Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23437
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宏宇
dc.contributor.authorGuan-Wei Linen
dc.contributor.author林冠瑋zh_TW
dc.date.accessioned2021-06-08T05:01:38Z-
dc.date.copyright2010-10-22
dc.date.issued2010
dc.date.submitted2010-10-18
dc.identifier.citation中文部分:
中央地質調查所 (2000) 台灣地質圖,經濟部中央地質調查所。
中央地質調查所 (2006) 都會區及周緣坡地整合性環境地質資料庫建置:坡地岩體工程特性調查研究(5/5)-東部地區,經濟部中央地質調查所。
何春蓀 (1986) 台灣地質概論:五十萬分之一台灣地質圖說明書,經濟部中央地質調查所。
何春蓀 (1994) 台灣地質概論-台灣地質圖說明,經濟部中央地質調查所,164頁。
吳建民 (1978) 台灣地區河川輸砂量之推估公式,集水區及河川經營研究研討會論文集,184-198。
呂名翔 (2007) 新武呂溪流域的山崩與輸砂量在地震與颱風事件中的相對應關係,國立台灣大學地質科學研究所碩士論文,113頁。
林孟龍、林俊全 (2003) 颱風對於蘭陽溪上游集水區懸移質生產特性的影響,地理學報,第33期,39-53。
林冠瑋 (2005) 陳有蘭溪流域的山崩作用在颱風及地震事件中與河流輸砂量之相對應關係,國立台灣大學地質科學系研究所碩士論文,130頁。
林冠瑋、陳宏宇、洪銘堅 (2006) 土石流災害與地質環境的關係,地工技術,第110期,5-14。
林美聆 (1999) 陳有蘭溪流域土石流溪流地理資訊系統建立與土石流溪流特性分析,防災國家型科技計畫88年度成果報告,4-5。
林朝宗、林慶偉、李森淵 (2006) 颱風豪雨期間石門水庫庫水濁度遽升之懸浮顆粒來源探討,工程環境會刊,第17期,23-28。
林慶偉 (1996) 南投縣和社地區崩塌地發育之地質影響因子,地工技術,第57期,5-16。
邱創益、張育仁 (2000) 沈積岩山坡之植生方法~以高雄地區山坡地為例,地質災害研討會論文集,73-88。
袁承偉 (2007) 大漢溪流域的山崩與輸砂量以及植生狀態在颱風事件中之相對應關係,國立台灣大學地質科學系研究所碩士論文,121頁。
張子瑩、徐美玲 (2004) 暴雨與地震觸發崩塌發生區位之比較以陳有蘭溪流域為例,地理學報,第35期,1-16。
莊善傑 (2005) 大甲溪流域的山崩在颱風與地震事件中與地質環境之對應關係,國立台灣大學地質科學系研究所碩士論文,124頁。
莊竣皓 (2007) 淡水河流域鹼度、酸鹼值與主要離子之時空變化,國立中央大學水文科學研究所碩士論文,190頁。
許輔仁 (2002) 鯉魚潭水庫集水區之崩塌地潛感分布研究,國立屏東科技大學森林系碩士論文,106 頁。
許慧真 (2008) 南台灣曾文溪河口水化學的影響因素,國立成功大學地球科學研究所碩士論文,100頁。
連凱莉 (2009) 台灣小河川溶解性物質之區域性與季節性變化,國立台灣大學海洋研究所碩士論文,92頁。
郭奇龍、邢金池 (1996) 台灣主要礦物與岩石,台灣省礦務局,137頁
陳本康 (2004) 石門水庫集水區崩塌特性及潛勢評估研究石門水庫集水區崩塌特性及潛勢評估研究石門水庫集水區崩塌特性及潛勢評估研究,國立中興大學水土保持學系碩士論文,230頁。
陳宏宇、林曉武 (2005-2008) 溪水取樣及其化學性質之分析工作,行政院農業委員會林務局。
陳時祖 (2002) 台灣西南部地區泥岩之地質災害及防治方法,臺灣西南地區地質災害研討會論文集。
黃進坤、呂珍謀、林志聰 (2001) 黏性土壤沖刷特性之研究,第十二屆水利工程研討會,D203-D208。
楊鈞沂 (2001) 高屏溪流域陸源物質之剝蝕與傳輸,國立中山大學海洋地質及化學研究所碩士論文,127頁。
鄒年喬 (2010) 石門水庫集水區之降雨特性對崩塌及輸砂量的關係,國立台灣大學地質科學研究所碩士論文,114頁。
德基水庫水質管理網站 (2008) http://hysearch.wra.gov.tw/wra_ext/tech/Default.asp
潘國樑 (1986) 山坡地地質分析,科技圖書股份有限公司,117-135頁。
潘國樑 (2007) 工程地質通論,五南出版社。
鄭元振 (1992) 地理資訊系統在區域邊坡穩定分析之應用-中橫公路天祥至太魯閣段,國立成功大學資源工程研究所碩士論文。
謝玉興 (2004) 南橫公路邊坡崩壞與降雨關係研究,臺灣公路工程,第三十卷第十一期,26-45。
謝兆申、王明果 (1991) 台灣地區主要土類圖輯,國立中興大學土壤調查試驗中心,343頁。
