Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23444
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊燦堯
dc.contributor.authorTefang Lanen
dc.contributor.author藍德芳zh_TW
dc.date.accessioned2021-06-08T05:01:44Z-
dc.date.copyright2010-10-05
dc.date.issued2010
dc.date.submitted2010-09-30
dc.identifier.citationChapter 1 References
Allegre, C.J., Staudacher, T., Sarda, P., 1987. Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle. Earth and Planetary Science Letters. 81, 127-150.
Andrews, J., Lee, D., 1979. Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends. Journal of Hydrology. 41, 233-252.
Bergfeld, D., Goff, F., Janik, C., 2001. Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada; relations between surface phenomena and the geothermal reservoir. Chemical geology. 177, 43-66.
Cerling, T., Craig, H., 1994. Geomorphology and in-situ cosmogenic isotopes. Annual Review of Earth and Planetary Letters. 22, 273-317.
Chiodini, G., Baldini, A., Barberi, F., Carapezza, M.L., Cardellini, C., Frondini, F., Granieri, D., Ranaldi, M., 2007. Carbon dioxide degassing at Latera caldera (Italy): Evidence of geothermal reservoir and evaluation of its potential energy. Journal of Geophysical Research-Solid Earth. 112, B12204.
Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry. 13, 543-552.
Ciotoli, G., Lombardi, S., Annunziatellis, A., 2007. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy. Journal of Geophysical Research-Solid Earth. 112, B05407.
Ciotoli, G., Lombardi, S., Morandi, S., Zarlenga, F., 2004. A multidisciplinary, statistical approach to study the relationships between helium leakage and neotectonic activity in a gas province: The Vasto basin Abruzzo-Molise (central Italy). Aapg Bull. 88, 355-372.
Clarke, W., Beg, M.A., Craig, H., 1969. Excess 3He in the sea: Evidence for terrestrial primodal helium. Earth and Planetary Science Letters. 6, 213-220.
Farley, K., Neroda, E., 1998. Noble gases in the earth's mantle. Annual Review of Earth and Planetary Letters. 26, 189-218.
Frondini, F., Caliro, S., Cardellini, C., Chiodini, G., 2009. Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy). Applied Geochemistry. 24, 860-875.
Giammanco, S., Gurrieri, S., Valenza, M., 1998. Anomalous soil CO 2 degassing in relation to faults and eruptive fissures on Mount Etna (Sicily, Italy). Bull Volcanol. 60, 252-259.
Hilton, D.R., Porcelli, D., Noble Gases as Mantle Tracers, in: Heinrich, D.H., Karl, K.T., (Eds), Treatise on Geochemistry, Pergamon, Oxford, 2003, pp. 277-318.
King, C., 1986. Gas geochemistry applied to earthquake prediction: an overview. Journal of Geophysical Research. 91, 12269-12281.
Klusman, R., Moore, J., LeRoy, M., 2000. Potential for surface gas flux measurements in exploration and surface evaluation of geothermal resources. Geothermics. 29, 637-670.
Klusman, W.R., 1993. Soil gas and related methods for natural resource exploration‎. 483.
Kurz, M., 1986. Cosmogenic helium in a terrestrial igneous rock. nature.com. 320, 435-439.
Kurz, M.D., Jenkins, W.J., Hart, S.R., 1982. Helium Isotopic Systematics of Oceanic Islands and Mantle Heterogeneity. Nature. 297, 43-47.
Niedermann, S., Noble Gases as dadting tools for surficial processes, in: Porcelli, D., Ballentine, C.J., Wieler, R., (Eds), Reviews in Mineralogy and Geochemistry 47, The Mineralogical Society of America, Washington, D.C, 2002, pp. 233-252.
Stute, M., Schlosser, P., Clark, J., Broecker, W., 1992. Paleotemperatures in the Southwestern United States derived from noble gases in ground water. Science. 256, 1000-1003.
Toutain, J., Baubron, J., 1999. Gas geochemistry and seismotectonics: a review. Tectonophysics. 304, 1-27.

Chapter 2 References
Allard, P., Le Bronce, J., Morel, P., Vavasseur, C., Faivre-Pierret, R., Robe, M.C., Roussel, C., Zettwoog, P., 1987. Geochemistry of soil gas emanations from Mt. Etna, Sicily. Terra Cognita 7 (G17–52), 407.
Allard, P., Carbonelle, J., Dajlevic, D., Le Bronce, J., Morel, P., Robe, M. C., Maurenads, J. M., Faivre-Pierret, R., Martin, D., Sabroux, J.C., Zettwoog, P., 1991. Eruptive and diffusive emissions of CO2 from Mount Etna. Nature 351, 387-391.
Alparone S., Andronico S., Giammanco S., Lodato L., 2004. A multidisciplinary approach to detect active pathways for magma migration and eruption at Mt. Etna (Sicily, Italy) before the 2001 and 2002-2003 eruptions. Journal of Volcanology and Geothermal Research 136, 121-140.
Baubron, J. C., Rigo, A., Toutain, J. P., 2002. Soil gas profiles as a tool to characterise active tectonic areas: the Jaut Pass example (Pyrenees, France). Earth and Planetary Science Letters 196, 69-81.
