex4 lines 26 3.5 The starch content of P35S:AMY3C-EYFP lines is greatly reduced 27 3.6 A dosage effect of AMY3C-EYFP on chlorotic and dwarf phenotypes is present in P35S:AMY3C-EYFP/sex4 lines 29 3.7 The levels of glucose and an unidentified sugar are slightly increased in P35S:AMY3C-EYFP/Col and P35S:AMY3C-EYFP/sex4 lines 30 3.8 The endogenous AMY3 protein levels affected by the presence of AMY3C-EYFP, AMY3N-EYFP or AMY3C-EYFP and AMY3N-EYFP in transgenic plants 31 3.9 The starch content of the P35S:AMY3N-EYFP/- P35S:AMY3C-EYFP/- plants is moderately higher than that of the P35S:AMY3C-EYFP/- plants. 32 3.10 The levels of an unidentified sugar and maltose in the P35S:AMY3N-EYFP/- P35S:AMY3C-EYFP/- are slightly increased 34 IV. Discussion 36 4.1 Models for regulation of AMY3 protein stability in the wild type, sex4, and transgenic plants studied 36 4.2 The N-terminal domain of AMY3 may play a regulatory role 39 V. References 42 List of figures Figure 1. A schematic illustration of AtAMY3 protein and constructs 52 Figure 2. Subcellular localization of EYFP, AMY3N-EYFP, and AMY3C-EYFP proteins 53 Figure 3. Amylolytic activity of heterologous expressed proteins in tobacco (Nicotiana benthamiana) leaves 54 Figure 4. Phenotype of P35S:AMY3N-EYFP/Col, P35S:AMY3C-EYFP/Col, P35S:AMY3N-EYFP/sex4, P35S:AMY3C-EYFP/sex4, and P35S:EYFP/sex4 transgenic plants under either a 12-h photoperiod or continuous illumination 56 Figure 5. Flowering time of P35S:AMY3N-EYFP/Col, P35S:AMY3C-EYFP/Col, P35S:AMY3N-EYFP/sex4, P35S:AMY3C-EYFP/sex4, and P35S:EYFP/sex4 transgenic plants grown under a 12-h L/12-h D regime 57 Figure 6. Western blot of P35S:AMY3N-EYFP/Col, P35S:AMY3C-EYFP/Col, P35S:AMY3N-EYFP/sex4, P35S:AMY3C-EYFP/sex4, and P35S:EYFP/sex4 transgenic plants 58 Figure 7. Starch content in transgenic plants of P35S:AMY3N-EYFP/Col, P35S:AMY3C-EYFP/Col, P35S:AMY3N-EYFP/sex4, P35S:AMY3C-EYFP/sex4, and P35S:EYFP/sex4 59 Figure 8. Phenotype and starch content of P35S:AMY3C-EYFPsex4/sex4 homozygous and P35S:AMY3C-EYFP/- sex4/sex4 hemizygous plants 60 Figure 9. Thin layer chromatograms of soluble sugars in P35S:AMY3N-EYFP/Col, P35S:AMY3C-EYFP/Col, P35S:AMY3N-EYFP/sex4, P35S:AMY3C-EYFP/sex4, and P35S:EYFP/sex4 transgenic plants 61 Figure 10. Western blot of P35S:AMY3C-EYFP/-, P35S:AMY3N-EYFP/- P35S:AMY3C-EYFP/-, P35S:AMY3C-EYFP/- sex4/sex4, and P35S:AMY3N-EYFP/- P35S:AMY3C-EYFP/- sex4/sex4 transgenic plants 63 Figure 11. Starch content assay of P35S:AMY3C-EYFP/-, P35S:AMY3N-EYFP/- P35S:AMY3C-EYFP/-, P35S:AMY3C-EYFP/- sex4/sex4, and P35S:AMY3N-EYFP/- P35S:AMY3C-EYFP/- sex4/sex4 transgenic plants 64 Figure 12. Thin layer chromatograms of soluble sugars in P35S:AMY3C-EYFP/-, P35S:AMY3N-EYFP/- P35S:AMY3C-EYFP/-, P35S:AMY3C-EYFP/- sex4/sex4, and P35S:AMY3N-EYFP/- P35S:AMY3C-EYFP/- sex4/sex4 transgenic plants 66 Figure 13. Proposed models of AMY3 protein turnover in the wild-type and sex4 plants 67 Figure 14. Proposed models of AMY3 protein turnover in the P35S:AMY3N-EYFP/Col, P35S:AMY3C-EYFP/Col, P35S:AMY3N-EYFP/sex4, P35S:AMY3C-EYFP/sex4 plants 68 Figure 15. Proposed models of AMY3 protein turnover in the P35S:AMY3N-EYFP/- P35S:AMY3C-EYFP/- and P35S:AMY3N-EYFP/- P35S:AMY3C-EYFP/- sex4/sex4 plants 70 List of table Table 1. Chlorophyll content in leaves of P35S:AMY3N-EYFP/Col, P35S:AMY3C-EYFP/Col, P35S:AMY3N-EYFP/sex4, P35S:AMY3C-EYFP/sex4, and P35S:EYFP/sex4 transgenic plants 72 | |
dc.language.iso | en | |
dc.title | α-AMYLASE3在阿拉伯芥葉澱粉代謝中功能之研究 | zh_TW |
dc.title | Study on roles of AtAMY3 in Arabidopsis leaf starch metabolism | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳枝乾(Jychain Chen) | |
dc.contributor.oralexamcommittee | 董桂書(Kuei-Shu Tung) | |
dc.subject.keyword | α-澱粉水解酶,葉澱粉,AMY3,sex4,AMY3的胺端, | zh_TW |
dc.subject.keyword | α-amylase,leaf starch,AMY3,sex4,N-terminus of AMY3, | en |
dc.relation.page | 72 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-02-09 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 3.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。