闕河淵 (1987) 泥頁岩之工程性質 ,地工技術,第19期,35-38。
顏富士、蔡鎰輝 (1985) 台灣西南部主要泥岩坡地所含黏土之物化特性研究,國家科學委員會防災科技研究報告73-26號。
魏夢麗、呂秀英 (1999) 決定係數在迴歸分析中的解釋及正確使用,科學農業,第47期,1-6。



英文部分:
Berner, E. K. and Berner, R. A. (1987) The global water cycle: Geochemistry and Environment: Prentice-Hall, Inc., Englewood Cliffs, NJ, 142-155.
Chen, H. (2000) The Geomorphological Comparison of two Debris Flow and their Triggering Mechanism, Bull. Engineering Geology Environment, 58, 297-308.
Chen, H. and Su. D. I. (2001) Geological factors for hazardous debris flow in Hoser, Central Taiwan, Environmental Geology, 40, 1114-1124.
Chen, H., Chen, R. H. and Lin, M. L. (1999) Initiative Anatomy of Tungmen Debris Flow, Eastern Taiwan, Environmental and Engineering Geoscience, 5, 459-473.
Chuang, S. C., Chen H., Lin G. W., Lin C. W., Chang C. P. (2009) Increase in basin sediment yield from landslides in storms following major seismic disturbance, Engineering Geology, 103, 59-65.
Clague, J. J., Evans, S. G. (2003) Geologic Framework of large historic landslides in Thompson River Valley, British Columbia, Environmental and Engineering Geoscience, 9, 201-212.
Dadson, S. J. (2004) Erosion of an Active Mountain Belt. Ph. D. Thesis, Department of Earth Sciences, University of Cambridge.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., and Lin, J. C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen, Nature, 426, 648-651.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J.C., Hsu, M. L., Lin, C. W., Horng, M. J., Chen, C. T., Milliman, J., Stark, C. P. (2004) Earthquake-triggered increase in sediment delivery from an active mountain belt, Geology, 32, 733-736.
Dadson, S., Hovius, N., Pegg, S., Dade, W. B., Hong, M. J., and Chen H. (2005) Hyperpycnal river flows from an active mountain belt, Journal of Geophysical Research, 110, F04016.
DeFries, R. S., Hansen, M. C., Townshend, J. R. G., Janetos, A. C. and Loveland, T. R. (2000) A new global 1-km dataset of percentage tree cover derived from remote sensing, Global Change Biology, 6, 247-254.
Draper, N. R. and Smith, H. (1981) Applied regression analysis, New York, Wiley, 407 p.
Edwards, T. K. and Glysson, G. D. (1999) Field methods for measurement of fluvial sediment, Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 3, Applications of Hydraulics.
Fasiska, E. J., Wagenblasht, H. and Dougherty, M. T. (1974) The oxidation mechanism of sulphide minerals, Bulletin of the International Association of Engineering Geology, 11, 75-82.
Fuller, C. W., Willett, S. D., Hovius, N. and Slingerland, R. (2003) Erosion rates for Taiwan mountain basins: new determinations from suspended sediment records and a stochastic model of their temporal variation, The Journal of Geology, 11, 71-87.
Gaillardet, J., Dupre´, B., Louvat, P. (1999) Global silicate weathering and CO consumption rates deduced from the chemistry of large rivers, Chemical Geology, 159, 3-30.
Gardner, R., Walsh, N. (1996) Chemical weathering of metamorphic rocks from low elevations in the southern Himalaya, Chemical Geology, 16, 161-176.
Geli, L., Bard, P. Y., and Jullien, B. (1988) The effect of topography on earthquake ground motion: A review and new results, Bulletin of the Seismological Society of America, 78, 42-63.
Guzzetti, F., Mauro, C., Paula S. (2004) Landslide triggered by the 23 November 2000 rainfall event in the Imperia Province, Engineering Geology, 73, 229-245.
Hansen, M. C., DeFries, R. S., Townshend, J. R. G., Carrol M., Dimiceli C. and Sohlberg R. (2006) Vegetation Continuous Fields MOD44B, In 2001 Percent Tree Cover, Collection 4, University of Maryland, College Park, Maryland.
Hovius, N., Stark, C. P., Chu, H. T., Lin, J. C. (2000) Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan, The Journal of Geology, 108, 73-89.
Hwang, C. E. (1982) Suspended Sediment of Taiwan Rivers and their geomorphological significance, Bulletin of National Taiwan Normal University, 27, 649-677.
ISRM (1981) Rock characterization testing & monitoring: ISRM suggested methods, Pergamon, 1-121.
Kao, S. J. and Liu, K. K. (2001) Estimating of suspended load by using the historical hydrometric record from the Lanyang-Hsi watershed, TAO, 12, 401-414.
Kao, S. J., Chan, S. C., Kuo, C. H. and Liu, K. K. (2005) Transport- dominated sediment loading in Taiwanese rivers: a case study from the Ma-an stream, The Journal of Geology, 113, 217-225.
Keefer, D. K. (1984) Landslides caused by earthquakes, Geological Society of America Bulletin, 95, 406-421.
Keefer, D. K. (2000) Statistical analysis of an earthquake-induced landslide distribution the 1989 Loma Prieta, California event., Engineering Geology, 58, 231-249.
Khazai, B., Sitar, N. (2000) Assessment of Seismic Slope Stability Using GIS Modeling, Geographic Information Sciences, 6, 121-128.
Koi, T., Hotta, N., Ishigaki, I., Matuzai, N., Uchiyama, Y. and Suzuki, M. (2008) Prolonged impact of earthquake-induced landslides on sediment yield in a mountain watershed: The Tanzawa region, Japan, Geomorpgology, 101, 692-702.
Lee, H. Y., Yu, W. S. (1997) Experimental study of reservoir turbidity current, Journal of Hydraulic Engineering, 123, 520-528.
Li, Y. H. (1976) Denudation of Taiwan island since the Pliocene epoch, Geology, 4, 105-107.
Lin, C. W., Shieh, C. L., Yuan, B. D., Shieh, Y. C, Liu, S. H. and Lee, S. Y. (2003) Impact of Chi-Chi earthquake on the occurrence of landslides and debris flow: example from the Chenyulan river watershed, Nantou, Taiwan, Engineering Geology, 71, 49-61.
Lin, G. W., Chen, H., Chen, Y. H., and Horng, M. J. (2008) Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge, Engineering Geology, 97, 32-41.
Meunier, P. and Hovius, N. and Haines, A. J. (2008) Topographic site effects and the location of earthquake induced landslides, Earth and Planetary Science Letters, 275, 221-232.
Meybeck, M. (1987) Global chemical weathering from surficial rocks estimated from river dissolved loads, American Journal of Science, 287, 401-428.
Milliman, J. D. and Kao, S. J. (2005) Hyperpycnal Discharge of Fluvial Sediment to the Ocean: Impact of Super- Typhoon Herb (1996) on Taiwanese Rivers, Journal of Geology, 113, 503-516.
Moore, J. R., Sanders, J. W., Dietrich, W. E. and Glaser, S. D. (2009) Influence of rock mass strength on the erosion rate of alpine cliffs, Earth Surface Processes and Landforms, 34, 1339-1352.
Mulder, T., Syvitski, J. P. M. (1995) Turbidity currents generated at river mouths during exceptional discharges to the world oceans, The Journal of Geology, 103, 285-299.
Negel, P., Allegre, C.J., Dupre, B., Lewin, E. (1993) Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo Basin Case, Earth and Planetary Science Letters, 120, 59-76.
Oliver, M. A., Webster, R. (1990) Kriging: a method of interpolation for geographical information systems, International Journal of Geographical Information Science 4, 313-332.
Parsons, J. D., Bush, J. W. M., and Syvitski, J. P. M. (2001) Hyperpycnal plume formation from riverine outflows with small sediment concentrations, Sedimentology, 48, 465-478.
Pinet, P. and Souriau, M. (1988) Continental erosion and large-scale relief, Tectonics, 7, 563-582.
Seed, H. B., and Idriss, I. M. (1982) Ground motions and soil liquefaction during earthquakes, Earthquake Engineering Research Institute Monograph, Oakland, California.
Shieh, S. L. (2000) Users’ Guide for Typhoon Forecasting in the Taiwan Area (VIII), Central Weather Bureau, Taipei.
Sitar, N., Anderson, S. A., Johnson, K. A. (1992) Conditions leading to the initiation of rainfall-induced debris flows. Geotech. Engrg. Div. Specialty Conf.: Stability and Perf. Of slopes and Embankments-II, ASCE, New York, N. Y., 834-839.
Sklar, L. S. and Dietrich, W. E. (2001) Sediment and rock strength controls on river incision into bedrock, Geological Society of America, 29, 1087-1090.
Smolders, A. J. P., Hudson-Edwards, A.K., Van der Velde, C. (2004) Controls on water chemistry of the Pilcomayo river (Bolivia, South-America), Applied Geochemistry, 19, 1745-1758.
Stallard, R. F., Edmond, J.M. (1983) Geochemistry of the Amazon: The influence of geology and weathering environment on the dissolved load, Journal of Geophysical Research, 88, 9671-9688.
Summerfield, M. A. and Hulton, N. J. (1994) Natural controls of fluvial denudation rates in major world drainage basins, Journal of Geophysical Research, 99, 13871-13883.
Tazaki, K. (2006) Green-tuff landslide areas are beneficial for rice nutrition in Japan, Anais da Academia Brasileira De Ciencias, 78, 749-763.
Van Rijn, L. C. (1984) Sediment transport, part II: suspended load transport, Journal of Hydraulic Engineering, 110, 1613-1641.
Varnes, D. J. (1978) Slope Movement types and processes, in Schuster, R.L. and R.J. Krizek (eds.), Landslides-Analysis and Control: National Academy of Sciences Transportation Research Board Special Report, 176, 12-33.
White, A.F., Blum, A.E., Bullen, T.D., Vivit, D.V., Schulz, M., Fitzpatrick, J. (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks, Geochimica et Cosmochimica Acta, 63, 3277-3291.
Wieczorek, G. F., Morgan, B. A., Campbell, R. H. (2000) Debris-Flow hazards in the Blue Ridge of Central Virginia, Environmental and Engineering Geoscience, 6, 3-23.
Willett, S. D., Fisher, D., Fuller, C., Yeh, E. C. and Lu, C. Y. (2003) Erosion rates and orogenic wedge kinematics in Taiwan inferred from apatite fission track thermochronometry, Geology, 31, 945-948.
Zhang, Y., Liu, S., Zhang, Z., Yao, Q., Hong, G. (2007) Sources and distribution of carbon within the Yangtze River system, Estuarine, Coastal and Shelf Science, 71, 13-25.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23437-
dc.description.abstract本論文利用近20至50年來台灣島上13條主要河川之水文及山崩資料,來進行各項研究。從輸砂量估算的結果顯示,台灣各流域之平均年輸砂量介於0.12 Mt至93.81 Mt之間。其中,以北部頭前溪上游流域為最低,中部濁水溪流域為最高,單位面積的輸砂量則以二仁溪流域的88,667.33 ton/km2/yr為最高。平均岩石強度以北部大漢溪流域內之56.32 MPa為最高,節理密度則以林邊溪流域內平均53.08 條/立方公尺最多。各流域的平均崩塌率則以大甲溪流域內的9.26 %最高,頭前溪流域的0.89 %最低。
就輸砂量及山崩的分析結果,與地質材料、地形、降雨及地震間之相關探討,可以得出幾點結論:(1)岩石強度越低或不連續面越發達,將提高山崩發生之機率;(2)流域內的地形因子,如高程、坡度及坡向等,與山崩的分布間存在著相關性;(3)年輸砂量與年逕流量之間呈現良好的正相關,當單一颱風之累積降雨量超過400 mm,其輸砂量會佔流域年輸砂量之20 %以上;(4)地震會導致崩塌地的分布往山頂發展,也會延長高輸砂濃度回降到地震前平均值之所需時間。
從溪水化學性質的探討可以得知,超過60 %的溶解物質來自矽酸岩,表示矽酸岩類的風化是台灣各主要河川溪水中溶解物質的最主要來源,與台灣地層中主要岩性組成即以矽酸岩類為主有關。整體而言,影響溪水主要離子濃度的因素包括:(1)濕季高流量的稀釋作用、(2)各流域的母岩組成,以及(3)海洋鹽沫。
由分析各河流的輸砂濃度之回歸週期可以發現,流域內崩塌率越高,發生異重流所需之再現週期越短,顯示颱風期間的崩塌事件是異重流中沉積物的重要來源。而在岩石強度較高之流域內,需要較大的降雨量才可以誘發異重流,呼應了岩石強度是控制山崩發生的重要因素之一。
zh_TW
dc.description.abstractThe study gathers the 20-50 yrs hydrometric and landsliding data of 13 main rivers. Analysis results display that the annual sediment discharges from these river catchments range from 0.12 Mt for the Touchien River to 93.81 Mt for the Choshui River. The maximum sediment yield is 88,668 ton/km2/yr for the Erhjen River. The investigations of rock properties display that the Tahan catchment has the highest rock strength of 56.32 MPa and the Linpien catchment has the highest joint density of 53.08 m-3; and further, the landslide interpretations show that the Tachia catchment has the highest landslide ratio of 9.26 %.
By analyzing the influences on sediment discharge and landslides, some inferences are obtained: (1) rock mass with higher rock strength and lower joint density could resist landsliding and sediment yielding; (2) the sediment discharge induced by a typhoon having rainfall > 400 mm would occupy more than 20 % of annual sediment discharge; (3) earthquake cause that landslides are distributed away from streams and prolong the duration of consumption of landsliding debris.
More than 60 % of dissolved material is attributed from silicates. Because the major lithologies in Taiwan are belong to silicates. In conclusion, the chemical properties of river water are influenced by dilution, lithologies, and sea spray.
The recurrence intervals of hyperpycnal flow will be shorter while more landslides occur in the catchment. The study also finds that higher rainfall threshold is requested to form a hyperpycnal flow in a catchment with higher rock strength.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:01:38Z (GMT). No. of bitstreams: 1
ntu-99-D96224005-1.pdf: 21155344 bytes, checksum: eb9d129536c55019c47944a69572dae0 (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents中文摘要………………………………………………………………………. I
英文摘要………………………………………………………………………. II
目錄……………………………………………………………………………. III
圖目錄…………………………………………………………………………. VIII
表目錄…………………………………………………………………………. XIII

第一章 緒論…………………………………………………………………... 1
1.1前言………………………………………………………………………... 1
1.2研究目的…………………………………………………………………... 2
第二章 研究區域……………………………………………………………... 3
2.1 地理位置及植生狀況…………………………………………………….. 3
2.2 氣候環境………………………………………………………………….. 7
2.2.1 氣溫……………………………………………………………………... 7
2.2.2 降雨量…………………………………………………………………... 8
2.3 地形...……………………………………………………………………... 11
2.4 地質環境...………………………………………………………………... 13
2.4.1 台灣主要地質分區……………………………………………………... 13
2.4.2 北部流域內的地層及土壤……………………………………………... 15
2.4.3 中部流域內之地層及土壤…………………………….……………….. 15
2.4.4 南部流域內之地層及土壤………………………..………...………….. 16
2.4.5 東部流域內之地層及土壤……………………………………………... 16
第三章 文獻回顧……………………….…………………………………….. 21
3.1 輸砂量與侵蝕作用之關係……………………………………………..... 21
3.2 崩塌地的特性與輸砂量的關係…………………………..……………... 25
3.3 地質材料特性與山崩及土石流的關係………………………………..... 26
3.4 降雨及地震等外力因素與山崩及土石流之關係……….………………. 28
3.5 溪水的化學性質與流域內岩石的化學風化…………………..………... 30
3.6 異重流發生及特性……………..………………………………………... 32
第四章 研究方法…………..………………………………………………... 35
4.1 岩石性質試驗………………………………..…………………………... 35
4.1.1 施密特錘試驗…………………………………………………………... 35
4.1.2 不連續面密度測量……………………………………………………... 37
4.2 河川輸砂量之估計…………………..…………………………………... 38
4.2.1 輸砂濃度的測量………………………………………………………... 38
4.2.2 輸砂量的估計方法……………………………………………………... 40
4.2.3 異重流再現周期的計算方法…………………………………………... 42
4.3 溪水主要離子…………...………………………………………………... 43
4.3.1 陽離子分析方法………………………………………………………... 43
4.3.2 陰離子分析方法………………………………………………………... 43
4.4 崩塌地判釋及分析……………………………………………………... 44
4.4.1 崩塌地判釋……………………………………………………………... 44
4.4.2 崩塌地在邊坡上之距離………………………………………………... 46
第五章 實驗及分析結果……………………………………………………... 49
5.1 岩石強度…...……………………………………………………………... 49
5.1.1 北部集水區流域………………………………………………………... 49
5.1.2 中部集水區流域………………………………………………………... 50
5.1.3 南部集水區流域………………………………………………………... 52
5.1.4 東部集水區流域………………………………………………………... 54
5.2不連續面的密度…………………………………………………………... 59
5.2.1 北部集水區流域………………………………………………………... 59
5.2.2 中部集水區流域………………………………………………………... 60
5.2.3 南部集水區流域………………………………………………………... 62
5.2.4 東部集水區流域………………………………………………………... 64
5.3 平均年輸砂量………...…………………………………………………... 68
5.3.1 北部流域………………………………………………………………... 68
5.3.2 中部流域………………………………………………………………... 70
5.3.3 南部流域………………………………………………………………... 73
5.3.4 東部流域………………………………………………………………... 77
5.3.5 異重流的再現周期……………………………………………………... 84
5.4 各流域內溪水化學性質………………………………………………... 88
5.4.1 陽離子(鈉、鉀、鎂) ……………………………………………………... 88
5.4.2 陰離子(氯、硫酸根) …………………………………………………... 91
5.5崩塌地之分析……………………………………………………………... 93
第六章 影響崩塌及輸砂量的因素…………………………………………... 95
6.1 地質材料特性…..………………………………………………………... 95
6.1.1 岩石強度與崩塌地的關係……………………………………………... 95
6.1.2 岩石強度與輸砂量的關係……………………………………………... 100
6.1.3 不連續面對崩塌及輸砂量之影響……………………………………... 102
6.2 地形因素……...…………………………………………………………... 106
6.2.1 坡度……………………………………………………………………... 106
6.2.2 坡向……………………………………………………………………... 116
6.2.3 高程……………………………………………………………………... 120
6.3降雨及地表逕流…………………………………………………………... 124
6.3.1 集水區及地表逕流對輸砂量之影響…………………………………... 124
6.3.2 颱風期間降雨量與輸砂量及崩塌之關係……………………………... 129
6.4 地震因素…...……………………………………………………………... 134
6.4.1 地震與崩塌之關係……………………………………………………... 134
6.4.2 地震對輸砂量之影響…………………………………………………... 136
第七章 討論…………………………………………………………………... 147
7.1 輸砂量及主要離子的濕乾季差異……………………………………….. 147
7.1.1 輸砂量在濕乾季的差異………………………………………………... 147
7.1.2 主要離子的濕乾季差異………………………………………………... 152
7.2 流域內岩石特性與溪水中溶解物質的關係…………………………….. 159
7.3 物理風化與化學風化的比較…………………………………………….. 162
7.4 崩塌地與河道之關係…………………………………………………….. 165
7.5 地震事件對輸砂量之影響時間………………………………………….. 167
7.6 異重流與崩塌的相關性………………………………………………….. 173
7.7 各項因子之影響度……………………………………………………….. 179
第八章 結論…………………………………………………………………... 181
8.1地質材料特性……………………………………………………………... 181
8.2 台灣河流之輸砂量……………………………………………………….. 181
8.3 各流域內崩塌狀況……………………………………………………….. 182
8.4崩塌與輸砂量及其他因素間之相關性…………………………………... 182
8.5 各流域之物理風化及化學風化作用的差異…………………………….. 183
參考文獻………………………………………………………………………. 185
附錄一 各區域月平均氣溫…………………………………………………... 195
附錄二 1949年至2009年各流域降雨量統計………………………………. 196
附錄三 各流域內高程、坡度、坡向…………………………………………. 197
附錄四 各流域地層百分比…………………………………………………... 198
附錄五 野外調查露頭座標…………………………………………………... 201
附錄六 施密特錘試驗換算單壓強度表……………………………………... 208
附錄七 國際岩石力學學會單壓強度分級表………………………………... 209
附錄八 岩塊大小對照表……………………………………………………... 210
附錄九 輸砂濃度觀測資料…………………………………………………... 211
附錄十 衛星影像拍攝時間…………………………………………………... 213
附錄十一 各流域逐年輸砂量………………………………………………... 216
附錄十二 各流域崩塌判釋結果……………………………………………... 230
dc.language.isozh-TW
dc.title台灣地區之河流輸砂量與岩性、逕流量及地震之相關性zh_TW
dc.titleRelationships between Sediment delivery, Rock properties, Runoff, and Earthquake around the catchments of Taiwanen
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree博士
dc.contributor.oralexamcommittee劉聰桂,林曉武,洪銘堅,林炳森,林慶偉,王瑞斌
dc.subject.keyword輸砂量,山崩,地表逕流,岩石性質,地震,化學風化,異重流,zh_TW
dc.subject.keywordsediment discharge,landslide,runoff,rock property,earthquake,chemical weathering,hyperpycnal flow,en
dc.relation.page232
dc.rights.note未授權
dc.date.accepted2010-10-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
20.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved