請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23388完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游偉絢 | |
| dc.contributor.author | Ning-Xing Tsai | en |
| dc.contributor.author | 蔡寧馨 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:00:18Z | - |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-17 | |
| dc.identifier.citation | Abramson, S.R., Conner, G.E., Nagase, H., Neuhaus, I., and Woessner, J.F., Jr. (1995). Characterization of rat uterine matrilysin and its cDNA. Relationship to human pump-1 and activation of procollagenases. J Biol Chem 270, 16016-16022.
Adachi, Y., Yamamoto, H., Itoh, F., Hinoda, Y., Okada, Y., and Imai, K. (1999). Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut 45, 252-258. Bohren, K.M., Nadkarni, V., Song, J.H., Gabbay, K.H., and Owerbach, D. (2004). A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 279, 27233-27238. Bourboulia, D., and Stetler-Stevenson, W.G. (2010). Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin Cancer Biol. Chu, Y.W., Yang, P.C., Yang, S.C., Shyu, Y.C., Hendrix, M.J., Wu, R., and Wu, C.W. (1997). Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17, 353-360. Chung, C.H., and Baek, S.H. (1999). Deubiquitinating enzymes: their diversity and emerging roles. Biochem Biophys Res Commun 266, 633-640. Crabbe, T., Smith, B., O'Connell, J., and Docherty, A. (1994). Human progelatinase A can be activated by matrilysin. FEBS Lett 345, 14-16. Das, S., Mandal, M., Chakraborti, T., Mandal, A., and Chakraborti, S. (2003). Structure and evolutionary aspects of matrix metalloproteinases: a brief overview. Mol Cell Biochem 253, 31-40. Delbarre, E., Tramier, M., Coppey-Moisan, M., Gaillard, C., Courvalin, J.C., and Buendia, B. (2006). The truncated prelamin A in Hutchinson-Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers. Hum Mol Genet 15, 1113-1122. Denuc, A., and Marfany, G. (2010). SUMO and ubiquitin paths converge. Biochem Soc Trans 38, 34-39. Dunsmore, S.E., Saarialho-Kere, U.K., Roby, J.D., Wilson, C.L., Matrisian, L.M., Welgus, H.G., and Parks, W.C. (1998). Matrilysin expression and function in airway epithelium. J Clin Invest 102, 1321-1331. Ellis, D.J., Jenkins, H., Whitfield, W.G., and Hutchison, C.J. (1997). GST-lamin fusion proteins act as dominant negative mutants in Xenopus egg extract and reveal the function of the lamina in DNA replication. J Cell Sci 110 ( Pt 20), 2507-2518. Fawcett, D.W. (1966). On the occurrence of a fibrous lamina on the inner aspect of the nuclear envelope in certain cells of vertebrates. Am J Anat 119, 129-145. Geoffroy, M.C., and Hay, R.T. (2009). An additional role for SUMO in ubiquitin-mediated proteolysis. Nat Rev Mol Cell Biol 10, 564-568. Goldman, R.D., Gruenbaum, Y., Moir, R.D., Shumaker, D.K., and Spann, T.P. (2002). Nuclear lamins: building blocks of nuclear architecture. Genes Dev 16, 533-547. Gueders, M.M., Foidart, J.M., Noel, A., and Cataldo, D.D. (2006). Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases. Eur J Pharmacol 533, 133-144. Guo, B., Yang, S.H., Witty, J., and Sharrocks, A.D. (2007). Signalling pathways and the regulation of SUMO modification. Biochem Soc Trans 35, 1414-1418. Harrell, P.C., McCawley, L.J., Fingleton, B., McIntyre, J.O., and Matrisian, L.M. (2005). Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells. Exp Cell Res 303, 308-320. Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G., and Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141. Honda, M., Mori, M., Ueo, H., Sugimachi, K., and Akiyoshi, T. (1996). Matrix metalloproteinase-7 expression in gastric carcinoma. Gut 39, 444-448. Ii, M., Yamamoto, H., Adachi, Y., Maruyama, Y., and Shinomura, Y. (2006). Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood) 231, 20-27. Ikeda, F., and Dikic, I. (2008). Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep 9, 536-542. Imai, K., Yokohama, Y., Nakanishi, I., Ohuchi, E., Fujii, Y., Nakai, N., and Okada, Y. (1995). Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties. J Biol Chem 270, 6691-6697. Imai, S., Nishibayashi, S., Takao, K., Tomifuji, M., Fujino, T., Hasegawa, M., and Takano, T. (1997). Dissociation of Oct-1 from the nuclear peripheral structure induces the cellular aging-associated collagenase gene expression. Mol Biol Cell 8, 2407-2419. Jeffery, N., McLean, M.H., El-Omar, E.M., and Murray, G.I. (2009). The matrix metalloproteinase/tissue inhibitor of matrix metalloproteinase profile in colorectal polyp cancers. Histopathology 54, 820-828. Johnson, E.S. (2004). Protein modification by SUMO. Annu Rev Biochem 73, 355-382. Jones, L.E., Humphreys, M.J., Campbell, F., Neoptolemos, J.P., and Boyd, M.T. (2004). Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin Cancer Res 10, 2832-2845. Kitoh, T., Yanai, H., Saitoh, Y., Nakamura, Y., Matsubara, Y., Kitoh, H., Yoshida, T., and Okita, K. (2004). Increased expression of matrix metalloproteinase-7 in invasive early gastric cancer. J Gastroenterol 39, 434-440. Li, Y.J., Wei, Z.M., Meng, Y.X., and Ji, X.R. (2005). Beta-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: relationships with carcinogenesis and metastasis. World J Gastroenterol 11, 2117-2123. Liu, D., Nakano, J., Ishikawa, S., Yokomise, H., Ueno, M., Kadota, K., Urushihara, M., and Huang, C.L. (2007). Overexpression of matrix metalloproteinase-7 (MMP-7) correlates with tumor proliferation, and a poor prognosis in non-small cell lung cancer. Lung Cancer 58, 384-391. Lopez-Soler, R.I., Moir, R.D., Spann, T.P., Stick, R., and Goldman, R.D. (2001). A role for nuclear lamins in nuclear envelope assembly. J Cell Biol 154, 61-70. Luderus, M.E., de Graaf, A., Mattia, E., den Blaauwen, J.L., Grande, M.A., de Jong, L., and van Driel, R. (1992). Binding of matrix attachment regions to lamin B1. Cell 70, 949-959. Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97-107. Malhas, A., Lee, C.F., Sanders, R., Saunders, N.J., and Vaux, D.J. (2007). Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression. J Cell Biol 176, 593-603. Mancini, M.A., Shan, B., Nickerson, J.A., Penman, S., and Lee, W.H. (1994). The retinoblastoma gene product is a cell cycle-dependent, nuclear matrix-associated protein. Proc Natl Acad Sci U S A 91, 418-422. Martin, S., Wilkinson, K.A., Nishimune, A., and Henley, J.M. (2007). Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nat Rev Neurosci 8, 948-959. Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S.C., Tatham, M.H., Hay, R.T., Lamond, A.I., Mann, M., and Vertegaal, A.C. (2008). In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol Cell Proteomics 7, 132-144. Matunis, M.J., Coutavas, E., and Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135, 1457-1470. Melchior, F. (2000). SUMO--nonclassical ubiquitin. Annu Rev Cell Dev Biol 16, 591-626. Mitsiades, N., Yu, W.H., Poulaki, V., Tsokos, M., and Stamenkovic, I. (2001). Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 61, 577-581. Moir, R.D., Spann, T.P., and Goldman, R.D. (1995). The dynamic properties and possible functions of nuclear lamins. Int Rev Cytol 162B, 141-182. Nelson, A.R., Fingleton, B., Rothenberg, M.L., and Matrisian, L.M. (2000). Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18, 1135-1149. Paddy, M.R., Belmont, A.S., Saumweber, H., Agard, D.A., and Sedat, J.W. (1990). Interphase nuclear envelope lamins form a discontinuous network that interacts with only a fraction of the chromatin in the nuclear periphery. Cell 62, 89-106. Quantin, B., Murphy, G., and Breathnach, R. (1989). Pump-1 cDNA codes for a protein with characteristics similar to those of classical collagenase family members. Biochemistry 28, 5327-5334. Ra, H.J., Harju-Baker, S., Zhang, F., Linhardt, R.J., Wilson, C.L., and Parks, W.C. (2009). Control of promatrilysin (MMP7) activation and substrate-specific activity by sulfated glycosaminoglycans. J Biol Chem 284, 27924-27932. Rodriguez, M.S., Dargemont, C., and Hay, R.T. (2001). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276, 12654-12659. Saarialho-Kere, U.K., Crouch, E.C., and Parks, W.C. (1995). Matrix metalloproteinase matrilysin is constitutively expressed in adult human exocrine epithelium. J Invest Dermatol 105, 190-196. Schirmer, E.C., and Gerace, L. (2004). The stability of the nuclear lamina polymer changes with the composition of lamin subtypes according to their individual binding strengths. J Biol Chem 279, 42811-42817. Sellers, A., and Woessner, J.F., Jr. (1980). The extraction of a neutral metalloproteinase from the involuting rat uterus, and its action on cartilage proteoglycan. Biochem J 189, 521-531. Shimi, T., Pfleghaar, K., Kojima, S., Pack, C.G., Solovei, I., Goldman, A.E., Adam, S.A., Shumaker, D.K., Kinjo, M., Cremer, T., et al. (2008). The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22, 3409-3421. Shiomi, T., Inoki, I., Kataoka, F., Ohtsuka, T., Hashimoto, G., Nemori, R., and Okada, Y. (2005). Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Invest 85, 1489-1506. Spann, T.P., Moir, R.D., Goldman, A.E., Stick, R., and Goldman, R.D. (1997). Disruption of nuclear lamin organization alters the distribution of replication factors and inhibits DNA synthesis. J Cell Biol 136, 1201-1212. Stick, R. (1992). The gene structure of Xenopus nuclear lamin A: a model for the evolution of A-type from B-type lamins by exon shuffling. Chromosoma 101, 566-574. Sun, H., Leverson, J.D., and Hunter, T. (2007). Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 26, 4102-4112. Takahashi, Y., Iwase, M., Strunnikov, A.V., and Kikuchi, Y. (2008). Cytoplasmic sumoylation by PIAS-type Siz1-SUMO ligase. Cell Cycle 7, 1738-1744. Taniura, H., Glass, C., and Gerace, L. (1995). A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones. J Cell Biol 131, 33-44. Tatham, M.H., Jaffray, E., Vaughan, O.A., Desterro, J.M., Botting, C.H., Naismith, J.H., and Hay, R.T. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276, 35368-35374. Ulitzur, N., Harel, A., Feinstein, N., and Gruenbaum, Y. (1992). Lamin activity is essential for nuclear envelope assembly in a Drosophila embryo cell-free extract. J Cell Biol 119, 17-25. Van Wart, H.E., and Birkedal-Hansen, H. (1990). The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A 87, 5578-5582. Wielockx, B., Libert, C., and Wilson, C. (2004). Matrilysin (matrix metalloproteinase-7): a new promising drug target in cancer and inflammation? Cytokine Growth Factor Rev 15, 111-115. Wilson, C.L., and Matrisian, L.M. (1996). Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions. Int J Biochem Cell Biol 28, 123-136. Wilson, C.L., Ouellette, A.J., Satchell, D.P., Ayabe, T., Lopez-Boado, Y.S., Stratman, J.L., Hultgren, S.J., Matrisian, L.M., and Parks, W.C. (1999). Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113-117. Woessner, J.F., Jr. (1996). Regulation of matrilysin in the rat uterus. Biochem Cell Biol 74, 777-784. Woessner, J.F., and Nagase, H. (2000). Matrix Metalloproteinases and TIMPs (Oxford University Press). Wohlschlegel, J.A., Johnson, E.S., Reed, S.I., and Yates, J.R., 3rd (2004). Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279, 45662-45668. Yamamoto, H., Adachi, Y., Itoh, F., Iku, S., Matsuno, K., Kusano, M., Arimura, Y., Endo, T., Hinoda, Y., Hosokawa, M., et al. (1999). Association of matrilysin expression with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Cancer Res 59, 3313-3316. Yamamoto, K., Higashi, S., Kioi, M., Tsunezumi, J., Honke, K., and Miyazaki, K. (2006). Binding of active matrilysin to cell surface cholesterol sulfate is essential for its membrane-associated proteolytic action and induction of homotypic cell adhesion. J Biol Chem 281, 9170-9180. Yamashita, K., Mori, M., Shiraishi, T., Shibuta, K., and Sugimachi, K. (2000). Clinical significance of matrix metalloproteinase-7 expression in esophageal carcinoma. Clin Cancer Res 6, 1169-1174. Yu, W.H., and Woessner, J.F., Jr. (2000). Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 275, 4183-4191. Yu, W.H., Woessner, J.F., Jr., McNeish, J.D., and Stamenkovic, I. (2002). CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 16, 307-323. Zeng, Z.S., Shu, W.P., Cohen, A.M., and Guillem, J.G. (2002). Matrix metalloproteinase-7 expression in colorectal cancer liver metastases: evidence for involvement of MMP-7 activation in human cancer metastases. Clin Cancer Res 8, 144-148. Zhao, K., Harel, A., Stuurman, N., Guedalia, D., and Gruenbaum, Y. (1996). Binding of matrix attachment regions to nuclear lamin is mediated by the rod domain and depends on the lamin polymerization state. FEBS Lett 380, 161-164. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23388 | - |
| dc.description.abstract | Matrix metalloptroteinase-7 (MMP-7; matrilysin) is a member of the MMPs family, which is involved in the extracellular matrix (ECM) component degradation and tissue remodeling. MMP-7 was reported as a secreted enzyme localized in the epical surface of normal glandular epithelial cells by Western blot and zymography analysis. Interestingly, a 31 kDa protein with protease activity found in nucleus was identified as pro-MMP-7. Furthermore, the protein sequence of MMP-7 was analyzed and a putative sumoylation site was defined by Dr. Wei-Hsuan Yu. (1998 Gordon Research Conferences poster)
To determine the sumoylation state of MMP-7, we used two anti-MMP7 antibodies to immunoprecipitate MMP-7, and then analyzed by Western blot with an anti-SUMO3 antibody. These results demonstrated that MMP-7 was modified by SUMO3. The prominent SUMO3 modified MMP-7 in the nucleus fraction implicated that SUMOylation post-translational modification for MMP-7 could be a nucleus trafficking signature for MMP-7. Also, by analyzing the total cell lysate with immunoprecipitation method, we found that MMP-7 were also ubiquitinated. The SUMO3 and ubiquitin tagged on MMP-7 could be responsible for MMP-7 intracellular trafficking route. The detail mechanism remains for further investigation. After the nuclear translocation of MMP-7 was verified, we further found that lamin B1 became fragmented when MMP-7 was overexpressed. Using an anti-lamin B1 antibody, the immunoprecipitation data showed that the active site mutated MMP-7 was pulled down and was detected by Western blotting. Furthermore, the intact structure of lamin B1 at nuclear lamina was changed when MMP-7 was overexpressed. My data suggested that lamin B1 could be a substrate of MMP-7 in the nucleus. As the MMP-7/SUMO3 overexpressed cells formed colonies in the soft agar assay, the SUMOylated MMP-7 might involved in cancer progression by chromatin remodeling. The detailed underlying mechanism will be addressed in the near future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:00:18Z (GMT). No. of bitstreams: 1 ntu-99-R97442012-1.pdf: 2318917 bytes, checksum: 69b66150df3de7aa003d46886313a9d4 (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 摘要 I Abstract II Contents IV List of figures V Chapter 1. Introduction - 1 - Chapter 2. Materials and Methods - 13 - 2.1 Materials - 14 - 2.2 Methods - 20 - Chapter 3. Results - 27 - Chapter 4. Discussion - 38 - Chapter 5. Figures - 45 - Chapter 6. References - 60 - Appendix - 74 - | |
| dc.language.iso | en | |
| dc.subject | 細胞癌化 | zh_TW |
| dc.subject | 基質金屬蛋白酶 | zh_TW |
| dc.subject | 細胞核基質 | zh_TW |
| dc.subject | SUMO修飾 | zh_TW |
| dc.subject | 核纖層蛋白B1 | zh_TW |
| dc.subject | laminB1 | en |
| dc.subject | tumor progression | en |
| dc.subject | nuclear matrix | en |
| dc.subject | MMP-7 | en |
| dc.subject | SUMOylation | en |
| dc.title | SUMO蛋白轉譯後修飾之基質金屬蛋白酶-7在細胞核中參與核纖層蛋白蛋白質裂解之研究 | zh_TW |
| dc.title | The nucleus translocation of SUMOylated MMP-7 mediated proteolysis of nucleus matrix protein lamin B1 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 湯志永,楊偉勛,陳佑宗,俞松良 | |
| dc.subject.keyword | 基質金屬蛋白酶,-7,細胞核基質,SUMO修飾,核纖層蛋白B1,細胞癌化, | zh_TW |
| dc.subject.keyword | MMP-7,SUMOylation,laminB1,nuclear matrix,tumor progression, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 2.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
