請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23404完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王偉仲 | |
| dc.contributor.author | Hua-Wen Luo | en |
| dc.contributor.author | 羅華文 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:01:14Z | - |
| dc.date.copyright | 2011-02-09 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-01-18 | |
| dc.identifier.citation | [1] G.E.P. Box and KB Wilson. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B (Methodological), 13(1):1-45, 1951.
[2] W.C. Davidon. Variable metric method for minimization. SIAM Journal on Optimization, 1:1, 1991. [3] R. Hooke and TA Jeeves. Direct search solution of numerical and statistical problems. Journal of the ACM (JACM), 8(2):212-229, 1961. [4] M. C. Kennedy and A. O'Hagan. Predicting the output from a complex computer code when fast approximations are available. Biometrika, 87(1):1-13, 2000. [5] Z. Qian, C.C. Seepersad, V.R. Joseph, J.K. Allen, and C.F.J. Wu. Building surrogate models based on detailed and approximate simulations. Journal of Mechanical Design, 128:668, 2006. [6] Peter Z. G. Qian and C. F. Je Wu. Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics, 50(2):192-204, 2008. [7] Neil W. Bresslo Alex Ander I J. Forrester and Andy J. Keane. Optimization using surrogate models and partially converged computational fluid dynamics simulations. Proc. R. Soc. A, 462:2177-2204, 2006. [8] Alexander I. J. Forrester, András Sóbester, and Andy J. Keane. Multi-fidelity optimization via surrogate modelling. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463(2088):3251-3269, 2007. [9] L. C. Lai. Adaptive search regions in derivative free optimization problems. Master’s thesis, 2008. [10] Weichung Wang, Ray-Bing Chen, and Chia-Lung Hsu. A surrogate-assisted method using adaptive multi-accurate function evaluations. 2008. [11] http://en.wikipedia.org/wiki/kriging. [12] http://www.math.hkbu.edu.hk/uniformdesign. [13] R. Barrett. Templates for the solution of linear systems: building blocks for iterative methods. Society for Industrial Mathematics, 1994. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23404 | - |
| dc.description.abstract | In many optimization problems, the number of function evaluations is severely limited by time or cost. These problems pose a special challenge to the field of global optimization, since existing methods often require more function evaluations than can be comfortably afforded. One way to address this challenge is to t response surfaces or surrogate surface to data collected
by evaluating the objective and constraint functions at a few points. These surfaces can then be used for visualization, trade o analysis, and optimization. We then show how these approximating functions can be used to construct an efficient global optimization algorithm with a credible stopping rule. The key to using response surfaces for global optimization lies in balancing the need to exploit the approximating surface (by sampling where it is minimized) with the need to improve the approximation (by sampling where prediction error may be high). Striking this balance requires solving certain auxiliary problems which have previously been considered intractable, but we show how these computational obstacles can be overcome. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:01:14Z (GMT). No. of bitstreams: 1 ntu-100-R97221042-1.pdf: 6384065 bytes, checksum: 98aae058d7901adc17cfc1edac81b117 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 1 Introduction. 7
2 Method. 9 2.1 Mani Components of Algorithm. . . . . . . . . . . . . . . . . . . . . . 11 2.2 Theoretical Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Convergence analysis 25 4 Numerical Experiments. 30 4.1 Shift-invert problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Lyapunov exponents . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.1 Numerical Results for Solving LE 1. . . . . . . . . . . . . . . . 37 4.2.2 Numerical Results for Solving LE 2. . . . . . . . . . . . . . . . 41 | |
| dc.language.iso | en | |
| dc.subject | 最佳化問題 | zh_TW |
| dc.subject | 收斂分析 | zh_TW |
| dc.subject | 均勻設計 | zh_TW |
| dc.subject | 動態精度控制 | zh_TW |
| dc.subject | 代理曲面 | zh_TW |
| dc.subject | dynamic precision control | en |
| dc.subject | response surfaces | en |
| dc.subject | uniform design | en |
| dc.subject | surrogate | en |
| dc.subject | optimization | en |
| dc.title | 代理輔助最佳化的動態精度控制法 | zh_TW |
| dc.title | Dynamic Precision Control in Surrogate Assisted Optimization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳瑞彬,黃聰明 | |
| dc.subject.keyword | 動態精度控制,最佳化問題,代理曲面,均勻設計,收斂分析, | zh_TW |
| dc.subject.keyword | dynamic precision control,optimization,surrogate,response surfaces,uniform design, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-01-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 6.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