Chen, C-H. and Lin, S. B., 2002. Eruptions younger than 20 Ka of the Tatun Volcano Group as viewed from the sediments of the Sungshan Formation in Taipei Basin. Western Pacific Earth Sciences 2, 191-204.
Chiodini, G., Frondini, F., Raco, B., 1996. Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bulletin of Volcanology 58, 41-50.
Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry 13, 543-552.
Chyi, L. L., Quick, T. J., Yang, T. F., Chen, C-H., 2005. Soil gas radon spectra and earthquakes. Terrestrial, Atmospheric and Oceanic Sciences 16, 763-774.
Etiope, G., 1999. Subsoil CO2 and CH4 and their transfer from faulted grassland to atmosphere. Journal of Geophysical Research 104, 16889-16894.
Finizola, A., Sortino, F., Lenat, J-F., Aubert, M., Ripepe, M., Valenza, M., 2003. The summit hydrothermal system of Stromboli. New insights from self-potential, temperature, CO2 and fumarolic fluid measurements, with structural and monitoring implications. Bulletin of Volcanology 65, 486-504.
Fu, C. C., Yang, T. F., Walia, V. and Chen, C-H., 2005. Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan. Geochemical Journal 39, 427-439.
Gerlach, T., Doukas, M., McGee, K., Kessler, R., 1998. Three-year decline of magmatic CO2 emission from soils of a Mammoth Mountain tree kill: Horseshoe Lake, CA, 1995–1997. Geophysical Research Letters 25, 1947-1950.
Giammanco, S., Gurrieri, S., Valenza, M., 1998. Anomalous soil CO2 degassing in relation to faults and eruptive fissures on Mount Etna (Sicily, Italy). Bulletin of Volcanology 60, 252-259.
Giammanco S., Gurrieri S., Valenza M., 2006. Fault-controlled soil CO2 degassing and shallow magma bodies: Summit and lower East Rift of Kilauea Volcano (Hawaii), 1997. Pure and Applied Geophysics 163, 853-867.
Giggenbach, W. F., 1996. Chemical composition of volcanic gases. In: Scarpa. R., Tillinh, R.I. (Eds.), Monitoring and Mitigation of Volcanic Hazards. Springer, Berlin, pp. 221-256.
Hernandez, P. A., Perez, N. M., Salazar, J. M., Notsu, K., Wakita, H., 1998. Diffuse emission of carbon dioxide, methane, and helium-3 from Teide volcano, Tenerife, Canary Islands. Geophysical Research Letters 25, 3311-3314.
Hernandez, P., Salazar, J. M., Shimoike, Y., Mori, T., Notsu, K., Perez, N., 2001. Diffuse emission of CO2 from Miyakejima volcano, Japan. Chemical Geology 177, 175-185.
Hernandez Perez, P., K. Notsu, M. Tsurumi, T. Mori, M. Ohno, Y. Shimoike, J. Salazar, N. Perez, 2003. Carbon dioxide emissions from soils at Hakkoda, north Japan. Journal of Geophysical Research 108(B4), 2210, doi:10.1029/2002JB001847.
Ho, C. S., 1988. An introduction to the geology of Taiwan explanatory text of the geologic map of Taiwan. Central Geological Survey, MOEA, 163 pp. (in Chinese)
Hsieh, P. S., 2000. The gas sources of hot springs and mud volcanoes in Taiwan. MS Thesis, Institute of Geosciences, National Taiwan University, 77 pp. (in Chinese)
King, C.-K., King B.-S., Evans, W.C., Zang, W., 1996. Spatial radon anomalies on active faults in California. Applied Geochemistry 11, 497-510.
Kinzig, A. P., Socolow R. H., 1994. Human impact on the nitrogen cycle. Physics Today 47(11), 24-31.
Klusman, R.W., 1993. Soil gas and related methods for natural resource exploration. Wiley, England, 483 pp.
Lee, H. F., Yang, T. F., Lan, T. F., Song, S. R. and Tsao, S., 2005. Fumarolic gas composition of the Tatun Volcano Group, northern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 16, 843-864.
Lee, H. F., Yang, T. F., Lan, T. F., Song, S. R., Tsao, S., 2006. The variations of fumarolic gas compositions in Tatun Volcano Group, Northern Taiwan. Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract V23C-0646.
Lin, C. H., Konstantinou, K. I., Liang, W. T., Pu, H. C., Lin, Y. M., You, S. H., Huang, Y. P., 2005a. Preliminary analysis of volcanoseismic signals recorded at the Tatun Volcano Group, northern Taiwan. Geophysical Research Letters 32, L10313, doi:10.1029/2005GL022861.
Lin, C. H., Konstantinou, K. I., Pu, H. C., Hsu, C. C., Lin, Y. M., You, S. H., Huang, Y. P., 2005b. Preliminary results of seismic monitoring at Tatun volcanic area of northern Taiwan, Terrestrial, Atmospheric and Oceanic Sciences 16, 563-577.
Lombardi, S., Reimer, G. M., 1990. Radon and helium in soil gases in the Phlegrean Fields, Central Italy. Geophysical Research Letters 17, 849-952.
