Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23432
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗賢
dc.contributor.authorYu-Cheng Changen
dc.contributor.author張育誠zh_TW
dc.date.accessioned2021-06-08T05:01:33Z-
dc.date.copyright2010-12-10
dc.date.issued2010
dc.date.submitted2010-11-12
dc.identifier.citation[1] L. Breems and J. H. Huijsing, Continuous-Time Sigma-Delta Modulationfor A/D Conversion in Radio Receivers, Boston, MA: Kluwer, 2001.
[2] J. Candy and G. Temes, “Oversampling Methods for A/D and D/A Conversion,” in Oversampling Delta-Sigma Data Converters, pp.1-29, New York: IEEE Press, 1992.
[3] S. Rabii and B. A. Wooley, The Design of Low-Voltage, Low-Power Sigma Delta Modulator. Boston, MA: Kluwer, 1999.
[4] R. Schreier and G. C. Temes, Understanding Delta-sigma Data Converters, Wiley-IEEE Press, 2004.
[5] O. Bajdechi and J. H. Huijsing, Systematic Design of Sigma-delta Analog-to-Digital Converters, Boston, MA: Kluwer, 2004.
[6] R. T. Baird and T. S. Fiez , “A Low Oversampling Ratio 14-b 500-kHz ΣΔ ADC with A Self-Calibrated Multibit DAC,” IEEE J. Solid-State Circuits, vol. 31, no.3, pp. 312–320, Mar. 1996.
[7] J. Nedved, J. Vanneuville, D. Gevaert, and J. Sevenhans, “A Transistor-Only Switched Current Sigma-Delta A/D Converter for A CMOS Speech Codec, ” IEEE J. Solid-State Circuits, vol. 30, no. 7, pp. 819–822 , July 1995.
[8] F. Gerfers, M. Ortmanns, and Y. Manoli, “A 12-bit Power Efficient Continuous-Time ΣΔ Modulator with 220 μW Power Consumption,” Proc. Eur. Solid-State Circuits Conf, pp. 536–539, 2001.
[9] J.F. Jensen, G. Raghavan, A. E. Cosand, and R. H. Walden, “A 3.2-GHz Second-Order Delta-Sigma Modulator Implemented in InP HBT Technology,” IEEE J. Solid-State Circuits, vol. 30, no.10, pp. 1119–1127, Oct. 1995.
[10] J. A. Cherry and W. M. Snelgrove, Continuous-time Delta-Sigma Modulators for high-speed A/D Conversion, Chapter 3, Boston, MA: Kluwer, 1999.
[11] S. Yan and E. Sanchez-Sinencio, “Continuous-Time XA Modulator with 88-dB Dynamic Range and 1.1-MHz Signal Band-width,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 75-86, Jan 2004..
[12] H. Zare-Hoseini and I. Kale, “Clock-Jitter Reduction Techniques in Continuous Time Delta-Sigma Modulators,” IEEE Int. Symp. On VLSI-DAT, pp 26-28, April 2006.
[13] P. Benabes, M. Keramat, and R. Kielbasa, “A Methodology for Designing Continuous-Time Sigma–Delta Modulators,” in IEEE European Design Test Conf., pp. 46–50, 1997.
[14] M. Keller, A. Buhmann, J. Sauerbrey, M. Ortmanns, and Y. Manoli, “A Comparative Study on Excess-Loop-Delay Compensation Techniques for Continuous-Time Sigma–Delta Modulators,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, No. 11, Nov. 2008
[15] S. Pavan, “Excess Loop Delay Compensation in Continuous-Time Delta-Sigma Modulators,” IEEE Trans. Circuits Syst. Il, Express Briefs, vol. 55, no. 11, pp. 1119–1123, Nov. 2008.
[16] K. El-Sankary, H. H. Alamdari, and E. I. El-Masry, “An Adaptive ELD Compensation Technique Using a Predictive Comparator,” IEEE Trans. Circuits Syst. Il, vol. 56, No. 8, August 2009.
[17] P. M. Chopp and A. A. Hamoui, “Analysis of Clock-Jitter Effects in Continuous-Time
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23432-
dc.description.abstract在目前中高速的應用上,採用連續時間型三角積分調變器作為類比數位轉換器是一個相當好的選擇。然而,連續時間型的三角積分調變器的效能,易受到真實電路先天的非理想效應影響,包含了內部迴路延遲和時脈抖動等因素。真實電路的操作時間造成的迴路延遲,會使三角積分調變器迴路系統不穩定,或是降低訊號雜訊比(SNR)。而時脈抖動的影響,主要來自回授路徑上的數位類比轉換器(DAC)所貢獻。時脈抖動會調變DAC的回授波型,貢獻雜訊到訊號輸入端。此貢獻的雜訊因與輸入信號同路徑進入系統,因此不受雜訊移頻(noise shaping)的抑制,而降低三角積分調變器的效能。
本文提出一個多階波型回授的方式,去降低時脈抖動的影響性。用經過延遲串列和數位邏輯運算的時脈去控制DAC作回授。用此方法,不但可以有效降低時脈抖動的影響,而且不需要花過多額外的功率消耗。此方法還有較不受遲電路的非理想效應影響的好處。對於迴路延遲的影響,本文利用簡單的電路技巧,改善傳統的迴路延遲補償方法。不但可以有效解決迴路延遲造成的問題,又可以不需要採傳統方式所需的加法器
為驗證提出的方法。本文利用上述技巧,並採用台積電0.18微米互補式金氧半製程,實現了一個三階一位元連續時間型三角積分器。其使用400 MHz的取樣頻率在4MHz的頻寬下,可以得到69dB的訊號雜訊比和71dB的動態範圍。使用1.8伏的供應電源時,需要消耗19毫瓦的功率。此連續時間三角積分調變器適合使用於無線接收機系統之中。
zh_TW
dc.description.abstractFor medium data rate applications, the continuous-time (CT) delta-sigma modulator is an appropriate candidate for implementing the ADC. However, the CT delta-sigma modulator is known to be sensitive to the excess loop delay (ELD) in the modulator and the clock jitter. Finite circuit response time causes latency in the modulator loop, which corrupts the modulator stability and degrades the system signal-to-noise ratio (SNR). On the issue of the clock jitter, the main culprit arises from the feedback DAC. The clock jitter modulates the DAC feedback waveforms and in effect adds noise to the input signal. Such noise content, just as the input signal, is not subject to the high-pass noise-shaping of the loop; thus, it directly results in SNR reduction.
This work proposes a simple technique to reduce clock jitter effects that shapes the DAC feedback waveform as multi-step fixed-ON RZ. The sampling clock is processed by delay chain and digital logic to control the feedback DAC. By this way, this technique can reduce the clock jitter effect effectively but also archive low penalty of power consumption and delay element non-linearity. On the ELD issue, we use a digital circuit technique to improve the conventional ELD compensation technique that is necessary to a summing amplifier.
To validate the proposed technique, a 3rd –order single-bit CT delta-sigma modulator is implemented in the TSMC 0.18-mm 1P6M COMS process. The proposed modulator achieves a 69-dB peak SNR with a 4-MHz bandwidth at a 400-MHz sampling rate and has an 71-dB dynamic range. The implemented modulator consumes 19mW from a 1.8-V supply. The proposed continuous-time delta-sigma modulator is suitable for wireless wideband systems.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:01:33Z (GMT). No. of bitstreams: 1
ntu-99-R97943035-1.pdf: 3965845 bytes, checksum: b14a3e606c77b625bd99470a89cfb70d (MD5)
Previous issue date: 2010
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract V
Table of Contents VII
List of Figures XI
List of Tables XV
Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Thesis Organization 3
Chapter 2 Fundamentals of Delta-Sigma Modulator 5
2.1 Introduction 5
2.2 Quantization 6
2.3 Oversampling 8
2.4 Noise-Shaped Delta-Sigma Modulator 10
2.4.1 First-Order Delta-Sigma Modulator 12
2.4.2 Second-Order Delta-Sigma Modulator 15
2.4.3 High-Order Delta-Sigma Modulator 17
2.5 Multi-Bit Delta-Sigma Modulator 18
2.6 Performance Metrics 20
2.7 Summary 24
Chapter 3 Continuous-Time Delta-Sigma Modulator 25
3.1 Introduction 25
3.2 Implementation of Continuous-Time Delta-Sigma Modulator 26
3.2.1 Continuous-Time vs. Discrete-Time Topologies 27
3.2.2 Discrete-Time to Continuous-Time Transformation 30
3.3 Structure of Continuous-Time Delta-Sigma Modulator 33
3.3.1 Feedback Compensation (Cascade-of-integrators-with-distributed-feedback) (CIFB) 33
3.3.2 Feedback Compensation and Local Feedback (Cascade-of-resonators-with-distributed-feedback) (CRFB) 35
3.3.3 Feed-forward Compensation (Chain-of-integrators-with-weighted- feed-forward-summation) (CIFF) 36
3.3.4 Feed-forward Compensation and Local Feedback (Chain-of- resonators-with-weighted-feed-forward-summation) (CRFF) 37
3.3.5 Feedback vs. Feed-forward Compensation 37
3.4 Challenges in Continuous-Time Delta-Sigma Modulator 39
3.4.1 Clock jitter 39
3.4.2 Excess Loop Delay 44
3.4.3 Loop Filter Coefficient Variation 51
3.5 Summary 51
Chapter 4 Design and Implementation of A Continuous-Time Delta-Sigma Modulator with Reduced Sensitivity to Clock Jitter 53
4.1 Introduction 53
4.2 Proposed Technique to Reduce the Clock Jitter Effect 54
4.2.1 Implementation of multi-step current waveform 54
4.2.2 Principle of reducing clock jitter effect 56
4.2.3 Multi-step vs. Single-step 57
4.3 Proposed CT delta-sigma Modulator Design 60
4.4 System Level Design of Circuit Architecture 64
4.4.1 Implementation of the CT Loop Filter 65
4.4.2 Design of Circuit Architecture 67
4.4.3 ELD Compensation Technique 70
4.4.4 System Level Simulation 72
4.5 Circuit Implementations 75
4.5.1 Integrator Implementation 75
4.5.2 Time Constant Tuning 79
4.5.3 Single-bit Quantizer 79
4.5.4 Differential DAC 81
4.5.5 Delay element 83
4.5.6 Quantizer VREF Control Circuit 84
4.6 Transistor Level Simulation Results 85
Chapter 5 Experimental Results 87
5.1 Introduction 87
5.2 Layout Design Considerations 87
5.3 DUT Printed Circuit Board 88
5.4 Test Environment Setup 91
5.4.1 Experimental Single Tone Test 91
5.4.2 Experimental Two Tone Test 92
5.4.3 Clock Jitter Effect Test 93
5.5 Experimental Results 94
Chapter 6 Conclusions and Future Work 99
6.1 Conclusions 99
6.2 Future Work 100
References 101
dc.language.isoen
dc.title降低時脈抖動敏感度之連續時間型三角積分調變器設計zh_TW
dc.titleDesign of Continuous-Time Delta-Sigma Modulator with Reduced Sensitivity to Clock Jitteren
dc.typeThesis
dc.date.schoolyear99-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉深淵,曾英哲,林永裕
dc.subject.keyword連續時間型三角積分器,類比數位轉換器,雜訊移頻,迴路延遲,時脈抖動,zh_TW
dc.subject.keywordContinuous-time delta-sigma modulator (CTDSM),analog–to-digital convertor (ADC),noise shaping,excess loop delay (ELD),clock jitter,en
dc.relation.page104
dc.rights.note未授權
dc.date.accepted2010-11-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-99-1.pdf
  目前未授權公開取用
3.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved