Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23577
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李建南
dc.contributor.authorYin-Kuang Changen
dc.contributor.author張銀光zh_TW
dc.date.accessioned2021-06-08T05:04:12Z-
dc.date.copyright2011-03-03
dc.date.issued2011
dc.date.submitted2011-02-10
dc.identifier.citation1. Vanderlaan M, Holbrook CR, Wang M, et al. Epidemiologic survey of 196 patients with congenital central hypoventilation syndrome. Pediatr Pulmonol 2004;37(3):217–29.
2. Trang H, Dehan M, Beaufils F, et al. The French congenital central hypoventilation syndrome registry: general data, phenotype, and genotype. Chest 2005;127(1):72–9.
3. Weese-Mayer DE, Shannon DC, Keens TG, et al. Idiopathic congenital central hypoventilation syndrome: diagnosis and management. American Thoracic Society. Am J Respir Crit Care Med 1999;160:368–373.
4. Weese-Mayer DE, Rand CM, Berry-Kravis EM, , et al. Congenital central hypoventilation syndrome From past to future : Model for translational and transitional autonomic medicine. Pediatr Pulmonol 2009;44:521–535.
5. Muzumdar H, Arens MSc, Arens R. Central Alveolar Hypoventilation Syndrome. Sleep med Clin 2008 December 1; 3(4): 601-615.
6. Mellins RB, Balfour HH, Jr., Turino GM, et al. Failure of automatic control of ventilation (Ondine’s curse). Report of an infant born with this syndrome and review of the literature.Medicine (Baltimore) 1970;49:487–504.
7. Weese-Mayer DE, Silvestri JM, Huffman AD, et al. Case/control family study of autonomic nervous system dysfunction in idiopathic congenital central hypoventilation syndrome. Am J Med Genet 2001;100:237–245.
8. Weese-Mayer DE, Silvestri JM, Menzies LJ, et al. Congenital central hypoventilation syndrome: diagnosis, management, and long-term outcome in thirty-two children. J Pediatr 1992;120:381–387.
9. Goldberg DS, Ludwig IH. Congenital central hypoventilation syndrome: ocular findings in 37 children. J Pediatr Ophthalmol Strabismus 1996;33:175–180.
10. Faure C, Viarme F, Cargill G, et al. Abnormal esophageal motility in children with congenital central hypoventilation syndrome. Gastroenterology 2002;122:1258–1263.
11. Pine DS, Weese-Mayer DE, Silvestri JM, et al. Anxiety and congenital central hypoventilation syndrome. Am J Psychiatry 1994;151:864–870.
12. Silvestri JM, Weese-Mayer DE, Flanagan EA. Congenital central hypoventilation syndrome: cardiorespiratory responses to moderate exercise, simulating daily activity. Pediatr Pulmonol 1995;20:89–93.
13. Paton JY, Swaminathan S, Sargent CW, et al. Ventilatory response to exercise in children with congenital central hypoventilation syndrome. Am Rev Respir Dis 1993; 147:1185–1191.
14. Shea SA, Andres LP, Shannon DC, et al. Respiratory sensations in subjects who lack a ventilatory response to CO2. Respir Physiol 1993;93:203–219.
15. Spengler CM, Banzett RB, Systrom DM, et al. Respiratory sensations during heavy exercise in subjects without respiratory chemosensitivity. Respir Physiol
1998;114:65–74.
16. Trang H, Girard A, Laude D, et al. Short-term blood pressure and heart rate variability in congenital central hypoventilation syndrome (Ondine’s curse). Clin Sci (Lond) 2005; 108:225–230.
17. O’Brien LM, Holbrook CR, Vanderlaan M, et al. Autonomic function in children with congenital central hypoventilation syndrome and their families. Chest 2005;128:2478–2484.
18. Gronli JO, Santucci BA, Leurgans SE, et al. Congenital central hypoventilation syndrome: PHOX2B genotype determines risk for sudden death. Pediatr Pulmonol 2008;43:77–86.
19. Silvestri JM, Hanna BD, Volgman AS, et al. Cardiac rhythm disturbances among children with idiopathic congenital central hypoventilation syndrome. Pediatr Pulmonol 2000;29:351–358.
20. Woo MS, Woo MA, Gozal D, et al. Heart rate variability in congenital central hypoventilation syndrome. Pediatr Res 1992;31:291–296.
21. Matera I, Bachetti T, Puppo F, et al. PHOX2B mutations and polyalanine expansions correlate with the severity of the respiratory phenotype and associated symptoms in both congenital and late onset Central Hypoventilation syndrome. J Med Genet 2004;41: 373–380.
22. Trochet D, Hong SJ, Lim JK, et al. Molecular consequences of PHOX2B missense, frameshift and alanine expansion mutations leading to autonomic dysfunction. Hum Mol Genet 2005;14: 3697–3708.
23. Repetto GM, Corrales RJ, Abara SG, et al. Later-onset congenital central hypoventilation syndrome due to a heterozygous 24-polyalanine repeat expansion mutation in the PHOX2B gene. Acta Paediatr 2009;98:192–195.
24. Trang H, Laudier B, Trochet D, et al. PHOX2B gene mutation in a patient with lateonset central hypoventilation. Pediatr Pulmonol 2004;38:349–351.
25. Weese-Mayer DE, Berry-Kravis EM, Zhou L. Adult identified with congenital central hypoventilation syndrome–mutation in PHOX2b gene and late-onset CHS [comment]. Am J Respir Crit Care Med 2005;171:88.
26. Antic NA, Malow BA, Lange N, et al. PHOX2B mutation-confirmed Pediatric Pulmonology 532 Weese-Mayer et al.
congenital central hypoventilation syndrome: presentation in adulthood. Am J Respir Crit Care Med 2006;174:923– 927.
27. Diedrich A, Malow BA, Antic NA, et al. Vagal and sympathetic heart rate and blood pressure control in adult onset PHOX2B mutation-confirmed congenital central hypoventilation syndrome. Clin Auton Res 2007;17:177– 185.
28. Trochet D, de Pontual L, Keren B, et al. Polyalanine expansions might not result from unequal crossing-over. Hum Mutat 2007;28:1043–1044.
29. Doherty LS, Kiely JL, Deegan PC, et al. Late-onset central hypoventilation syndrome: a family genetic study. Eur Respir J 2007;29:312–316.
30. Barratt S, Kendrick AH, Buchanan F, et al. Central hypoventilation with PHOX2B expansion mutation presenting in adulthood. Thorax 2007;62:919–920.
31. Parodi S, Bachetti T, Lantieri F, et al. Parental origin and somatic mosaicism of PHOX2B mutations in Congenital Central Hypoventilation Syndrome. Hum Mutat 2008;29:206.
32. Khalifa MM, Flavin MA, Wherrett BA. Congenital central hypoventilation syndrome in monozygotic twins. J Pediatr 1988;113:853–855.
33. Haddad GG, Mazza NM, Defendini R, et al. Congenital failure of automatic control of ventilation, gastrointestinal motility and heart rate. Medicine (Baltimore) 1978;57:517–526.
34. Weese-Mayer DE, Silvestri JM, Marazita ML, et al. Congenital central hypoventilation syndrome: inheritance and relation to sudden infant death syndrome. Am J Med Genet 1993;47:360–367.
35. Hamilton J, Bodurtha JN. Congenital central hypoventilation syndrome and Hirschsprung’s disease in half sibs. J Med Genet 1989;26:272–274.
36. Silvestri JM, Chen ML, Weese-Mayer DE, et al. Idiopathic congenital central hypoventilation syndrome: the next generation. Am J Med Genet 2002;112:46–50.
37. Sritippayawan S, Hamutcu R, Kun SS, et al. Mother-daughter transmission of congenital central hypoventilation syndrome. Am J Respir Crit Care Med 2002;166:367–369.
38. Devriendt K, Fryns JP, Naulaers G, et al. Neuroblastoma in a mother and congenital central hypoventilation in her daughter: variable expression of the same genetic disorder? Am J Med Genet 2000;90:430–431.
39. Marazita ML, Maher BS, Cooper ME, et al. Genetic segregation analysis of autonomic nervous system dysfunction in families of probands with idiopathic congenital central hypoventilation syndrome. Am J Med Genet 2001;100:229–236.
40. Amiel J, Salomon R, Attie T, et al. Mutations of the RETGDNF signaling pathway in Ondine’s curse. Am J Hum Genet 1998;62:715–717.
41. Fitze G, Paditz E, Schlafke M, et al. Association of germline mutations and polymorphisms of the RET proto-oncogene with idiopathic congenital central hypoventilation syndrome in 33 patients. J Med Genet 2003;40:E10.
42. Sakai T, Wakizaka A, Matsuda H, et al. Point mutation in exon 12 of the receptor tyrosine kinase protooncogene RET in Ondine-Hirschsprung syndrome. Pediatrics 1998;101:924–926.
43. Sakai T, Wakizaka A, Nirasawa Y. Congenital central hypoventilation syndrome associated with Hirschsprung’s disease: mutation analysis of the RET and endothelin-signaling pathways. Eur J Pediatr Surg 2001;11:335–337.
44. de Pontual L, Pelet A, Trochet D, et al. Mutations of the RET gene in isolated and syndromic Hirschsprung’s disease in human disclose major and modifier alleles at a single locus. J Med Genet 2006;43:419–423.
45. Bolk S, Angrist M, Xie J, et al. Endothelin-3 frameshift mutation in congenital central hypoventilation syndrome. Nat Genet 1996;13:395–396.
46. Weese-Mayer DE, Bolk S, Silvestri JM, et al. Idiopathic congenital central hypoventilation syndrome: evaluation of brain-derived neurotrophic factor genomic DNA sequence variation. Am J Med Genet 2002;107:306–310.
47. Sasaki A, Kanai M, Kijima K, et al. Molecular analysis of congenital central hypoventilation syndrome. Hum Genet 2003;114:22–26.
48. de Pontual L, Nepote V, Attie-Bitach T, et al. Noradrenergic neuronal development is impaired by mutation of the proneural HASH-1 gene in congenital central hypoventilation syndrome (Ondine’s curse). Hum Mol Genet 2003;12:3173–3180.
49. Weese-Mayer DE, Berry-Kravis EM, Zhou L, et al. Idiopathic congenital central hypoventilation syndrome: analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2b. Am J Med Genet A 2003;123:267–278.
50. Bolk S, Angrist M, Schwartz S, et al. Congenital central hypoventilation syndrome: mutation analysis of the receptor tyrosine kinase RET. Am J Med Genet 1996;63:603–609.
51. Amiel J, Pelet A, Trang H, et al. Exclusion of RNX as a major gene in congenital central hypoventilation syndrome (CCHS, Online’s curse). Am J Med Genet A 2003;117:18–20.
52. Matera I, Bachetti T, Cinti R, et al. Mutational analysis of the RNX gene in congenital central hypoventilation syndrome. Am J Med Genet 2002;113:178–182.
53. Pattyn A, Morin X, Cremer H, et al. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 1997;124:4065–4075.
54. Pattyn A, Morin X, Cremer H, et al. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 1999;399:366–370.
55. Brunet JF, Pattyn A. Phox2 genes—From patterning to connectivity. Curr Opin Genet Dev 2002;12:435–440.
56. Amiel J, Laudier B, Attie-Bitach T, et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 2003;33:459–461.
57. Berry-Kravis EM, Zhou L, Rand CM, et al. Congenital central hypoventilation syndrome: PHOX2B mutations and phenotype. Am J Respir Crit Care Med 2006;174: 1139–1144.
58. Weese-Mayer DE, Rand CM, Loghmanee DA, et al. Congenital central hypoventilation syndrome: distribution of PHOX2B mutations in a large cohort. Clin Autonom Res J 2008;18:241.
59. Loghmanee DA, Rand CM, Zhou L, et al. Paired-like homeobox gene 2B (PHOX2B) and congenital central hypoventilation syndrome (CCHS): genotype/phenotype correlation in cohort of 347 cases. Am J Respir Crit Care Med 2009;179:A6341.
60. Weese-Mayer DE, Marazita ML, Berry-Kravis EM. Congenital central hypoventilation syndrome. GeneReviews at GeneTests:Medical Genetics Information Resource (database online) 2008. University of Washington, Seattle, 1997–2007. Available at http://www.genetests.org
61. Raabe EH, Laudenslager M, Winter C, et al. Prevalence and functional consequence of PHOX2B mutations in neuroblastoma. Oncogene 2008;27:469–476.
62. Bachetti T, Matera I, Borghini S, et al. Distinct pathogenetic mechanisms for PHOX2B associated polyalanine expansions and frameshift mutations in congenital central hypoventilation syndrome. Hum Mol Genet 2005;14:1815–1824.
63. Fitze G, Konig IR, Paditz E, et al. Compound effect of PHOX2B and RET gene variants in congenital central hypoventilation syndrome combined with Hirschsprung disease. Am J Med Genet A 2008;146:1486–1489.
64. Hennewig U, Hadzik B, Vogel M, et al. Congenital central hypoventilation syndrome with hyperinsulinism in a preterm infant. J Hum Genet 2008;53:573–577.
65. Bajaj R, Smith J, Trochet D, et al.Congenital central hypoventilation syndrome and Hirschsprung’s disease in an extremely preterm infant. Pediatrics 2005;115:e737–e738.
66. Or SF, Tong MF, Lo FM, et al. PHOX2B mutations in three Chinese patients with congenital central hypoventilation syndrome. Chin Med J (Engl) 2006;119: 1749–1752.
67. Chen ML, Keens TG. Congenital central hypoventilation syndrome: not just another rare disorder. Paediatr Respir Rev 2004;5(3):182–9.
68. Chen ML, Turkel SB, Jacobson JR, et al. Alcohol use in congenital central hypoventilation syndrome. Pediatr Pulmonol 2006;41(3):283–5.
69.許寬立,陳錦澤,陳志鴻,連文彬,郭壽雄,吳敏鑑,吳德祿,李治學。原發性肺泡換氣不足 1 病例報告。臺灣醫誌,83;705-713,1984
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23577-
dc.description.abstract研究目的
近幾年來,隨著基因診斷技術的快速發展,有愈來愈多的疾病被證實與基因突變有關。由於要從傳統的新生兒篩檢血片中萃取高品質的DNA以供後續的分析使用並不容易,所以台灣目前的新生兒篩檢,仍局限於先天代謝性與內分泌性疾病,對於單一基因疾病之篩檢則付之闕如。所以,如何從新生兒篩檢血片中萃取高品質的DNA並建立新生兒基因篩檢技術,成了刻不容緩的重要課題。
先天中樞性換氣不足症(Congenital central hypoventilation syndrome;CCHS)是一種罕見的遺傳疾病,其特徵為睡眠時出現不正常之自主神經系統所控制之呼吸行為,使患者陷入缺氧危機而不自知。由於其發病最常發生於新生兒時期,且大部分沒有家族史,故某些嬰兒猝死個案可能與此症有關。過去此疾病的診斷方法,主要依據為︰1999年由美國胸腔科醫學會(American Thoracic Society)針對此症提出之臨床診斷方法。近年來,在神經發育時期之轉錄因子PHOX2B基因之突變,被認為是先天中樞性換氣不足症的致病基因。其遺傳模式為自體顯性遺傳,其突變方式可分為兩大類︰第一類為polyalanine repeat expansion mutation (PARM)佔92%,在正常的allele上會有一段20個alanines 之重覆片段,而突變的allele上其alanines之重覆次數將增加為24至33次(genotypes : 20/24-20/33);第二類
為non-PARM(NPARM)約佔8%,包含missense、nonsense、frameshift突變。由於此病症若能及早診斷及早予以呼吸輔助治療,待患者長大後,病症將漸漸緩解。而若能將基因診斷提早至新生兒時期,將可拯救寶貴的生命,並大幅改善預後。故我們希望能以先天中樞性換氣不足症為疾病模式,從新生兒篩檢血片中萃取穩定的DNA,建立新生兒基因篩檢技術。
研究方法
第一部份
首先,我們進行了60個來自台灣各醫院依臨床症狀被懷疑為先天中樞性換氣不全症之患者或出生後發生缺氧甚至因而死亡之新生兒﹔及其中被確定為具PHOX2B基因突變患者之27名親屬﹔其血液檢體之PHOX2B基因檢測。利用聚合酶連鎖反應(Polymerase Chain Reaction : PCR)、毛細管電泳(capillary electrophoresis : CE)以及直接基因定序,研究是否可找到PHOX2B基因的突變點位及台灣是否有特定好發之突變區域。
第二部份
我們以1520名正常人血液檢體進行PHOX2B基因之PARM檢測。採用PCR、CE及直接基因定序之分生技術來完成,用以測試PARM篩檢技術的穩定性。
第三部份
我們完成了3480 個新生兒篩檢血片之PARM檢測,這其中包含QIAcard 、Whatman 903、及IDBS這三種市售標榜可萃取DNA之新生兒基因篩檢血片。應用磁珠分離萃取微量DNA的技術,結合PCR、CE及直接基因定序之分生方法,研究新生兒基因篩檢的可行性。
結果
在60個以臨床病症被懷疑為先天中樞性換氣不全症之患者或出生後發生缺氧甚至因而死亡之新生兒中,10名有PARM突變,2名有NPARM 之frameshift突變。其PHOX2B基因突變陽性率為20% (12/60)。而在1520名正常人及3480名新生兒共5000人中,沒有發現任何PARM突變,但有一部份人存在polyalanine contraction;其中(GCN)20佔95.01%,(GCN)15佔4.25%,(GCN)14佔0.04%,(GCN)13佔0.55%,(GCN)7佔0.14%,(GCN)6佔0.01%。
結論
我們成功的建立了台灣在先天中樞性換氣不足症的新生兒基因篩檢技術,將基因診斷的時機點提前至新生兒時期,若能即早診斷即早治療,將可大幅改善此症之預後。我們找到的所有PHOX2B基因突變點位皆位於polyalanine repeat附近的區域,這顯示此區域為台灣族群PHOX2B基因突變的熱區。我們的先天中樞性換氣不足症之新生兒基因篩檢方法,主要針對polyalanine repeat附近的區域進行篩檢,這可以檢測出所有具有PARM的患者,及位於此區域之NPARM患者。此外,QIAcard 、Whatman 903、IDBS﹔這三種市售新生兒篩檢血片皆可以提供高品質、高穩定度的DNA樣本來源,供後續的萃取與分析使用,且可被長期保存再使用。這項新生兒基因篩檢技術將來可以被廣泛的應用於其它的單一基因疾病,例如耳聾基因等發生率更高的疾病。
zh_TW
dc.description.abstractIntroduction :
In recent years, with the rapid development of genetic diagnostic technologies, more and more diseases have been linked to genetic mutation. Because isolation of high quality DNA from dried blood spots on traditional filter paper blotters for subsequent DNA analysis is not easy, Taiwan's current newborn screening is still limited to congenital metabolic and endocrine diseases. Newborn genetic screening is still not available now. So, how to create a newborn genetic screening technology, has become an important issue without delay.
Congenital central hypoventilation syndrome (CCHS) is a rare neurological disorder characterized by abnormal autonomic central nervous system control of breathing during sleep. In the past, CCHS was diagnosed on the basis of clinical criteria proposed by the American Thoracic Society in 1999. CCHS is characteristically diagnosed in the newborn period almost without family history. Some cases of sudden infant death may be related to this disease.The paired-like homeobox gene PHOX2B, which is active during neuronal development, is the disease-defining gene for CCHS. Approximately 92% of individuals with the CCHS phenotype will be heterozygous for a polyalanine repeat expansion mutation (PARM); the normal allele will have 20 alanines and the affected allele will have 24–33 alanines (genotypes 20/24–20/33). The remaining 8% of individuals with CCHS will have a non-PARM (NPARM) in the PHOX2B gene; these will be missense, nonsense, or frameshift. CCHS is inherited in an autosomal dominant manner with a stable mutation.

Early detection of CCHS is important because of the significant morbidity,
especially neurologic consequences, and the risk of death in the undiagnosed subject. We hope to use congenital central hypoventilation syndrome as a disease model to establish newborn genetic screening technology.
Materials and Methods
Part 1
First, genomic DNA was collected from peripheral whole blood of 60 clinical suspected CCHS patients; newborn babies with hypoxia even death and their 27 family members from the National Taiwan University Hospital and the referring hospitals. We used PCR, CE, and direct sequencing to find out mutation points of PHOX2B gene.
Part 2
1520 health individuals’ peripheral whole blood was obtained and analyzed for PARM, using PCR, CE, and direct sequencing techniques, to test the stability of our PARM screening techniques and to investigate polyalanine polymorphism in normal population.
Part 3
Finally, We completed 3480 PARM tests of DNA from dried blood spots on filter paper blotters including QIAcard, Whatman 903, and IDBS; these three commercially available cards. We adopted magnetic beads separation of trace DNA techniques, combined with PCR, CE, and direct sequencing to study the feasibility of newborn genetic screening.

Results
In 60 clinical suspected CCHS patients; newborn babies with hypoxia even death, 10 individuals have polyalanine expansions, and 2 individuals have frameshift mutations. The PHOX2B mutation rate is 20% (12/60). The polyalanine expansion mutation is not found in 1520 health individuals and 3480 newborn babies in our population study. There are some types of polyalanine contraction found in these 5000 individuals. With a frequency of 95.01% in the sample population, (GCN)20 is the most common allele in the 20-residue polyalanine domain while (GCN)15 is second in the order of allele prevalence with a frequency of 4.25%. Additionally, the (GCN)14, (GCN)13, (GCN)7 and (GCN)6 alleles ( 0.04%,0.55%,0.14%,and 0.01%, respectively ) are also identified in the sample.

Conclusion
We successfully establish the newborn genetic screening technology in CCHS to advance genetic diagnosis to the time point of the neonatal period. With early treatment of this disease, the prognosis will be greatly improved. We found all the PHOX2B gene mutation points are located in the area around the polyalanine repeats, which shows this area as the Taiwanese population PHOX2B gene mutation hot spot. Our newborn PHOX2B screening methods focus on the polyalanine repeat region, which can detect all patients with PARM and the NPARM patients located in this region. In addition, QIAcard, Whatman 903, IDBS; these three commercially available filter paper blotters can provide both high quality and high stability of the DNA sample source for the extraction and subsequent analysis, and can be stored for a long time for re-use. This newborn genetic screening technology will be widely used in other single gene disorders in the future, such as a higher incidence of deafness genes.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:04:12Z (GMT). No. of bitstreams: 1
ntu-100-P96421003-1.pdf: 1952456 bytes, checksum: bf430a8a23d89a95f0751bc233978276 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents圖目錄.....................................................i
表目錄....................................................ii
中文摘要.................................................iii
英文摘要..................................................vi
第一章 緒論................................................1
1.1 呼吸生理..............................................1
1.2 臨床表現與診斷........................................1
1.3 相關基因之研究........................................4
1.4 PHOX2B................................................5
1.5 PHOX2B突變............................................7
1.6 遺傳諮詢..............................................8
1.7 治療與長期照護........................................9
1.8 研究動機與目的.......................................12
第二章 實驗材料與儀器.....................................14
2.1 實驗材料..........................................14
2.1.1 先天中樞性換氣不全症基因檢測之檢體................14
2.1.1.1 疑似先天中樞性換氣不全症患者及其親屬之血液檢體...14
2.1.1.2 正常人之血液檢體.................................14
2.1.1.3 新生兒之血片檢體.................................14
2.1.1.3.1 三種新生兒基因篩檢血片..........................14
2.1.2 DNA抽取試劑......................................15
2.1.3 引子對(primer).................................15
2.1.4 聚合酶連鎖反應(Polymerase Chain Reaction : PCR)
試劑.............................................15
2.1.5 洋菜膠電泳試劑...................................16
2.1.6 毛細管電泳(capillary electrophoresis : CE)試劑組.16
2.1.7 DNA定序試劑......................................16
2.2 實驗儀器..........................................17
2.2.1 磁珠分離式核酸萃取系統............................17
2.2.1.1 磁珠分離式血液核酸萃取系統........................17
2.2.1.2 磁珠分離式血片核酸萃取系統........................17
2.2.2 PCR熱循環機.......................................17
2.2.3 CE分析儀..........................................17
2.2.4 DNA序列分析儀.....................................17
第三章 實驗的原理與方法...................................18
3.1 DNA萃取.............................................18
3.1.1 磁珠分離式核酸萃取的原理............................18
3.1.2 血液檢體磁珠分離式DNA萃取...........................18
3.1.3 血片檢體磁珠分離式DNA萃取...........................19
3.2 聚合酶連鎖反應(Polymerase Chain Reaction : PCR)...19
3.2.1 PCR之原理...........................................19
3.2.2 PCR之操作方法.......................................20
3.3 洋菜膠電泳(Agarose gel electrophoresis)...........21
3.4 CE合併DNA片段分析...................................21
3.4.1 CE之原理............................................21
3.4.2 CE之操作方法........................................22
3.5 直接定序分析( Direct DNA sequencing)................22
第四章 實驗結果...........................................23
4.1 先天中樞性換氣不全症疾病的表現型與基因型之相關.......23
4.2 正常人族群之PHOX2B polyalanine polymorphism之基因檢測結
果...................................................24
4.3 新生兒血片之PHOX2B polyalanine polymorphism之基因檢測結
果...................................................24
4.4 合併正常人族群與新生兒血片之PHOX2B polyalanine
polymorphism之統計...................................24
第五章 討論...............................................26
第六章 結論...............................................31
第七章 參考文獻...........................................32
dc.language.isozh-TW
dc.title以先天中樞性換氣不足症
為疾病模式建立新生兒基因篩檢技術
zh_TW
dc.titleEstablishment of Newborn Genetic Screening Techniques : Using Congenital Central Hypoventilation Syndrome as a Modelen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇怡寧,謝武勳
dc.subject.keyword新生兒基因篩檢技術,先天中樞性換氣不足症,新生兒基因篩檢血片,zh_TW
dc.subject.keywordnewborn genetic screening technology,Congenital central hypoventilation syndrome,PHOX2B,QIAcard,Whatman 903,IDBS,en
dc.relation.page54
dc.rights.note未授權
dc.date.accepted2011-02-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved