請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23531
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 沈湯龍(Tang-Long Shen) | |
dc.contributor.author | Li-Hsuan Tung | en |
dc.contributor.author | 董俐萱 | zh_TW |
dc.date.accessioned | 2021-06-08T05:03:37Z | - |
dc.date.copyright | 2011-08-22 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-19 | |
dc.identifier.citation | 1. Chu, P.-Y., Li, T.-K., Ding, S.-T., Lai, I.-R., and Shen, T.-L. (2010) Journal of Biological Chemistry 285, 29279-29285
2. Cohen, G. B., Ren, R., and Baltimore, D. (1995) Cell 80, 237-248 3. Daly, R. J. (1998) Cell Signal 10, 613-618 4. Daly, R. J., Sanderson, G. M., Janes, P. W., and Sutherland, R. L. (1996) J Biol Chem 271, 12502-12510 5. Depetris, R. S., Wu, J., and Hubbard, S. R. (2009) Nat Struct Mol Biol 16, 833-839 6. Driver, J. A., and Lu, K. P. (2010) Curr Aging Sci 3, 158-165 7. Eckerdt, F., Yuan, J., Saxena, K., Martin, B., Kappel, S., Lindenau, C., Kramer, A., Naumann, S., Daum, S., Fischer, G., Dikic, I., Kaufmann, M., and Strebhardt, K. (2005) J Biol Chem 280, 36575-36583 8. Fiddes, R. J., Campbell, D. H., Janes, P. W., Sivertsen, S. P., Sasaki, H., Wallasch, C., and Daly, R. J. (1998) J Biol Chem 273, 7717-7724 9. Finn, G., and Lu, K. P. (2008) Curr Cancer Drug Targets 8, 223-229 10. Frantz, J. D., Giorgetti-Peraldi, S., Ottinger, E. A., and Shoelson, S. E. (1997) J Biol Chem 272, 2659-2667 11. Fujimori, F., Takahashi, K., Uchida, C., and Uchida, T. (1999) Biochem Biophys Res Commun 265, 658-663 12. Guan, J. L. (1997) Int J Biochem Cell Biol 29, 1085-1096 13. Guan, J. L. (1997) Matrix Biol 16, 195-200 14. Hamdane, M., Dourlen, P., Bretteville, A., Sambo, A. V., Ferreira, S., Ando, K., Kerdraon, O., Begard, S., Geay, L., Lippens, G., Sergeant, N., Delacourte, A., Maurage, C. A., Galas, M. C., and Buee, L. (2006) Mol Cell Neurosci 32, 155-160 15. Han, D. C., and Guan, J. L. (1999) J Biol Chem 274, 24425-24430 16. Han, D. C., Shen, T. L., and Guan, J. L. (2000) J Biol Chem 275, 28911-28917 17. Han, D. C., Shen, T. L., and Guan, J. L. (2001) Oncogene 20, 6315-6321 18. Han, D. C., Shen, T. L., Miao, H., Wang, B., and Guan, J. L. (2002) J Biol Chem 277, 45655-45661 19. He, W., Rose, D. W., Olefsky, J. M., and Gustafson, T. A. (1998) Journal of Biological Chemistry 273, 6860-6867 20. Kauraniemi, P., Barlund, M., Monni, O., and Kallioniemi, A. (2001) Cancer Res 61, 8235-8240 21. Kauraniemi, P., Kuukasjarvi, T., Sauter, G., and Kallioniemi, A. (2003) Am J Pathol 163, 1979-1984 22. KAY, B. K., WILLIAMSON, M. P., and SUDOL, M. (2000) The FASEB Journal 14, 231-241 23. Lam, P. B., Burga, L. N., Wu, B. P., Hofstatter, E. W., Lu, K. P., and Wulf, G. M. (2008) Mol Cancer 7, 91 24. Lee, T. H., Pastorino, L., and Lu, K. P. (2011) Expert Rev Mol Med 13, e21 25. Lei, J. X., Cassone, C. G., Luebbert, C., and Liu, Q. Y. (2011) Mol Neurodegener 6, 9 26. Liou, Y. C., Ryo, A., Huang, H. K., Lu, P. J., Bronson, R., Fujimori, F., Uchida, T., Hunter, T., and Lu, K. P. (2002) Proc Natl Acad Sci U S A 99, 1335-1340 27. Liu, F., and Roth, R. A. (1998) Mol Cell Biochem 182, 73-78 28. Lu, K. P. (2004) Trends Biochem Sci 29, 200-209 29. Lu, K. P., Hanes, S. D., and Hunter, T. (1996) Nature 380, 544-547 30. Lu, K. P., Liou, Y. C., and Vincent, I. (2003) Bioessays 25, 174-181 31. Lu, K. P., Suizu, F., Zhou, X. Z., Finn, G., Lam, P., and Wulf, G. (2006) Mol Carcinog 45, 397-402 32. Lu, K. P., and Zhou, X. Z. (2007) Nat Rev Mol Cell Biol 8, 904-916 33. Lu, P. J., Wulf, G., Zhou, X. Z., Davies, P., and Lu, K. P. (1999) Nature 399, 784-788 34. Lu, P. J., Zhou, X. Z., Liou, Y. C., Noel, J. P., and Lu, K. P. (2002) J Biol Chem 277, 2381-2384 35. Lu, P. J., Zhou, X. Z., Shen, M., and Lu, K. P. (1999) Science 283, 1325-1328 36. Luoh, S. W. (2002) Cancer Genet Cytogenet 136, 43-47 37. Manser, J., Roonprapunt, C., and Margolis, B. (1997) Developmental Biology 184, 150-164 38. Manser, J., and Wood, W. B. (1990) Dev Genet 11, 49-64 39. Mantovani, F., Piazza, S., Gostissa, M., Strano, S., Zacchi, P., Mantovani, R., Blandino, G., and Del Sal, G. (2004) Mol Cell 14, 625-636 40. Mattson, M. P. (2004) Nature 430, 631-639 41. Miyashita, H., Mori, S., Motegi, K., Fukumoto, M., and Uchida, T. (2003) Oncol Rep 10, 455-461 42. Nakashima, M., Meirmanov, S., Naruke, Y., Kondo, H., Saenko, V., Rogounovitch, T., Shimizu-Yoshida, Y., Takamura, N., Namba, H., Ito, M., Abrosimov, A., Lushnikov, E., Roumiantsev, P., Tsyb, A., Yamashita, S., and Sekine, I. (2004) J Pathol 202, 446-455 43. Opal, P., Garcia, J. J., Propst, F., Matilla, A., Orr, H. T., and Zoghbi, H. Y. (2003) J Biol Chem 278, 34691-34699 44. Parsons, J. T., Martin, K. H., Slack, J. K., Taylor, J. M., and Weed, S. A. (2000) Oncogene 19, 5606-5613 45. Pawson, T., Gish, G. D., and Nash, P. (2001) Trends Cell Biol 11, 504-511 46. Ramakrishnan, P., Dickson, D. W., and Davies, P. (2003) Neurobiol Dis 14, 251-264 47. Ranganathan, R., Lu, K. P., Hunter, T., and Noel, J. P. (1997) Cell 89, 875-886 48. Rodriguez-Viciana, P., Sabatier, C., and McCormick, F. (2004) Mol. Cell. Biol. 24, 4943-4954 49. Ryo, A., Liou, Y.-C., Wulf, G., Nakamura, M., Lee, S. W., and Lu, K. P. (2002) Mol. Cell. Biol. 22, 5281-5295 50. Ryo, A., Nakamura, M., Wulf, G., Liou, Y. C., and Lu, K. P. (2001) Nat Cell Biol 3, 793-801 51. Shen, T. L., and Guan, J. L. (2004) Front Biosci 9, 192-200 52. Shen, T. L., Han, D. C., and Guan, J. L. (2002) J Biol Chem 277, 29069-29077 53. Slamon, D. J., Godolphin, W., Jones, L. A., Holt, J. A., Wong, S. G., Keith, D. E., Levin, W. J., Stuart, S. G., Udove, J., Ullrich, A., and et al. (1989) Science 244, 707-712 54. Stein, D., Wu, J., Fuqua, S. A., Roonprapunt, C., Yajnik, V., D'Eustachio, P., Moskow, J. J., Buchberg, A. M., Osborne, C. K., and Margolis, B. (1994) EMBO J 13, 1331-1340 55. Suizu, F., Ryo, A., Wulf, G., Lim, J., and Lu, K. P. (2006) Mol Cell Biol 26, 1463-1479 56. Tanaka, S., Mori, M., Akiyoshi, T., Tanaka, Y., Mafune, K., Wands, J. R., and Sugimachi, K. (1997) Cancer Res 57, 28-31 57. Tanaka, S., Mori, M., Akiyoshi, T., Tanaka, Y., Mafune, K., Wands, J. R., and Sugimachi, K. (1998) J Clin Invest 102, 821-827 58. Tanaka, S., Sugimachi, K., Kawaguchi, H., Saeki, H., Ohno, S., and Wands, J. R. (2000) J Cell Physiol 183, 411-415 59. van Drogen, F., Sangfelt, O., Malyukova, A., Matskova, L., Yeh, E., Means, A. R., and Reed, S. I. (2006) Mol Cell 23, 37-48 60. Wojcik, J., Girault, J. A., Labesse, G., Chomilier, J., Mornon, J. P., and Callebaut, I. (1999) Biochem Biophys Res Commun 259, 113-120 61. Wulf, G. M., Liou, Y. C., Ryo, A., Lee, S. W., and Lu, K. P. (2002) J Biol Chem 277, 47976-47979 62. Wulf, G. M., Ryo, A., Wulf, G. G., Lee, S. W., Niu, T., Petkova, V., and Lu, K. P. (2001) EMBO J 20, 3459-3472 63. Yaffe, M. B., Schutkowski, M., Shen, M., Zhou, X. Z., Stukenberg, P. T., Rahfeld, J. U., Xu, J., Kuang, J., Kirschner, M. W., Fischer, G., Cantley, L. C., and Lu, K. P. (1997) Science 278, 1957-1960 64. Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., Hahn, W. C., Stukenberg, P. T., Shenolikar, S., Uchida, T., Counter, C. M., Nevins, J. R., Means, A. R., and Sears, R. (2004) Nat Cell Biol 6, 308-318 65. Zheng, H., You, H., Zhou, X. Z., Murray, S. A., Uchida, T., Wulf, G., Gu, L., Tang, X., Lu, K. P., and Xiao, Z.-X. J. (2002) Nature 419, 849-853 66. Zheng, Y., Xia, Y., Hawke, D., Halle, M., Tremblay, M. L., Gao, X., Zhou, X. Z., Aldape, K., Cobb, M. H., Xie, K., He, J., and Lu, Z. (2009) Mol Cell 35, 11-25 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23531 | - |
dc.description.abstract | Grb7(Growth Factor Receptor Bound Protein 7)為一參與在細胞中許多信息傳導途徑的adaptor protein,為Grb family的一員。其蛋白結構分為Proline-rich domain、GM domain以及SH2 domain三部分,通常藉由SH2 domain與其他蛋白間的交互作用來將上游的訊息傳遞下去,例如EGFR(epidermal growth factor receptor)或Eph receptors,Grb7會被上游kinase磷酸化,如focal adhesion kinase (FAK)活化,進而參與細胞中的integrin signaling pathway 及 cell migration。在許多癌細胞中,特別地,Grb7在乳癌細胞中會與HER2(Human Epidermal growth factor Receptor 2)有co-amplification的現象,並且會參與癌症細胞的migration及tumorigenesis。近來開始針對Grb7來當作癌症的治療標靶,然而對於Grb7本身的下游訊息傳導的了解並沒有很清楚。因此為了探討Grb7的訊息傳導,我們首先藉由Yeast two-hybrid篩選與Grb7會交互作用的下游蛋白,並對這些可能的蛋白以 Ingenuity Pathways Analysis系統來進行分析,預測這些蛋白彼此間可能的交互作用關係。而我們發現Grb7會與Pin1( peptidyl-prolyl cis/trans isomerase)在Yeast two-hybrid有大量結合的現。Pin1為一可以針對磷酸化後的蛋白進行cis/trans異構化的異構酶,可在細胞層次中調控蛋白的穩定、活化及構形。另外也有報導指出Pin1會在癌細胞中大量表現。在本研究中,藉由co- immunoprecipitation以及表現GST-Pin1蛋白後進行GST pull-down的實驗結果,我們確認了無論是在in vivo 或是in vitro的環境下,在乳癌細胞中Pin1的確是可以與Grb7進行結合。另外,對Grb7進行truncation mapping 以及site-directed mutagenesis,確認了Grb7上Pin1可能的進行結合的Ser/Thr-Pro motifs : S194A。更進一步,我們想了解Grb7與Pin1的相互作用是否會對於Grb7本身的蛋白穩定性、磷酸化或是下游的信息傳遞有所影響。同時,我們也想找出可能參與在此交互作用中的上游Ser/Thr kinase,以及此交互作用是否在乳癌細胞中,對Grb7所調控的細胞移動及增殖有影響。 | zh_TW |
dc.description.abstract | The growth factor receptor-bound protein-7 (Grb7) is the prototype of the Grb7 adaptor protein family, originally identified as a binding partner of the cytoplasmic tail of the epidermal growth factor receptor. The molecular architecture of Grb7 includes an N-terminal Proline-rich domain, a middle GM region and a C-terminal SH2 domain. Grb7 transmits upstream signal in a tyrosine phosphorylation manner, in which its C-terminal SH2 domain enables interaction with phospho-tyrosine motif of varied signaling protein kinases, such as EGFR (epidermal growth factor receptor), Eph receptors, and non-receptor tyrosine kinases. Subsequently, Grb7 is phosphorylated by the upstream kinases, such as focal adhesion kinase (FAK), Src, EGFR, and leads to regulation of diverse cellular functions including cell migration. Consistently, Grb7 is frequently overexpressed in breast cancers in co-amplification with HER2 (human epidermal growth factor receptor 2), which usually correlates to poor clinical outcomes. In this current study, we further attempt to investigate signaling molecules acting downstream of Grb7. Herein, we found that PIN1 (peptidyl-prolyl cis/trans isomerase) is able to interact with Grb7 based on a yeast two-hybrid library screening. In addition, we analyzed the Grb7-mediated potential signaling pathways or interactome among the proteins obtained by the yeast two-hybrid screening. PIN1 is an isomerase that can modulate the conformation of its substrates in a post-phosphorylation manner, thereby influencing protein function, activity, and/or stability. Not surprisingly, numerous reports indicate that overexpression of PIN1 exhibits in different human cancers, including breast cancers. By co-immunoprecipitation and GST-Pin1 pull-down assay, we confirmed that the PIN1 bona fide interacts with Grb7 in breast cancer cells. Moreover, utilizing truncation mapping and site-directed mutagenesis approaches, we identified potential Ser/Thr-Pro motifs of Grb7, S194, responsibly bound to PIN1. Perspectively, we are currently investigating biochemical and functional effects of this interaction. For instance, we will examine the stability, phosphorylated status, localization as well as the upstream Ser/Thr kinase(s) of Grb7 involved in the interaction with PIN1. Lastly, the influence of cell migration and proliferation, especially its significance in tumorigenesis and/or progression, will also be elucidated attributed by the interaction between Grb7 and PIN1. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:03:37Z (GMT). No. of bitstreams: 1 ntu-100-R98633019-1.pdf: 1796348 bytes, checksum: 6535869db9193c83f8c8091dde15ec53 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | CONTENT I
中文摘要 III ABSTRACT V INTRODUCTION 1 Grb7 1 PIN1 7 MATERIAL and METHODS 14 Reagents. 14 Constructs and site-directed mutagenesis. 15 Yeast two hybrid library screening. 16 Ingenuity Pathways Analysis (IPA). 18 Cell culture. 18 Cell transfection. 18 Immunoprecipitation and Western blotting analysis. 19 Recombinant protein production and purification. 21 Glutathione-S-transferase pull-down assay. 22 Cycloheximide pulse-chase experiment. 22 Cell Migration Assay. 23 Cell Motility Assay 24 Grb7 downstream signaling pathways survey. 25 Upstream Kinase Screening. 25 RESULTS 27 Generation of the bait strain AH109 harboring pKBTK7-Grb7 for yeast two-hybrid screening. 27 Yeast two-hybrid library screening 28 Sequence analysis 29 Ingenuity Pathways Analysis 29 Interaction between PIN1 and Grb7 31 Grb7 bound to PIN1 through its ΔN domain 33 Ser194-Pro motif may be required for the interactions between Grb7 and Pin1. 34 Cycloheximide pulse-chase experiment 35 Upstream Kinase(s) 36 Cell Migration and Motility 36 DISSCUSSION 37 FIGURES 43 REFERENCE 63 | |
dc.language.iso | en | |
dc.title | PIN1與 Grb7交互作用之鑑定及分析 | zh_TW |
dc.title | Identification and characterization of PIN1 Interaction with Grb7 | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃偉邦(Wei-Pang Huang),劉俊揚(Jun-Yang Liou),呂佩融(Pei-Jung Lu) | |
dc.subject.keyword | 生長因子結合蛋白,乳癌,絲氨酸/蘇氨酸蛋白激酶,月太基脯氨醯順反異構酶, | zh_TW |
dc.subject.keyword | Grb7,PIN1,breast cancer,Ser/Thr kinase, | en |
dc.relation.page | 69 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-08-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。