Marty, B., Jambon, A., Sano, Y., 1989. Helium isotopes and CO2 in volcanic gases in Japan. Chemical Geology 76, 25-40.
Pales, J. C., Keeling, C. D., 1965. The concentration of atmospheric carbon dioxide in Hawaii. Journal of Geophysical Research 70, 6053–6076.
Parkinson, K. J., 1981. An improved method for measuring soil respiration in the field. Journal of Applied Ecology 18, 221-228.
Sano, Y., Marty, B., 1995. Origin of carbon in fumarolic gas from island arcs. Chemical Geology 119, 265-274.
Sano, Y., Wakita H., 1985. Geographical distribution of 3He/4He ratios in Japan: implications for arc tectonics and incipient magmatism. Journal of Geophysical Research 90, 8729-8741.
Sano, Y., Gamo, T., Notsu, K., Wakita, H., 1994. Secular variations of helium and carbon isotopes at Izu-Oshima volcano, Japan. Journal of Volcanology and Geothermal Research 61, 83-94.
Shaw, A.M., Hilton, D.R., Fischer, T.P., Walker, J.A., Alvarado, G.E., 2003. Contrasting He-C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth and Planetary Science Letters 214, 499-513.
Shinohara, H., Matsuo, S., 1986. Results of analyses on fumarolic gases from F-1 and F-5 fumaroles of Vulcano, Italy. Geothermics 15, 211-215.
Sinclair, A.J., 1974. Selection of thresholds in geochemical data using probability graphs. Journal of Geochemical Exploration 3, 129-149.
Song, R.S., 1994. The research of paleo-volcanic environment and eruptive history of National Yangmingshan Park. Report to Construction and Planning Agency, Minister of Interior. (in Chinese)
Song, S.R., Tsao, S.J., Lo, H.J., 2000a. Characteristics of the Tatun volcanic eruptions, north Taiwan: implications for a cauldron formation and volcanic evolution, Journal of the Geological Society of China 43, 361-378.
Song, R.S., Yang, T.F., Yeh, Y.H., Tsao, S., Lo, H.J., 2000b. The Tatun volcano group is active or extinct? Journal of the Geological Society of China 43, 521-534.
Sturchio, N. C., Williams, S. N., Sano, Y., 1992. The hydrothermal system of Purace volcano, Colombia. Bulletin of Volcanology 55, 289-296.
Suchomel, K.H., Kreamer, D.K., Long, A., 1990. Production and transport of carbon dioxide in a contaminated vadose zone: A stable and radioactive carbon isotope study. Environmental Science and Technology 24, 1824-1831.
Syomnds, R.B., Rose, W.I., Bluth, G.S.J., Gerlach, T.M., 1994. Volcanic gas studies: methods, results, and applications. In: Carrol, M, R., Holloway, J.R., (Eds.), Volatiles in magma. Rev. Mineral. Soc. Am., Washington DC, pp. 1-64.
Teng, L. S., 1996. Extensional collapse of the northern Taiwan mountain belt. Geology 24, 949-952.
Teng, L.S., Chen, C-H., Wang, W.S., Liu, T.K., Juang, W.S., Chen, J.C., 1992. Plate kinematic model for late Cenozoic arc magmatism in northern Taiwan. Journal of the Geological Society of China 35, 1-18.
Tonani, F., Miele, G., 1991. Methods for measuring flow of carbon dioxide through soils in the volcanic setting. International Conference of Active Volcanoes and Risk Mitigation. Napoli. 27 August–1 September 1991.
Urabe, A., 1985. Chemical and isotopic compositions of natuarl gases in Japan. Ph.D. Thesis, University of Tokyo, Tokyo.
Walia, V., Su, T.C., Fu, C.C., Yang, T.F., 2005a. Spatial variations of radon and helium concentrations in soil gas across the Shan-Chiao fault, Northern Taiwan. Radiation Measurements 40, 513-516.
Walia, V., Virk, H.S., Yang, T.F., Mahajan, S., Walia, M., Bajwa, B.S., 2005b. Earthquake prediction studies using radon as a precursor in N-W Himalayas, India: a case study. Terrestrial, Atmospheric and Oceanic Sciences 16, 775-804.
Wang, K. L., Chung, S. L., Chen, C. H., Shinjo, R., Yang, T. F., Chen, C-H., 1999. Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics 308, 363–376.
Welles, J.M., Demetriades-Shah, T.H., McDermit, D.K., 2001. Considerations for measuring ground CO2 effluxes with chambers. Chemical Geology 177, 3-13.
Yang, T.F., Chuang, P.C., Lin, S., Chen, J.C., Wang, Y., Chung, S.H., 2006a. Methane venting in gas hydrate potential area offshore of SW Taiwan: evidence of gas analysis of water column samples. Terrestrial, Atmospheric and Oceanic Sciences 17, 933-950.
Yang, T.F., Fu, C.C., Walia, V., Chen, C-H., Chyi, L.L., Liu, T.K., Song, S.R., Lee, M., Lin, C.W., Lin, C.C., 2006b. Seismo-geochemical variations in SW Taiwan: multi-parameter automatic gas monitoring results. Pure and Applied Geophysics 163, 693-709.
Yang, T.F., Ho, H.H., Hsieh, P.S., Liu, N.J., Chen, Y.G., Chen, C-H., 2003. Sources of fumarolic gases from Tatun Volcano Group, North Taiwan. Journal of National Park 13, 127-156. (in Chinese)
Yang, T. F., Lan, T. F., Lee, H. F., Fu, C. C., Chuang, P. C., Lo, C. H., Chen, C-H., Chen, C. T. A., Lee, C. S., 2005a. Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochemical Journal 39, 469-480.
Yang, T.F., Sano, Y., Song, S.R., 1999. 3He/4He ratios of fumaroles and bubbling gases of hot springs in Tatun Volcano Group, North Taiwan. Nuovo Cimento Della Societa Italiana Di Fisica C 22(3-4), 281-286.
Yang, T.F., Walia, V., Chyi, L.L., Fu, C.C., Chen, C-H., Liu, T.K., Song, S.R., Lee, C.Y., Lee, M., 2005b. Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiation Measurements 40, 496-502.
Yeh, Y. H., Chen, K. J., 1991. The study of Chinshan fault – microseismic observation: Report to Hazard Mitigation of National Science Council, 41 pp. (in Chinese)

Chapter 3 References
Angelier, J., Chang, T., Hu, J., Chang, C., Siame, L., 2009. Does extrusion occur at both tips of the Taiwan collision belt? Insights from active deformation studies in the Ilan Plain and Pingtung Plain regions. Tectonophysics. 466, 356-376.
Chiang, S.C., 1976. Seismic prospecting in the Ilan Plain. Mineral Technology. 14, 215-221. (in Chinese)
Ciotoli, G., Guerra, M., Lombardi, S., Vittori, E., 1998. Soil gas survey for tracing seismogenic faults: A case study in the Fucino basin, central Italy. Journal of Geophysical Research. 103, 23781-23794.
Ciotoli, G., Lombardi, S., Morandi, S., Zarlenga, F., 2004. A multidisciplinary, statistical approach to study the relationships between helium leakage and neotectonic activity in a gas province: The Vasto basin Abruzzo-Molise (central Italy). Aapg Bull. 88, 355-372.
Clarke, W., Beg, M.A., Craig, H., 1969. Excess 3He in the sea: Evidence for terrestrial primodal helium. Earth and Planetary Science Letters. 6, 213-220.
Craig, H., Clarke, W., Beg, M., 1975. Excess 3He in deep water on the East Pacific Rise. Earth and Planetary Science Letters. 26, 125-132.
Fu, C., Yang, T., Walia, V., Chen, C., 2005. Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan. Geochemical Journal. 39, 427-439.
Hilton, D.R., Porcelli, D., Noble Gases as Mantle Tracers, in: Heinrich, D.H., Karl, K.T., (Eds), Treatise on Geochemistry, Pergamon, Oxford, 2003, pp. 277-318.
Hilton, D., 2007. The leaking mantle. Science. 318, 1389.
Holland, P.W., Emerson, D.E., The global helium-4 content of near-surface atmospheric air, Geochemistry of Gaseous Elements and Compounds, Theophrastus, Athens, 1990, pp. 97-113.
Hou, C., Hu, J., Ching, K., Chen, Y., Chen, C., 2009. The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough. Tectonophysics. 466, 344-355.
Ishibashi, J., Sano, Y., Wakita, H., Gamo, T., Tsutsumi, M., Sakai, H., 1995. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough Back Arc Basin, southwest of Japan. Chemical geology. 123, 1-15.
Konno, U., Tsunogai, U., Nakagawa, F., Nakaseama, M., Ishibashi, J.-i., Nunoura, T., Nakamura, K.-I., 2006. Liquid CO2 venting on the seafloor: Yonaguni knoll IV hydrothermal system, Okinawa Trough. Geophys. Res. Lett. 33, L16607.
Lai, K., Chen, Y., Wu, Y., Avouac, J., 2009. The 2005 Ilan earthquake doublet and seismic crisis in northeastern Taiwan: evidence for dyke intrusion associated with on-land propagation of the Okinawa Trough. Geophysical Journal International. 179, 678-686.
Lan, T., Yang, T., Lee, H., Chen, Y., Chen, C., 2007. Compositions and flux of soil gas in Liu-Huang-Ku hydrothermal area, northern Taiwan. Journal of Volcanology and Geothermal Research. 165, 32-45.
Lee, C., Shor Jr, G., Bibee, L., Lu, R., Hilde, T., 1980. Okinawa Trough: origin of a back-arc basin. Marine Geology. 35, 219-241.
Lin, J., Sibuet, J., Lee, C., Hsu, S., Klingelhoefer, F., 2007. Origin of the southern Okinawa Trough volcanism from detailed seismic tomography. J. geophys. Res. 112, B08308.
Lin, J.-Y., Sibuet, J.-C., Lee, C.-S., Hsu, S.-K., Klingelhoefer, F., Auffret, Y., Pelleau, P., Crozon, J., Lin, C.-H., 2009. Microseismicity and faulting in the southwestern Okinawa Trough. Tectonophysics. 466, 268-280.
Lombardi, S., Reimer, G., 1990. Radon and helium in soil gases in the Phlegraean fields, central Italy. Geophysical Research Letters. 17, 849-852.
Lee, H.-F., Yang, T.F., Lan, T.F., Chen, C.-H., Song, S.-R., Tsao, S., 2008. Temporal variations of gas compositions of fumaroles in the Tatun Volcano Group, northern Taiwan. Journal of Volcanology and Geothermal Research. 178, 624-635.
Lupton, J., Craig, H., 1975. Excess 3He in oceanic basalts: Evidence for terrestrial primordial helium. Earth and Planetary Science Letters. 26, 133-139.
Sinclair, A.J., 1991. A fundamental approach to threshold estimation in exploration geochemistry: probability plots revisited. Journal of Geochemical Exploration. 41, 1-22.
Teng, L., 1996. Extensional collapse of the northern Taiwan mountain belt. Geology. 24, 949-952.
Teng, L., Lee, C., Tsai, Y., Hsiao, L., 2000. Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan. Geology. 28, 155.
Walia, V., Lin, S., Fu, C., Yang, T., Hong, W., 2010. Soil-gas monitoring: A tool for fault delineation studies along Hsinhua Fault (Tainan), Southern Taiwan. Applied Geochemistry, 25, 602-607.
Kang, C.C., T.Y. Chang, J.C. Lee, R.F. Chen., 2010 Active tectonics in the Ilan plain: geological and seismological characteristics in the conjuction betweeen the westernmost part of the Okinawa trough and the northernmost part of the Lishan fault, Journal of Western Pacific Earth Sciences. In press. (Chinese with English abstract)
Kennedy, B., van Soest, M., 2007. Flow of mantle fluids through the ductile lower crust: Helium isotope trends. Science. 318, 1433.
Yang, T., Lan, T., Lee, H., Fu, C., Chuang, P., Lo, C., Chen, C., Chen, C., Lee, C., 2005. Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochemical Journal. 39, 469-480.
Zhang, J.W., Detecting the basement and the faults under the Ilan plain, northeastern Taiwan, using seismic reflection method, Master Thesis, National Central University, 2010. (Chinese with English abstract)

Chapter 4 References
Allard, P., 1992. Global emissions of He-3 by subaerial volcanism. Geophys. Res. Lett. 19, 1479-1481.
Allegre, C.J., Staudacher, T., Sarda, P., 1987. Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle. Earth Planet. Sci. Lett. 81, 127-150.
Barnes, R., Bieri, R., 1976. Helium flux through marine sediments of the northeast Pacific Ocean. Earth Planet. Sci. Lett. 28, 331-336.
Bender, M., Martin, W., Hess, J., Sayles, F., Ball, L., Lambert, C., 1987. A whole-core squeezer for interfacial pore-water sampling. Limnol. Oceanogr. 32, 1214-1225.
Brennwald, M.S., Hofer, M., Peeters, F., Aeschbach-Hertig, W., Strassmann, K., Kipfer, R., Imboden, D.M., 2003. Analysis of dissolved noble gases in the porewater of lacustrine sediments. Limnol. Oceanogr. 1, 51-62.
Chaduteau, C., Fourre, E., Jean-Baptiste, P., Dapoigny, A., Baumier, D., Charlou, J.-L., 2007. A new method for quantitative analysis of helium isotopes in sediment pore-waters. Limnol. Oceanogr. 5, 425-432.
Chaduteau, C., Jean-Baptiste, P., Fourre, E., Charlou, J.-L., Donval, J.-P., 2009. Helium transport in sediment pore fluids of the Congo-Angola margin. Geochem. Geophys. Geosyst. 10, doi:10.1029/2007GC001897.
Craig, H., Clarke, W., Beg, M., 1975. Excess 3He in deep water on the East Pacific Rise. Earth Planet. Sci. Lett. 26, 125-132.
Crisp, J., 1984. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177-211.
Halbach, P., Nakamura, K., Wahsner, M., Lange, J., Sakai, H., Kaselitz, L., Hansen, R., Yamano, M., Post, J., Prause, B., Seifert, R., Michaelis, W., Teichmann, F., Kinoshita, M., Marten, A., Ishibashi, J., Czerwinski, S., Blum, N., 1989. Probable modern analogue of Kuroko-type massive sulfide deposits in the Okinawa Trough back-arc basin. Nature. 338, 496-499.
Hilton, D.R., Fischer, T.P., Marty, B., 2002. Noble gases and volatile recycling at subduction zones. Rev. Mineral. Geochem. 47, 319–370.
Hirata, N., Kinoshita, H., Katao, H., Baba, H., Kaiho, Y., Koresawa, S., Ono, Y., Hayashi, K., 1991. Report on DELP 1988 cruises in the Okinawa Trough: Part 3. Crustal structure of the southern Okinawa Trough.
Ishibashi, J., Sano, Y., Wakita, H., Gamo, T., Tsutsumi, M., Sakai, H., 1995. Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough Back Arc Basin, southwest of Japan. Chem. Geol. 123, 1-15.
Kinoshita, M., Yamano, M., 1997. Hydrothermal regime and constraints on reservoir depth of the Jade site in the Mid-Okinawa Trough inferred from heat flow measurements. J. Geophys. Res. 102, 3183-3194.
Krause, D., Benson, B., 1989. The solubility and isotopic fractionation of gases in dilute aqueous solution. IIa. Solubilities of the noble gases. J. Solution Chem. 18, 823-873.
Lee, C.S., Shor, G.G., Bibee, L.D., Lu, R.S., Hilde, T.W.C., 1980. Okinawa Trough - Origin of a Back-Arc Basin. Mar Geol. 35, 219-241.
Marty, B., Jambon, A., 1987. C/He-3 in volatile fluxes from the solid earth - implications for carbon geodynamics. Earth Planet. Sci. Lett. 83, 16-26.
Marty, B., Le Cloarec, M., 1992. Helium-3 and CO2 fluxes from subaerial volcanoes estimated from polonium-210 emissions. J. Volcanol. Geotherm. Res. 53, 67-72.
Moulin, M., Aslanian, D., Olivet, J.L., Contrucci, I., Matias, L., Geli, L., Klingelhoefer, F., Nouze, H., Rehault, J.-P., Unternehr, P., 2005. Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaiAngo project). Geophys. J. Int. 162, 793-810.
Ohsumi, T., Horibe, Y., 1984. Diffusivity of He and Ar in deep-sea sediments. Earth Planet. Sci. Lett. 70, 61-68.
Pitre, F., Pinti, D., 2010. Noble gas enrichments in porewater of estuarine sediments and their effect on the estimation of net denitrification rates. Geochim. Cosmochim. Acta. 74, 531-539.
Sakai, H., Gamo, T., Kim, E., Tsutsumi, M., Tanaka, T., Ishibashi, J., Wakita, H., Yamano, M., Oomori, T., 1990. Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa Trough Backarc Basin. Science. 248, 1093-1096.
Sano, Y., Takahata, N., 2005. Measurement of noble gas solubility in seawater using a quadrupole mass spectrometer. J Oceanogr. 61, 465-473.
Sano, Y., Takahata, N., Nishio, Y., Fischer, T., Williams, S., 2001. Volcanic flux of nitrogen from the Earth. Chem. Geol. 171, 263-271.
Sano, Y., Tokutake, T., Takahata, N., 2008. Accurate measurement of atmospheric helium isotopes. Anal. Sci. 24, 521-525.
Sano, Y., Wakita, H., 1985. Geographical distribution of 3He/4He ratios in Japan: Implications for arc tectonics and incipient magmatism. J. Geophys. Res. 90, 8729-8741.
Sano, Y., Wakita, H., 1987. Helium isotopes and heat flow on the ocean-floor. Chem. Geol. 66, 217-226.
Sano, Y., Wakita, H., 1988. Precise measurement of helium isotopes in terrestrial gases. Bull. Chem. Soc. Jpn. 61, 1153-1157.
Sano, Y., Williams, S., 1996. Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys. Res. Lett. 23, 2749-2752.
Sayles, F., Jenkins, W., 1982. Advection of pore fluids through sediments in the equatorial east Pacific. Science. 217, 245-248.
Shinjo, R., Kato, Y., 2000. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos. 54, 117-137.
Sibuet, J., Hsu, S., Shyu, C., Liu, C.S., Structural and kinematic evolutions of the Okinawa Trough backarc basin, in: Taylor, B., (Ed), Backarc Basins: Tectonics and Magmatism, Plenum Press, New York, 1995, pp. 343-379.
Suzuki, R., Ishibashi, J., Nakaseama, M., Konno, U., Tsunogai, U., Gena, K., Chiba, H., 2008. Diverse range of mineralization induced by phase separation of hydrothermal fluid: Case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin. Resour. Geol. 58, 267-288.
Tans, P.P., Conway, T.J., Nakazawa, T., 1989. Latitudinal distribution of the sources and sinks of atmospheric carbon dioxide derived from surface observations and an atmospheric transport model. J. Geophys. Res. 94, 5151-5172.
Takahata, N., Watanabe, T., Shirai, K., Nishizawa, M., Sano, Y., 2004. Helium isotopes of seawater in adjacent sea of Nansei Islands, Southwest Japan. Geochem. J. 38, 593-600.
Torgersen, T., 1989. Terrestrial helium degassing fluxes and the atmospheric helium budget: implications with respect to the degassing processes of continental crust. Chem. Geol. 79, 1-14.
Well, R., Lupton, J., Roether, W., 2001. Crustal helium in deep Pacific waters. J. Geophys. Res. 106, 14165-14177.

Chapter 5 References
Chiodini, G., Marini, L., 1998. Hydrothermal gas equilibria: the H2O-H2-CO2-CO-CH4 system. Geochimica et Cosmochimica Acta. 62, 2673-2687.
Craig, H., Clarke, W., Beg, M., 1975. Excess 3He in deep water on the East Pacific Rise. Earth and Planetary Science Letters. 26, 125-132.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23444-
dc.description.abstract流體地球化學是探討地球生成起源、地球物質之來源與遷移、全球環境變遷等重要議題的主要工具之一。隨著科技進展,我們得以不同分析技術與各種出發點探討流體地化在地球科學研究上的應用與意義。本論文結合三項研究工作,希望藉由流體地球化學在不同地區之應用與探討,展示流體地球化學研究的重要性及其研究價值。
火山氣體中的二氧化碳是岩漿上升的早期指標。藉由觀測土壤氣二氧化碳通量的變化,讓觀察者可以在安全的範圍內監測火山活動。氣體通量的測量也有助於準確地計算出火山地區土壤氣體的逸散總量,進而與世界上的火山比較,並探討火山的活動性質。結合通量、氣體成分與同位素資料,有助於了解通量與火山活動之間的關聯。本研究結果也顯示:藉由二氧化碳濃度與氦同位素良好的正相關,分析成本低且易測量的二氧化碳可以為監測火山活動的替代指標。
氦同位素是追蹤流體來源相當重要的工具,地表偵測到的氦氣濃度與同位素值代表著氣體由深部來源向地表遷移的最終結果。藉由測量土壤氣中的氦同位素比值及濃度,可以個別探討成因不同的氦三與氦四各自的地質意義,在結合兩者的數值與空間上的分佈情形,其結果不僅指示了來自深部與淺部之流體遷移的機制,更讓我們確定:來自於地函的流體已經進入了因為地體構造拉張而造成地殼逐漸減薄的宜蘭平原。
氦同位素在海洋研究中也扮演了相當重要的角色,然而受限於採樣技術,氦同位素在海洋環境的應用仍有相當大的進步空間。本研究使用新設計的採樣裝置「孔隙水稀有氣體採樣器」,成功於沖繩海槽海底沈積物中,測量到溶解於孔隙水中之氦同位素濃度與隨深度變化之梯度,並估算出研究區域的氦三通量。將氦三通量與其他地體構造單元比較,我們發現隱沒帶的氦三通量是中洋脊的四分之一;隱沒帶的氦四通量在過去的研究中則可能被低估。
zh_TW
dc.description.abstractFluid geochemistry plays an essential role in Earth sciences. It has been particularly influential in aquiring information on migration of geo-fliuds, global warming, and chemical evolution of the Earth. Over the last few decades, the continuing improvements in analytical technology have led to many new and fascinating applications in this field, and we could further look into Earth sciences from different aspects. This dissertation focuses on different applications of fluid geochemistry in three areas: the Liu-Huang-Ku hydrothermal area, the Ilan Plain and the Mid Okinawa Trough backarc basin.
Carbon dioxide flux is an important index of early magma ascending. By observing the variation of soil CO2 flux, scientists could monitor volcanic activities in a safe distance. Quantifying soil CO2 flux also enhances the precision of gas budget, by which we could do a worldwide comparison of soil flux and better improve the knowledge of current volcanic activity in our research area. Combined gas flux, gas compositions and isotope data of soil gas from Liu-Huang-Ku were carried out in order to unravel the relationship between soil CO2 flux and volcanic activities. The results show a clear correlation between soil CO2 concentration and Helium isotope ratios, which also suggest that soil CO2 could be a good parameter for future monitoring in this area.
Helium is a key tracer of fluid flow. Helium concentration and isotope ratios of samples from the Earth surface are the ultimate results of mixing and integrating processes during migration from mantle to the atmosphere. By coupling Helium isotope ratios and concentration, we can identify their sources and geological significance. The findings of this study indicate the migration mechanism of Helium-3 and Helium-4 respectively; and most importantly, mantle fluids have migrated into the crust-thinning Ilan Plain.
Helium isotope studies are valuable in ocean research; however, one of the thorniest problems researchers face is air contamination. In this study, we successfully used a newly developed device ‘noble gas porewater sampler’ to sample marine sediments from the Mid Okinawa Trough backarc basin. We measured the helium isotope ratios in the porewater and derived helium-3 flux from a backarc basin. The results of this study suggest that helium-3 flux from subduction zone is a quarter of that from mid ocean ridge magmatism, and helium-4 flux from subduction zone might have been underestimated.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:01:44Z (GMT). No. of bitstreams: 1
ntu-99-F92224105-1.pdf: 12841296 bytes, checksum: 9cb8c9bd8791136df4aa70ab30e838a5 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書....................I
致謝....................II
摘要....................III
Abstract....................V
Table of Contents....................VII
List of Figures....................X
List of Tables....................XII

Chapter 1. Introduction....................1
1.1 Soil flux measurement and soil gas survey....................2
1.2 Noble gas geochemistry....................2
1.3 Study regions....................3
1.4 Scope of study....................4
1.5 References....................4

Chapter 2. Compositions and flux of soil gas in Liu-Huang-Ku Hydrothermal Area, Northern Taiwan....................6
Abstract....................7
2.1 Introduction....................7
2.2 Liu-Huang-Ku hydrothermal area....................10
2.3 Methods and procedures....................11
2.3.1 Fieldwork in Liu-Huang-Ku....................11
2.3.2 Analyses of soil gas compositions and isotopes....................14
2.4 Results and discussion....................14
2.4.1 Spatial distribution of CO2 flux and soil temperature....................14
2.4.2 Estimation of total CO2 output....................18
2.4.3 Compositions and sources of soil gas....................21
2.4.4 Temporal variation of carbon isotopes....................25
2.5 Concluding remarks....................27
2.6 Acknowledgements....................30
2.7 References....................30
2.8 Appendix....................35
2.8.1 2004 Soil flux investigation in LHK....................35
2.8.2 2006 Soil flux investigation in LHK....................37
2.8.3 Publication....................41

Chapter 3. Migration of mantle fluids in the Ilan Plain, NE Taiwan: new insights into Helium isotopes in soil gas....................42
Abstract....................43
3.1 Introduction....................43
3.2 Field work and analytical methods....................45
3.3 Results....................47
3.3.1 Definition of Δ3He and Δ4He....................47
3.3.2 Statistical analysis....................48
3.4 Discussions....................49
3.4.1.1 Fault zones....................49
3.4.1.2 Initial depression center and dyke intrusion....................53
3.4.2 Geographical distribution of excess helium....................54
3.4.3 Conceptual model of soil degassing in the Ilan Plain....................54
3.5 Summary....................57
3.6 References....................57
3.7 Appendix....................60
3.7.1 Helium isotopes and abundance of soil gas investigation in the Ilan Plain....................60

Chapter 4. Evaluating Earth degassing in subduction zones by measuring helium fluxes from the ocean floor....................66
Abstract....................67
4.1 Introduction....................67
4.2 Samples and analytical methods ....................69
4.3 Results....................71
4.4 Discussions....................61
4.5 Conclusion....................80
4.6 Acknowledgements....................81
4.7 References....................81
4.8 Appendix....................84
4.8.1 Publication....................84

Chapter 5. Concluding Remarks and Future Directions....................85
5.1 Magma degassing model and structure of Tatun Volcano Group....................87
5.2 Fluid geochemistry studies in SW Okinawa Trough....................88
5.3 Global fluid budget....................88
5.4 References....................89

List of Figures
Figure 2.1 Illustration of the principal tectonics of Taiwan and Tatun Volcano Group....................9
Figure 2.2 Sampling sites of Liu-Huang-Ku....................13
Figure 2.3 Contour map of soil CO2 flux....................16
Figure 2.4 Contour map of soil temperature....................17
Figure 2.5 Cumulative frequency plot of CO2 flux of Liu-Huang-Ku soil gas flux in (A) 2004 and (B) 2006....................20
Figure 2.6 N2-He-Ar triangular plot of fumarolic gas from LHK....................25
Figure 2.7 Correlation between CO2/3He and δ13C....................26
Figure 2.8 Correlation between 20Ne/4He and [3He/4He]/Rair....................28
Figure 2.9 (A) Total sulfur vs. soil CO2 concentration. (B) He isotopic ratio vs. soil CO2 concentration....................29
Figure 3.1 (A) Current tectonic environments of Taiwan. (B) Sampling sites in the Ilan Plain. (C) Previously defined faults in the Ilan Plain. (D) Locations of the initial depression center and the dyke intrusion.....................46
Figure 3.2 Accumulated probability plots of (A) Δ3He and (B) Δ4He.....................49
Figure 3.3 Spatial distribution of (A) Δ3He and (B) Δ4He in the Ilan Plain.....................52
Figure 3.4 Profiles of (A) Δ3He and (B) Δ4He in the Ilan Plain.....................55
Figure 3.5 The conceptual degassing model of the Ilan Plain.....................56
Figure 4.1 Bathymetry map of the Izena Cauldron, Mid-Okinawa Trough, SW Japan. Inset shows the geotectonic setting of the Okinawa Trough....................70
Figure 4.2 Relationship (a) between the depth and excess 3He and that (b) between the depth and 4He/20Ne ratio at the sampling site (No. 2)....................72
Figure 4.3 Relationship between the depth and 3He/20Ne ratio at each sampling sites (Nos. 2, 7, 10, and 12)....................79

List of Tables
Table 2.1 Estimated parameters of partitioned populations of soil CO2 flux in Liu Huang-Ku hydrothermal area....................19
Table 2.2 Soil CO2 emission rates observed in Liu-Huang-Ku and other volcanic areas of the world....................19
Table 2.3 Chemical compositions and helium isotopic data of soil gas in Liu-Huang-Ku hydrothermal area....................23
Table 2.4 Helium and carbon isotopes, CO2/3He ratios and estimated sources of carbon in gas and fluids from LHK and subduction zones....................24
Table 4.1 Noble gas data from deep-sea sediment pore water at the Izena Cauldron, Mid-Okinawa Trough....................73
Table 4.2 Estimated helium flux at the Okinawa Trough compared to literature data....................78
dc.language.isoen
dc.title台灣北部及沖繩海槽氣體地球化學研究:氣體通量、地體構造與地球逸氣之隱示zh_TW
dc.titleGas geochemistry in the Okinawa Trough and Northern Taiwan: new insights into gas flux, tectonic settings and the Earth degassingen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳正宏,宋聖榮,陳中華,許樹坤,劉家瑄,游鎮烽
dc.subject.keyword土壤氣體通量,氦同位素,硫磺谷,宜蘭平原,沖繩海槽,zh_TW
dc.subject.keywordsoil gas flux,helium isotopes,Liu-Huang-Ku,Ilan Plain,Okinawa Trough,en
dc.relation.page89
dc.rights.note未授權
dc.date.accepted2010-09-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
12.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved