Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23538
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華
dc.contributor.authorYu-Ru Leeen
dc.contributor.author李育儒zh_TW
dc.date.accessioned2021-06-08T05:03:41Z-
dc.date.copyright2011-03-03
dc.date.issued2011
dc.date.submitted2011-02-25
dc.identifier.citationAdams, J.M., and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326.
Aebersold, D.M., Burri, P., Beer, K.T., Laissue, J., Djonov, V., Greiner, R.H., and Semenza, G.L. (2001). Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 61, 2911-2916.
Allen, E., Ding, J., Wang, W., Pramanik, S., Chou, J., Yau, V., and Yang, Y. (2005). Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival. Nature 438, 224-228.
Altabef, M., Garcia, M., Lavau, C., Bae, S.C., Dejean, A., and Samarut, J. (1996). A retrovirus carrying the promyelocyte-retinoic acid receptor PML-RARalpha fusion gene transforms haematopoietic progenitors in vitro and induces acute leukaemias. EMBO J 15, 2707-2716.
An, W.G., Kanekal, M., Simon, M.C., Maltepe, E., Blagosklonny, M.V., and Neckers, L.M. (1998). Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature 392, 405-408.
Angers, S., Li, T., Yi, X., MacCoss, M.J., Moon, R.T., and Zheng, N. (2006). Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443, 590-593.
Anjum, R., Roux, P.P., Ballif, B.A., Gygi, S.P., and Blenis, J. (2005). The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr Biol 15, 1762-1767.
Aoto, T., Saitoh, N., Ichimura, T., Niwa, H., and Nakao, M. (2006). Nuclear and chromatin reorganization in the MHC-Oct3/4 locus at developmental phases of embryonic stem cell differentiation. Developmental Biology 298, 354-367.
Aoudjit, F., and Vuori, K. (2001). Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J Cell Biol 152, 633-643.
Aravind, L., and Koonin, E.V. (1999). Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol 285, 1353-1361.
Arnheiter, H., Frese, M., Kambadur, R., Meier, E., and Haller, O. (1996). Mx transgenic mice--animal models of health. Curr Top Microbiol Immunol 206, 119-147.
Arnoult, D., Gaume, B., Karbowski, M., Sharpe, J.C., Cecconi, F., and Youle, R.J. (2003). Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22, 4385-4399.
Ashkenazi, A. (2002). Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2, 420-430.
Bailly, V., Lauder, S., Prakash, S., and Prakash, L. (1997). Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J Biol Chem 272, 23360-23365.
Baliga, B., and Kumar, S. (2003). Apaf-1/cytochrome c apoptosome: an essential initiator of caspase activation or just a sideshow? Cell Death Differ 10, 16-18.
Balkwill, F., and Taylor-Papadimitriou, J. (1978). Interferon affects both G1 and S+G2 in cells stimulated from quiescence to growth. Nature 274, 798-800.
Bardos, J.I., and Ashcroft, M. (2004). Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays 26, 262-269.
Bardwell, V.J., and Treisman, R. (1994). The POZ domain: a conserved protein-protein interaction motif. Genes Dev 8, 1664-1677.
Beasley, N.J., Leek, R., Alam, M., Turley, H., Cox, G.J., Gatter, K., Millard, P., Fuggle, S., and Harris, A.L. (2002). Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res 62, 2493-2497.
Bernardi, R., Guernah, I., Jin, D., Grisendi, S., Alimonti, A., Teruya-Feldstein, J., Cordon-Cardo, C., Simon, M.C., Rafii, S., and Pandolfi, P.P. (2006). PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 442, 779-785.
Bernardi, R., and Pandolfi, P.P. (2003). Role of PML and the PML-nuclear body in the control of programmed cell death. Oncogene 22, 9048-9057.
Bernardi, R., and Pandolfi, P.P. (2007). Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nature reviews 8, 1006-1016.
Bernardi, R., Papa, A., and Pandolfi, P.P. (2008). Regulation of apoptosis by PML and the PML-NBs. Oncogene 27, 6299-6312.
Bernardi, R., Scaglioni, P.P., Bergmann, S., Horn, H.F., Vousden, K.H., and Pandolfi, P.P. (2004). PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6, 665-672.
Bertout, J.A., Majmundar, A.J., Gordan, J.D., Lam, J.C., Ditsworth, D., Keith, B., Brown, E.J., Nathanson, K.L., and Simon, M.C. (2009). HIF2alpha inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proc Natl Acad Sci U S A 106, 14391-14396.
Bertout, J.A., Patel, S.A., and Simon, M.C. (2008). The impact of O2 availability on human cancer. Nat Rev Cancer 8, 967-975.
Bialik, S., Bresnick, A.R., and Kimchi, A. (2004). DAP-kinase-mediated morphological changes are localization dependent and involve myosin-II phosphorylation. Cell Death Differ 11, 631-644.
Bialik, S., and Kimchi, A. (2004). DAP-kinase as a target for drug design in cancer and diseases associated with accelerated cell death. Semin Cancer Biol 14, 283-294.
Birner, P., Gatterbauer, B., Oberhuber, G., Schindl, M., Rossler, K., Prodinger, A., Budka, H., and Hainfellner, J.A. (2001a). Expression of hypoxia-inducible factor-1 alpha in oligodendrogliomas: its impact on prognosis and on neoangiogenesis. Cancer 92, 165-171.
Birner, P., Schindl, M., Obermair, A., Breitenecker, G., and Oberhuber, G. (2001b). Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin Cancer Res 7, 1661-1668.
Birner, P., Schindl, M., Obermair, A., Plank, C., Breitenecker, G., and Oberhuber, G. (2000). Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res 60, 4693-4696.
Bonifacino, J.S., and Weissman, A.M. (1998). Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol 14, 19-57.
Borden, K.L. (1998). RING fingers and B-boxes: zinc-binding protein-protein interaction domains. Biochem Cell Biol 76, 351-358.
Borden, K.L., Lally, J.M., Martin, S.R., O'Reilly, N.J., Solomon, E., and Freemont, P.S. (1996). In vivo and in vitro characterization of the B1 and B2 zinc-binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc Natl Acad Sci U S A 93, 1601-1606.
Borner, C. (2003). The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 39, 615-647.
Bos, R., Zhong, H., Hanrahan, C.F., Mommers, E.C., Semenza, G.L., Pinedo, H.M., Abeloff, M.D., Simons, J.W., van Diest, P.J., and van der Wall, E. (2001). Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst 93, 309-314.
Bosu, D.R., and Kipreos, E.T. (2008). Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell division 3, 7.
Brahimi-Horn, M.C., Chiche, J., and Pouyssegur, J. (2007). Hypoxia and cancer. Journal of molecular medicine (Berlin, Germany) 85, 1301-1307.
Brown, D., Kogan, S., Lagasse, E., Weissman, I., Alcalay, M., Pelicci, P.G., Atwater, S., and Bishop, J.M. (1997). A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci U S A 94, 2551-2556.
Cao, X., Clavijo, C., Li, X., Lin, H.H., Chen, Y., Shih, H.M., and Ann, D.K. (2008). SUMOylation of HMGA2: selective destabilization of promyelocytic leukemia protein via proteasome. Mol Cancer Ther 7, 923-934.
Cardone, R.A., Casavola, V., and Reshkin, S.J. (2005). The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5, 786-795.
Cardozo, T., and Pagano, M. (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nature reviews 5, 739-751.
Carroll, S.S., Chen, E., Viscount, T., Geib, J., Sardana, M.K., Gehman, J., and Kuo, L.C. (1996). Cleavage of oligoribonucleotides by the 2',5'-oligoadenylate- dependent ribonuclease L. J Biol Chem 271, 4988-4992.
Castets, M., Coissieux, M.M., Delloye-Bourgeois, C., Bernard, L., Delcros, J.G., Bernet, A., Laudet, V., and Mehlen, P. (2009). Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis. Developmental cell 16, 614-620.
Chan, D.A., Sutphin, P.D., Denko, N.C., and Giaccia, A.J. (2002). Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1alpha. J Biol Chem 277, 40112-40117.
Chan, D.A., Sutphin, P.D., Yen, S.E., and Giaccia, A.J. (2005). Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol Cell Biol 25, 6415-6426.
Chang, D.W., Ditsworth, D., Liu, H., Srinivasula, S.M., Alnemri, E.S., and Yang, X. (2003). Oligomerization is a general mechanism for the activation of apoptosis initiator and inflammatory procaspases. J Biol Chem 278, 16466-16469.
Chawla-Sarkar, M., Leaman, D.W., and Borden, E.C. (2001). Preferential induction of apoptosis by interferon (IFN)-beta compared with IFN-alpha2: correlation with TRAIL/Apo2L induction in melanoma cell lines. Clin Cancer Res 7, 1821-1831.
Chen, C.H., Wang, W.J., Kuo, J.C., Tsai, H.C., Lin, J.R., Chang, Z.F., and Chen, R.H. (2005). Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J 24, 294-304.
Chen, L.Y., and Chen, J.D. (2003). Daxx silencing sensitizes cells to multiple apoptotic pathways. Mol Cell Biol 23, 7108-7121.
Chen, Q., Gong, B., Mahmoud-Ahmed, A.S., Zhou, A., Hsi, E.D., Hussein, M., and Almasan, A. (2001). Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood 98, 2183-2192.
Chinnaiyan, A.M., O'Rourke, K., Tewari, M., and Dixit, V.M. (1995). FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505-512.
Cho, Y.M., Lee, I., Maul, G.G., and Yu, E.S. (1998). A novel nuclear substructure, ND10: Distribution in normal and neoplastic human tissues. International Journal of Molecular Medicine 1, 717-724.
Ciechanover, A., Heller, H., Elias, S., Haas, A.L., and Hershko, A. (1980). ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc Natl Acad Sci U S A 77, 1365-1368.
Cirino, N.M., Li, G., Xiao, W., Torrence, P.F., and Silverman, R.H. (1997). Targeting RNA decay with 2',5' oligoadenylate-antisense in respiratory syncytial virus-infected cells. Proc Natl Acad Sci U S A 94, 1937-1942.
Cohen, O., Feinstein, E., and Kimchi, A. (1997). DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 16, 998-1008.
Cohen, O., Inbal, B., Kissil, J.L., Raveh, T., Berissi, H., Spivak-Kroizaman, T., Feinstein, E., and Kimchi, A. (1999a). DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J Cell Biol 146, 141-148.
Cohen, O., Inbal, B., Kissil, J.L., Raveh, T., Berissi, H., Spivak-Kroizaman, T., Feinstein, E., and Kimchi, A. (1999b). DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J Cell Biol 146, 141-148.
Cohen, O., and Kimchi, A. (2001). DAP-kinase: from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death Differ 8, 6-15.
Cole, J.L., Carroll, S.S., Blue, E.S., Viscount, T., and Kuo, L.C. (1997). Activation of RNase L by 2',5'-oligoadenylates. Biophysical characterization. J Biol Chem 272, 19187-19192.
Cole, J.L., Carroll, S.S., and Kuo, L.C. (1996). Stoichiometry of 2',5'-oligoadenylate-induced dimerization of ribonuclease L. A sedimentation equilibrium study. J Biol Chem 271, 3979-3981.
Condemine, W., Takahashi, Y., Zhu, J., Puvion-Dutilleul, F., Guegan, S., Janin, A., and de The, H. (2006). Characterization of endogenous human promyelocytic leukemia isoforms. Cancer research 66, 6192-6198.
Conradt, B., and Horvitz, H.R. (1998). The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519-529.
Coucouvanis, E., and Martin, G.R. (1995). Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83, 279-287.
Crowder, C., Dahle, O., Davis, R.E., Gabrielsen, O.S., and Rudikoff, S. (2005). PML mediates IFN-alpha-induced apoptosis in myeloma by regulating TRAIL induction. Blood 105, 1280-1287.
Croxton, R., Puto, L.A., de Belle, I., Thomas, M., Torii, S., Hanaii, F., Cuddy, M., and Reed, J.C. (2006). Daxx represses expression of a subset of antiapoptotic genes regulated by nuclear factor-kappaB. Cancer Res 66, 9026-9035.
Cuervo, A.M. (2004). Autophagy: in sickness and in health. Trends Cell Biol 14, 70-77.
Cullinan, S.B., Gordan, J.D., Jin, J., Harper, J.W., and Diehl, J.A. (2004). The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Molecular and cellular biology 24, 8477-8486.
Dai, Q., and Wang, H. (2006). 'Cullin 4 makes its mark on chromatin'. Cell Div 1, 14.
Danial, N.N., and Korsmeyer, S.J. (2004). Cell death: critical control points. Cell 116, 205-219.
de Stanchina, E., Querido, E., Narita, M., Davuluri, R.V., Pandolfi, P.P., Ferbeyre, G., and Lowe, S.W. (2004). PML is a direct p53 target that modulates p53 effector functions. Molecular Cell 13, 523-535.
de The, H., Lavau, C., Marchio, A., Chomienne, C., Degos, L., and Dejean, A. (1991). The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675-684.
de Veer, M.J., Holko, M., Frevel, M., Walker, E., Der, S., Paranjape, J.M., Silverman, R.H., and Williams, B.R. (2001). Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69, 912-920.
Deiss, L.P., Feinstein, E., Berissi, H., Cohen, O., and Kimchi, A. (1995). Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 9, 15-30.
Dellaire, G., and Bazett-Jones, D.P. (2004). PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26, 963-977.
Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., and Chen, Z.J. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-361.
Der, S.D., Zhou, A., Williams, B.R., and Silverman, R.H. (1998). Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A 95, 15623-15628.
Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K., Antonsson, B., and Martinou, J.C. (1999). Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144, 891-901.
Deshaies, R.J. (1999). SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15, 435-467.
Di Guglielmo, G.M., Le Roy, C., Goodfellow, A.F., and Wrana, J.L. (2003). Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5, 410-421.
Dror, N., Rave-Harel, N., Burchert, A., Azriel, A., Tamura, T., Tailor, P., Neubauer, A., Ozato, K., and Levi, B.Z. (2007). Interferon regulatory factor-8 is indispensable for the expression of promyelocytic leukemia and the formation of nuclear bodies in myeloid cells. Journal of Biological Chemistry 282, 5633-5640.
Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42.
Duprez, E., Saurin, A.J., Desterro, J.M., Lallemand-Breitenbach, V., Howe, K., Boddy, M.N., Solomon, E., de The, H., Hay, R.T., and Freemont, P.S. (1999). SUMO-1 modification of the acute promyelocytic leukaemia protein PML: implications for nuclear localisation. J Cell Sci 112 ( Pt 3), 381-393.
Eisenberg-Lerner, A., and Kimchi, A. (2007). DAP kinase regulates JNK signaling by binding and activating protein kinase D under oxidative stress. Cell Death Differ 14, 1908-1915.
Fagioli, M., Alcalay, M., Tomassoni, L., Ferrucci, P.F., Mencarelli, A., Riganelli, D., Grignani, F., Pozzan, T., Nicoletti, I., and Pelicci, P.G. (1998). Cooperation between the RING + B1-B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene 16, 2905-2913.
Falschlehner, C., Emmerich, C.H., Gerlach, B., and Walczak, H. (2007). TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 39, 1462-1475.
Fanelli, M., Fantozzi, A., De Luca, P., Caprodossi, S., Matsuzawa, S., Lazar, M.A., Pelicci, P.G., and Minucci, S. (2004). The coiled-coil domain is the structural determinant for mammalian homologues of Drosophila Sina-mediated degradation of promyelocytic leukemia protein and other tripartite motif proteins by the proteasome. The Journal of biological chemistry 279, 5374-5379.
Ferbeyre, G., de Stanchina, E., Querido, E., Baptiste, N., Prives, C., and Lowe, S.W. (2000a). PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 14, 2015-2027.
Ferbeyre, G., de Stanchina, E., Querido, E., Baptiste, N., Prives, C., and Lowe, S.W. (2000b). PML is induced by oncogenic ras and promotes premature senescence. Genes & Development 14, 2015-2027.
Finger, E.C., and Giaccia, A.J. (2010). Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer metastasis reviews 29, 285-293.
Flenghi, L., Fagioli, M., Tomassoni, L., Pileri, S., Gambacorta, M., Pacini, R., Grignani, F., Casini, T., Ferrucci, P.F., Martelli, M.F., et al. (1995). Characterization of a New Monoclonal-Antibody (Pg-M3) Directed against the Aminoterminal Portion of the Pml Gene-Product - Immunocytochemical Evidence for High Expression of Pml Proteins on Activated Macrophages, Endothelial-Cells, and Epithelia. Blood 85, 1871-1880.
Floyd-Smith, G., Slattery, E., and Lengyel, P. (1981). Interferon action: RNA cleavage pattern of a (2'-5')oligoadenylate--dependent endonuclease. Science 212, 1030-1032.
Frankel, A., Rosen, K., Filmus, J., and Kerbel, R.S. (2001). Induction of anoikis and suppression of human ovarian tumor growth in vivo by down-regulation of Bcl-X(L). Cancer Res 61, 4837-4841.
Frisch, S.M. (1999). Evidence for a function of death-receptor-related, death-domain-containing proteins in anoikis. Curr Biol 9, 1047-1049.
Frisch, S.M., and Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124, 619-626.
Frisch, S.M., and Screaton, R.A. (2001). Anoikis mechanisms. Curr Opin Cell Biol 13, 555-562.
Frisch, S.M., Vuori, K., Ruoslahti, E., and Chan-Hui, P.Y. (1996). Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 134, 793-799.
Fritz, E., and Ludwig, H. (2000). Interferon-alpha treatment in multiple myeloma: meta-analysis of 30 randomised trials among 3948 patients. Ann Oncol 11, 1427-1436.
Furukawa, M., He, Y.J., Borchers, C., and Xiong, Y. (2003). Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 5, 1001-1007.
Furukawa, M., Ohta, T., and Xiong, Y. (2002). Activation of UBC5 ubiquitin-conjugating enzyme by the RING finger of ROC1 and assembly of active ubiquitin ligases by all cullins. J Biol Chem 277, 15758-15765.
Furukawa, M., and Xiong, Y. (2005). BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Molecular and cellular biology 25, 162-171.
Gade, P., Roy, S.K., Li, H., Nallar, S.C., and Kalvakolanu, D.V. (2008). Critical role for transcription factor C/EBP-beta in regulating the expression of death-associated protein kinase 1. Molecular and cellular biology 28, 2528-2548.
Geyer, R., Wee, S., Anderson, S., Yates, J., and Wolf, D.A. (2003). BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Molecular cell 12, 783-790.
Giatromanolaki, A., Koukourakis, M.I., Sivridis, E., Turley, H., Talks, K., Pezzella, F., Gatter, K.C., and Harris, A.L. (2001). Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 85, 881-890.
Gniadecki, R., Jemec, G.B., Thomsen, B.M., and Hansen, M. (1998). Relationship between keratinocyte adhesion and death: anoikis in acantholytic diseases. Arch Dermatol Res 290, 528-532.
Gordan, J.D., Bertout, J.A., Hu, C.J., Diehl, J.A., and Simon, M.C. (2007). HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11, 335-347.
Gordan, J.D., Lal, P., Dondeti, V.R., Letrero, R., Parekh, K.N., Oquendo, C.E., Greenberg, R.A., Flaherty, K.T., Rathmell, W.K., Keith, B., et al. (2008). HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14, 435-446.
Gozuacik, D., Bialik, S., Raveh, T., Mitou, G., Shohat, G., Sabanay, H., Mizushima, N., Yoshimori, T., and Kimchi, A. (2008). DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ 15, 1875-1886.
Gozuacik, D., and Kimchi, A. (2004). Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891-2906.
Gravdal, K., Halvorsen, O.J., Haukaas, S.A., and Akslen, L.A. (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res 13, 7003-7011.
Green, D.R., and Evan, G.I. (2002). A matter of life and death. Cancer Cell 1, 19-30.
Grignani, F., Testa, U., Rogaia, D., Ferrucci, P.F., Samoggia, P., Pinto, A., Aldinucci, D., Gelmetti, V., Fagioli, M., Alcalay, M., et al. (1996). Effects on differentiation by the promyelocytic leukemia PML/RARalpha protein depend on the fusion of the PML protein dimerization and RARalpha DNA binding domains. EMBO J 15, 4949-4958.
Grisolano, J.L., Wesselschmidt, R.L., Pelicci, P.G., and Ley, T.J. (1997). Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 89, 376-387.
Grossmann, J., Mohr, S., Lapentina, E.G., Fiocchi, C., and Levine, A.D. (1998). Sequential and rapid activation of select caspases during apoptosis of normal intestinal epithelial cells. Am J Physiol 274, G1117-1124.
Grossmann, J., Walther, K., Artinger, M., Kiessling, S., and Scholmerich, J. (2001). Apoptotic signaling during initiation of detachment-induced apoptosis ('anoikis') of primary human intestinal epithelial cells. Cell Growth Differ 12, 147-155.
Guenebeaud, C., Goldschneider, D., Castets, M., Guix, C., Chazot, G., Delloye-Bourgeois, C., Eisenberg-Lerner, A., Shohat, G., Zhang, M., Laudet, V., et al. (2010). The dependence receptor UNC5H2/B triggers apoptosis via PP2A-mediated dephosphorylation of DAP kinase. Mol Cell 40, 863-876.
Gurrieri, C., Capodieci, P., Bernardi, R., Scaglioni, P.P., Nafa, K., Rush, L.J., Verbel, D.A., Cordon-Cardo, C., and Pandolfi, P.P. (2004). Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 96, 269-279.
Gutterman, J.U. (1994). Cytokine therapeutics: lessons from interferon alpha. Proceedings of the National Academy of Sciences of the United States of America 91, 1198-1205.
Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70.
Hara, T., Ishida, H., Raziuddin, R., Dorkhom, S., Kamijo, K., and Miki, T. (2004). Novel kelch-like protein, KLEIP, is involved in actin assembly at cell-cell contact sites of Madin-Darby canine kidney cells. Molecular biology of the cell 15, 1172-1184.
Harper, J.W., Burton, J.L., and Solomon, M.J. (2002). The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 16, 2179-2206.
Harrison, B., Kraus, M., Burch, L., Stevens, C., Craig, A., Gordon-Weeks, P., and Hupp, T.R. (2008). DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 283, 9999-10014.
Hassel, B.A., Zhou, A., Sotomayor, C., Maran, A., and Silverman, R.H. (1993). A dominant negative mutant of 2-5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon. EMBO J 12, 3297-3304.
He, Y.J., McCall, C.M., Hu, J., Zeng, Y., and Xiong, Y. (2006). DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 20, 2949-2954.
Hengartner, M.O., and Horvitz, H.R. (1994). C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665-676.
Henze, A.T., and Acker, T. (2010). Feedback regulators of hypoxia-inducible factors and their role in cancer biology. Cell Cycle 9, 2749-2763.
Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annual review of biochemistry 67, 425-479.
Hershko, A., Ciechanover, A., Heller, H., Haas, A.L., and Rose, I.A. (1980). Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci U S A 77, 1783-1786.
Herzer, K., Hofmann, T.G., Teufel, A., Schimanski, C.C., Moehler, M., Kanzler, S., Schulze-Bergkamen, H., and Galle, P.R. (2009). IFN-{alpha}-Induced Apoptosis in Hepatocellular Carcinoma Involves Promyelocytic Leukemia Protein and TRAIL Independently of p53. Cancer research 69, 855-862.
Heuser, M., van der Kuip, H., Falini, B., Peschel, C., Huber, C., and Fischer, T. (1998). Induction of the pro-myelocytic leukaemia gene by type I and type II interferons. Mediators Inflamm 7, 319-325.
Higa, L.A., and Zhang, H. (2007). Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. Cell Div 2, 5.
Hinshaw, J.E., and Schmid, S.L. (1995). Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190-192.
Hobeika, A.C., Subramaniam, P.S., and Johnson, H.M. (1997). IFNalpha induces the expression of the cyclin-dependent kinase inhibitor p21 in human prostate cancer cells. Oncogene 14, 1165-1170.
Hofmann, R.M., and Pickart, C.M. (1999). Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645-653.
Holmquist-Mengelbier, L., Fredlund, E., Lofstedt, T., Noguera, R., Navarro, S., Nilsson, H., Pietras, A., Vallon-Christersson, J., Borg, A., Gradin, K., et al. (2006). Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10, 413-423.
Horisberger, M.A. (1995). Interferons, Mx genes, and resistance to influenza virus. Am J Respir Crit Care Med 152, S67-71.
Hsu, H., Xiong, J., and Goeddel, D.V. (1995). The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81, 495-504.
Huang, X., Ding, L., Bennewith, K.L., Tong, R.T., Welford, S.M., Ang, K.K., Story, M., Le, Q.T., and Giaccia, A.J. (2009). Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35, 856-867.
Huang, Y., Du, K.M., Xue, Z.H., Yan, H., Li, D., Liu, W., Chen, Z., Zhao, Q., Tong, J.H., Zhu, Y.S., et al. (2003). Cobalt chloride and low oxygen tension trigger differentiation of acute myeloid leukemic cells: possible mediation of hypoxia-inducible factor-1alpha. Leukemia 17, 2065-2073.
Hudson, A.M., and Cooley, L. (2010). Drosophila Kelch functions with Cullin-3 to organize the ring canal actin cytoskeleton. J Cell Biol 188, 29-37.
Huibregtse, J.M., Scheffner, M., Beaudenon, S., and Howley, P.M. (1995). A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A 92, 2563-2567.
Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., et al. (2000). A ubiquitin-like system mediates protein lipidation. Nature 408, 488-492.
Ikeda, H., Suzuki, Y., Suzuki, M., Koike, M., Tamura, J., Tong, J., Nomura, M., and Itoh, G. (1998). Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut 42, 530-537.
Inbal, B., Bialik, S., Sabanay, I., Shani, G., and Kimchi, A. (2002). DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157, 455-468.
Inbal, B., Cohen, O., Polak-Charcon, S., Kopolovic, J., Vadai, E., Eisenbach, L., and Kimchi, A. (1997a). DAP kinase links the control of apoptosis to metastasis. Nature 390, 180-184.
Inbal, B., Cohen, O., Polak-Charcon, S., Kopolovic, J., Vadai, E., Eisenbach, L., and Kimchi, A. (1997b). DAP kinase links the control of apoptosis to metastasis. Nature 390, 180-184.
Inbal, B., Shani, G., Cohen, O., Kissil, J.L., and Kimchi, A. (2000). Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol Cell Biol 20, 1044-1054.
Isaacs, A., and Lindenmann, J. (1957). Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147, 258-267.
Ishov, A.M., Sotnikov, A.G., Negorev, D., Vladimirova, O.V., Neff, N., Kamitani, T., Yeh, E.T., Strauss, J.F., 3rd, and Maul, G.G. (1999). PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. The Journal of cell biology 147, 221-234.
Jackson, P.K., and Eldridge, A.G. (2002). The SCF ubiquitin ligase: an extended look. Molecular cell 9, 923-925.
Jang, C.W., Chen, C.H., Chen, C.C., Chen, J.Y., Su, Y.H., and Chen, R.H. (2002a). TGF-beta induces apoptosis through Smad-mediated expression of DAP- kinase. Nat Cell Biol 4, 51-58.
Jang, C.W., Chen, C.H., Chen, C.C., Chen, J.Y., Su, Y.H., and Chen, R.H. (2002b). TGF-beta induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol 4, 51-58.
Jensen, K., Shiels, C., and Freemont, P.S. (2001). PML protein isoforms and the RBCC/TRIM motif. Oncogene 20, 7223-7233.
Jin, Y., Blue, E.K., Dixon, S., Shao, Z., and Gallagher, P.J. (2002). A death-associated protein kinase (DAPK)-interacting protein, DIP-1, is an E3 ubiquitin ligase that promotes tumor necrosis factor-induced apoptosis and regulates the cellular levels of DAPK. J Biol Chem 277, 46980-46986.
Jin, Y., Blue, E.K., and Gallagher, P.J. (2006). Control of death-associated protein kinase (DAPK) activity by phosphorylation and proteasomal degradation. J Biol Chem 281, 39033-39040.
Joazeiro, C.A., and Weissman, A.M. (2000). RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549-552.
Kaelin, W.G., Jr. (2002). Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2, 673-682.
Kaelin, W.G., Jr. (2008). The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8, 865-873.
Kaelin, W.G., Jr., and Ratcliffe, P.J. (2008). Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30, 393-402.
Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., and Ohsumi, Y. (2000). Tor-mediated induction of autophagy via an Apg1 prote
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23538-
dc.description.abstract死亡相關蛋白激脢(DAPK)是一會受攜鈣素(calmodulin)所調控的serine/thronine死亡相關蛋白激脢。一開始DAPK被發現的原因是因為其會參與interferon所調控的細胞死亡。但至今,interferon如何活化DAPK,其間的機制仍不清楚。在本篇論文中,我們找到了KLHL20。它是一個含有BTB-Kelch功能區塊的蛋白。我們發現它會藉由與DAPK結合加速DAPK的本身的蛋白質降解。我們也找出其間的調控機制,那是KLHL20利用它的Kelch repeat與DAPK結合,再利用它的BTB功能區塊與Cullin3結合。而這樣一個由KLHL20-Cul3-ROC1組合而成的E3連接脢複合體我們也證實的確會促進DAPK的泛素化作用。我們更發現在interferon的刺激下,這樣一個訊號會減弱KLHL20對DAPK的泛素化作用。由於干擾素引發PML及PML nuclear body生成,KLHL20藉由與PML結合作用進入PML nuclear body,與DAPK分離,進而抑制DAPK蛋白降解作用。而此干擾素促進之DAPK穩定作用參與了干擾素引發之細胞凋亡及細胞自噬。此外,本論文以骨髓癌細胞模式,證實了干擾素抑制KLHL20對DAPK降解作用為骨髓癌細胞對干擾素敏感性之一項決定因子,因此對骨髓癌之治療策略上具重要參考價值。
除了死亡相關蛋白激脢,我們也發現KLHL20會在缺氧的情況下造成PML之反向調控。腫瘤缺氧與病情進展和治療失效有關,但缺氧的訊息機制並未完全明朗。在此,我們發現缺氧可透過HIF-1所誘發的KLHL20轉錄活化作用,由KLHL20扮演Cul3泛素接合酶之受質轉接蛋白,觸發泛素所媒介的PML腫瘤抑制蛋白之降解。然而,PML必需被CDK1/2於其S518位置進行磷酸化,才會被送至Cul3-KLHL20接合酶。我們證實由HIF-1所誘發、KLHL20所媒介的PML降解,以反饋機制充分地在缺氧情況下誘發HIF-1,進而強化缺氧所引起的代謝重整及上皮間質轉化現象。我們的研究找到一條涉及KLKL20、CDK1/2以及PML的HIF-1自我調控迴路,並提出此迴路對腫瘤進程之影響。
zh_TW
dc.description.abstractDeath-associated protein kinase (DAPK) was identified as a mediator of interferon (IFN)-induced cell death. How IFN controls DAPK activation remains largely unknown. Here we identify the BTB-Kelch protein KLHL20 as a negative regulator of DAPK. KLHL20 binds DAPK and Cullin 3 (Cul3) via its Kelch-repeat domain and BTB domain, respectively. The KLHL20-Cul3-ROC1 E3 ligase complex promotes DAPK polyubiquitination, thereby inducing the proteasomal degradation of DAPK. Accordingly, depletion of KLHL20 diminishes DAPK ubiquitination and degradation. The KLHL20-mediated DAPK ubiquitination is suppressed in cells receiving interferon (IFN) –α or IFN-γ, which induces an enrichment/sequestration of KLHL20 in the PML nuclear bodies, thereby separating KLHL20 from DAPK. Consequently, IFN triggers the stabilization of DAPK. This mechanism of DAPK stabilization is crucial for determining IFN responsiveness of tumor cells and contributes to IFN-induced autophagy. This study identifies KLHL20-Cul3-ROC1 as an E3 ligase for DAPK ubiquitination and reveals a regulatory mechanism of DAPK, through blocking its accessibility to this E3 ligase, in IFN-induced apoptotic and autophagic death. Our findings may be relevant to the problem of IFN resistance in cancer therapy.
Apart from DAPK, we also identify KLHL20 as a negative regulator of PML, and this regulation is controlled by hypoxia. Tumor hypoxia is associated with disease progression and treatment failure, but the hypoxia signaling mechanism is not fully understood. Here, we show that hypoxia triggers ubiquitin-dependent proteolysis of PML tumor suppressor through HIF-1-induced transactivation of KLHL20. Targeting PML to the Cul3-KLHL20 ligase, however, requires PML phosphorylation by CDK1/2 at S518. We present evidence indicating that this HIF-1-induced, KLHL20-mediated PML destruction participates in a feedback mechanism to maximize HIF-1 induction by hypoxia, thereby potentiating hypoxia-induced metabolic reprogramming and epithelial-mesenchymal transition. Our study identifies a HIF-1 autoregulatory loop involving KLHL20, CDK1/2 and PML and suggests a contribution of this loop to tumor progression.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:03:41Z (GMT). No. of bitstreams: 1
ntu-100-D94448006-1.pdf: 8626273 bytes, checksum: 030fec6117f7e3c1567442936d524c6a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable Contents 1
Abbreviations 9
中文摘要 11
Abstract 12
Literature Review 13
1. Apoptosis 13
1.1 Overview of apoptosis 13
1.2 Mitochondrial independent (extrinsic) apoptosis pathway 14
1.2.1 CD95L/CD95 (Fas) pathway 14
1.2.2 TNF/TNFR pathway 15
1.2.3 TRAIL/TRAILR pathway 16
1.3 Mitochondrial-associated (intrinsic) apoptosis pathway 16
1.4 The crosstalk between extrinsic and intrinsic apoptotic pathway 18
1.5 Anoikis-type apoptosis 18
2. Autophagy 19
2.1 Insights into autophagy 19
2.2 Autophagic mechanism 20
3. Interferon responses 22
3.1 The biological significance of IFNs signaling 22
3.1.1 Antiviral activities 22
3.1.1.1 The dsRNA-dependent protein kinase (PKR) pathway 23
3.1.1.2 The 2-5A system 23
3.1.1.3 The Mx pathway 23
3.1.2 Inhibition of Cell Growth 24
3.1.3 Control of apoptosis 24
3.2 The molecular mechanism of IFNs signaling 25
4. Hypoxia responses 26
4.1 The effects of hypoxia on cancer 26
4.2 Regulation of hypoxia-inducible factors (HIFs) by O2 availability 27
4.3 The role of HIFs in cancer 29
5. Ubiquitination 30
5.1 The cascade of ubiquitination 30
5.2 The diversity of E3 ubiquitin ligases 31
5.3 The multiple functions of ubiquitination 33
5.4 BTB-kelch proteins and KLHL20 (KLEIP) 34
5.4.1 BTB-kelch proteins 34
5.4.2 KLHL20 (KLEIP) 36
6. DAPK 36
6.1 DAPK family and the multi-domain structure of DAPK 36
6.2 DAPK in cell death 37
6.3 The tumor suppression function of DAPK 39
6.4 Regulation of DAPK 40
7. PML 41
7.1 The PML nuclear body and PML protein 41
7.2 PML function 43
7.2.1 Regulation of apoptosis 43
7.2.2 Regulation of cellular senescence 44
7.2.3 Regulation of angiogenesis 45
7.2.4 The function of cytoplasmic PML isoform 46
7.3 Regulation of PML expression and stability 46
Chapter I 49
The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses 49
Introduction 50
Results 52
KLHL20 forms a complex with Cul3 and DAPK 52
KLHL20-based Cul3 complex promotes DAPK ubiquitination in vitro and in vivo 54
KLHL20 promotes DAPK proteasomal degradation and attenuates its proapoptotic function. 55
IFN-α and IFN-γ inhibit KLHL20-dependent DAPK ubiquitination by sequestration of KLHL20 55
PML depletion reverses the inhibitory effect of IFN on DAPK ubiquitination and degradation. 57
DAPK stabilization by blocking KLHL20-mediated ubiquitination contributes to IFN-α-induced apoptosis in multiple myeloma (MM) cells. 58
Inhibition of KLHL20-mediated DAPK ubiquitination contributes to IFN-induced autophagy. 59
Discussion 60
Materials and Methods 63
Cell culture, transient transfection, and retroviral infection 63
Plasmids 64
Antibodies and reagents 64
Immunoprecipitation 65
Yeast two-hybrid screen 65
In vitro ubiquitination assay 65
Immunofluorescence analysis 65
Production of baculovirus 66
Apoptosis assay 66
Lentivirus production 66
Autophagy assay 67
Chapter II 68
A Cullin3-KLHL20 ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling 68
Introduction 69
Results 71
Hypoxia induces PML destabilization and KLHL20 transcription through HIF-1. 71
Cul3-KLHL20 ubiquitin ligase is responsible for PML ubiquitination 73
CDK1 and CDK2 phosphorylate PML S518 to promote KLHL20-mediated PML destruction. 74
S518 phosphorylation promotes the recruitment of PML to KLHL20 75
KLHL20-mediated PML destruction amplifies tumor hypoxia responses. 75
PML S518 phosphorylation is not required for the recruitment of KLHL20 to PML-NB. 76
Discussion 77
Materials and Methods 79
Plasmids 79
Antibodies and reagents 80
Cell culture, transfection, and establishment of stable cell lines 80
Lentivirus production and infection 81
Luciferase assay 81
qPCR analysis 81
ChIP assay 82
Kinase assay 82
Immunoprecipitation 83
In vitro and in vivo ubiquitination 83
Figures : 84
Fig.1 : Interaction of KLHL20 with DAPK. 84
Fig.2: Characterization of the anti-KLHL20 antiserum. 85
Fig3. DAPK interacts with KLHL20. 86
Fig. 4: Interaction of KLHL20 with Cul3 and DAPK. 87
Fig. 5: KLHL20 forms a complex with Cul3 and DAPK. 88
Fig. 6: KLHL20-based Cul3 complex promotes DAPK ubiquitination in vivo. 89
Fig. 7: Generation of a KLHL20 mutant that cannot bind Cul3. 90
Fig. 8: The DD of DAPK is important for DAPK ubiquitination by KLHL20-Cul3-ROC1 complex. 91
Fig. 9: Endogenous KLHL20 promotes DAPK ubiquitination. 92
Fig. 10: KLHL20-based Cul3 complex promotes DAPK ubiquitination in vitro. 93
Fig. 11: Purification of the KLHL20-based Cul3 complex by GST pull down analysis. 94
Fig. 12: KLHL20 promotes proteasomal degradation of DAPK. 95
Fig. 13: KLHL20 promotes DAPK turnover. 96
Fig. 14: Knockdown of KLHL20 increases DAPK steady-state level. 97
Fig. 15: KLHL20 inhibits the pro-apoptotic function of DAPK. 98
Fig. 16: IFN upregulates DAPK through inhibiting proteasomal degradation of DAPK. 99
Fig. 17: IFN blocks KLHL20-dependent DAPK ubiquitination. 100
Fig. 18: IFN does not affect the formation of ROC1-Cul3-KLHL20 complex. 101
Fig. 19: IFN blocks the interaction of KLHL20 with endogenous DAPK. 102
Fig. 20: IFN triggers the enrichment of KLHL20 in PML-NBs. 103
Fig. 21: IFN-α induces an enrichment of KLHL20 in PML-NBs. 104
Fig. 22: Interaction of KLHL20 with PML. 105
Fig. 23: DAPK and PML compete for binding KLHL20. 106
Fig. 24: Generation of PML knockdown cells. 107
Fig. 25: Depletion of PML abolishes IFN-γ-induced relocation of KLHL20 in PML-NBs. 108
Fig. 26: PML siRNA rescues the interaction between DAPK and KLHL20 in IFN-γ-treated cells. 109
Fig. 27: PML siRNA rescues KLHL20-mediated DAPK ubiquitination in IFN-γ-treated cells. 110
Fig. 28: IFN-γ fails to upregulate DAPK in PML null cells. 111
Fig. 29: PML is required for IFN-γ-induced DAPK stabilization. 112
Fig. 30: IFN-α induces PML-NBs and KLHL20 relocation in H929 cells but not in XG1 cells. 113
Fig. 31: IFN-α induces the disruption of KLHL20-DAPK complex in H929 cells but not in XG1 cells. 114
Fig. 32: IFN-α induces the upregulation of DAPK in H929 cells but not in XG1 cells. 115
Fig. 33: DAPK stabilization by blocking KLHL20-mediated ubiquitination contributes to IFN-α-induced apoptosis in multiple myeloma cells. 116
Fig. 34: Blockage of KLHL20-mediated DAPK degradation contributes to multiple myeloma cell responsiveness to IFN. 117
Fig. 35: IFN-γ treatment of MCF7 cells induces the concentration of KLHL20 to PML-NBs. 118
Fig. 36: Blockage of KLHL20-mediated DAPK degradation contributes to IFN-induced autophagy. 119
Fig. 37: Inhibition of KLHL20-mediated DAPK ubiquitination contributes to IFN-induced autophagy. 120
Fig. 38: IFN-induced autophagy is resulted from the increase in autophagosome formation rather than the blockage of lysosome-mediated autophagic flux. 121
Fig. 39: Models for the DAPK degradation pathway mediated by KLHL20-Cul3-ROC1 E3 ligase complex and for the inhibition of this pathway in IFN-treated cells. 122
Fig. 40: IFN-γ does not increase the amount of S308-phosphorylated DAPK. 123
Fig. 41: Hypoxia induces opposite regulations of PML and KLHL20. 124
Fig. 42: Hypoxia does not affect PML mRNA level. 125
Fig. 43: Hypoxia induces a downregulation of PML protein. 126
Fig. 44: Cycloheximide-chase experiment revealed an acceleration of PML protein turnover in response to hypoxia. 127
Fig. 45: Proteasome inhibitor MG132 triggered a greater PML upregulation in hypoxic than normoxic cells. 128
Fig. 46: Hypoxia promotes PML ubiquitination independent of its sumoylation. 129
Fig. 47: Regulation of KLHL20 by hypoxia. 130
Fig. 48: HIF-1α depletion by either of the two siRNAs blocked hypoxia-induced upregulation of KLHL20 and downregulation of PML. 131
Fig. 49: Schematic representations of the regulatory region of KLHL20 gene, the luciferase reporter constructs, and the ChIP primers used in this study. The positions of HREs and the sequences of wild type and mutant HREs are indicated. 132
Fig. 50: Mutation of either HRE reduced, and both HREs abolished the hypoxia or HIF-1α-induced KLHL20 promoter activity. 133
Fig. 51: KLHL20 interacts with PML endogenously. 134
Fig. 52: Knockdown of KLHL20 by two different siRNAs completely abrogated hypoxia-induced PML downregulation, whereas knockdown of RNF4 to a similar extent only slightly increased PML level in hypoxic cells. 135
Fig. 53: PML-I ubiquitination was downregulated drastically in hypoxic and moderately in normoxic cells by KLHL20 siRNA. 136
Fig. 54: In vitro ubiquitination of PML by KLHL20-Cul3-Roc1 complex. 137
Fig. 55: The pan-CDK inhibitor roscovitine blocked KLHL20-induced degradation of endogenous PML. 138
Fig. 56: Roscovitine blocks KLHL20-induced PML degradation. 139
Fig. 57: Roscovitine blocks KLHL20-induced PML ubiquitination. 140
Fig. 58: Dominant negative (DN) mutant of CDK1 or CDK2, but not CDK4 or CDK6, abrogated KLHL20-induced PML-I degradation. 141
Fig. 59: CDK phosphorylates PML at S518 in vitro. 142
Fig. 61: Overexpression of CDK1-cyclin B or CDK2-cyclin E enhanced S518 phosphorylation in vivo. 144
Fig. 62: The activities of CDK1 and CDK2 were not decreased by 24 h-treatment of hypoxia. 145
Fig. 63: The PML S518 phosphorylation level was not decreased by 24 h-treatment of hypoxia. 146
Fig. 64: S518 phosphorylation mediates PML interaction with KLHL20. 147
Fig. 65: S518 mutation impairs KLHL20-dependent PML ubiquitination. 148
Fig. 66: S518 mutation impairs KLHL20-induced PML degradation. 149
Fig. 67: PML S518A mutant is resistant to KLHL20-mediated degradation in hypoxic cells. 150
Fig. 68: Depletion of KLHL20 in PC3 cells led to an enhanced decline of mTOR activity (monitored by the phosphorylation of mTOR target S6 kinase) and a decreased induction of HIF-1α in response to hypoxia treatment. 151
Fig. 69: KLHL20-depleted cells exhibited a lower induction of HIF-1α targets VEGF (A) and GLUT1 (B) than control siRNA-expressing cells, and depletion of both KLHL20 and PML reversed these effects. 152
Fig. 70: EMT assays for cells cultured in normoxia or hypoxia for 24 h. 153
Fig .71: PML S518 phosphorylation is not required for the recruitment of KLHL20 to PML-NB. 154
Fig. 72: Scheme depicting the HIF-1α autoregulatory loop involving KLHL20, CDK, PML and mTOR. 155
Appendix 156
Appendix I: Regulation of KLHL20 and PML by HIF-1α. 156
Appendix II: Chromatin immunoprecipitation (ChIP) analysis confirmed the direct binding of HIF-1α to these KLHL20 regulating regions. 157
Appendix III: The specificity of the p518PML antibody. 158
Appendix IV: DN mutant of CDK1 or CDK2 blocked S518 phosphorylation in vivo. 159
Appendix V: Roscovitine or a CDK1/2 specific inhibitor blocked hypoxia-induced PML S518 phosphorylation and degradation. 160
Appendix VI: EMT assays for cells cultured in normoxia or hypoxia for 24 h. 161
References 162
dc.language.isoen
dc.title接合酶酵素KLHL20-Cul3-Roc1對抑癌蛋白DAPK及PML調控機制之探討zh_TW
dc.titleRegulation of the tumor suppressor proteins DAPK and
PML by KLHL20-Cul3-Roc1 ubiquitin E3 ligase
en
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee呂勝春,施修明,吳國瑞,張智芬
dc.subject.keywordBTB區塊,Cullin3,死亡相關蛋白激脢,干擾素,PML nuclear bodies,缺氧,HIF-1α,KLHL20,CDK,PML,zh_TW
dc.subject.keywordBTB domain,Cullin3,DAPK,IFN,PML nuclear bodies,hypoxia,HIF-1α,KLHL20,CDK,PML,en
dc.relation.page197
dc.rights.note未授權
dc.date.accepted2011-02-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved