請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23381
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李佳音 | |
dc.contributor.author | Ren-Bao Liaw | en |
dc.contributor.author | 廖仁寶 | zh_TW |
dc.date.accessioned | 2021-06-08T05:00:11Z | - |
dc.date.copyright | 2010-08-26 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-16 | |
dc.identifier.citation | Aggelis, G.G., Gavala, H.N., Lyberatos, G., 2001. Combined, separate aerobic and anaerobic biotreatment of green olive debittering wastewater. J. Agri. Eng. Res. 80, 283–292.
Akoh, C.C., Lee, G.C., Liaw, Y.C., Huang, T.H., Shaw, J.F., 2004. GDSL family of serine esterases/lipases. Prog. Lipid Res. 43, 534-552. Al Khudary, R., Venkatachalam, R., Katzer, M., Elleuche, S., Antranikian, G., 2010. A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization. Extremophiles 14, 273–285. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. Amann, R.I., Ludwig, W., Schleifer, K.H., 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169. Arpigny, J.L., Jaeger, K.H., 1999. Bacterial lipolytic enzymes: classification and properties. Biochem. J. 343, 177–183. Bell, P.J., Sunna, A., Gibbs, M.D., Curach, N.C., Nevalainen, H., Bergquist, P.L., 2002. Prospecting for novel lipase genes using PCR. Microbiology-SGM 148, 2283–2291. Bendtsen, J.D., Nielsen, H., von Heijne, G., Brunak, S., 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795. Berry, A.E., Chiocchini, C., Selby, T., Sosio, M., Wellington, E.M., 2003. Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microbiol. Lett. 223, 15-20. Bertrand, H., Poly, F., Van, V.T., Lombard, N., Nalin, R., Vogel, T.M., Simonet, P., 2005. High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. J. Microbiol. Methods 62, 1–11. Bornscheuer, U.T., 2002. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26, 73–81. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 Brzuszkiewicz, A., Nowak, E., Dauter, Z., Dauter, M., Cieśliński, H., Długołeckam A., Kur, J., 2009. Structure of EstA esterase from psychrotrophic Pseudoalteromonas sp. 643A covalently inhibited by monoethylphosphonate. Acta. Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65, 862–865. Chan, Y.J., Chong, M.F., Chung, L.L., Hassell, D.G., 2009. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 155, 1–18. Choo, D.W., Kurihara, T., Suzuki, T., Soda, K., Esaki, N., 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64, 486–491. Chouari, R., Le Paslier, D., Daegelen, P., Ginestet, P., Weissenbach, J., Sghir, A., 2003. Molecular evidence for novel planctomycete diversity in a municipal wastewater treatment plant. Appl. Environ. Microbiol. 69, 7354–7363. Chu, X., He, H., Guo, C., Sun, B., 2008. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl. Microbiol. Biotechnol. 80, 615–825. Cieśliński, H., Białkowska, A.M., Długołecka, A., Daroch, M., Tkaczuk, K.L., Kalinowska, H., Kur, J., Turkiewicz, M., 2007. A cold-adapted esterase from psychrotrophic Pseudoalteromas sp. strain 643A. Arch. Microbiol. 188, 27–36. Cowan, D.A., 2000. Microbial genomes-the untapped resource. Trends Biotechnol. 18, 14–16. Curtis, T.P., Sloan, W.T., Scannell, J.W., 2002. Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 99, 10494–10499. Daniel, R., 2005. The metagenomics of soil. Nat. Rev. Microbiol. 3, 470–478. de Pascale, D., Cusano, A.M., Autore, F., Parrilli, E., di Prisco, G., Marino, G., Tutino, M.L., 2008. The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12, 311–323. Długołecka, A., Cieśliński, H., Bruździak, P., Gottfried, K., Turkiewicz, M., Kur, J., 2009. Purification and biochemical characteristic of a cold-active recombinant esterase from Pseudoalteromonas sp. 643A under denaturing conditions. Pol. J. Microbiol. 58, 211–218. Eschenfeldt, W.H., Stols, L., Rosenbaum, H., Khambatta, Z.S., Quaite-Randall, E., Wu, S., Kilgore, D.C., Trent, J.D., Donnelly, M.I., 2001. DNA from uncultured organisms as a source of 2,5-diketo-D-gluconic acid reductases. Appl. Environ. Microbiol. 67, 4206–4214. Farias R.N., Torres M., Canela, R., 1997. Spectrophotometric determination of the positional specificity of nonspecific and 1,3-specific lipases. Anal. Biochem. 252, 186–189. Ferrer, M., Golyshina, O.V., Chernikova, T.N., Khachane, A.N., Reyes-Duarte, D., Santos, V.A., Strompl, C., Elborough, K., Jarvis, G., Neef, A., Yakimov, M.M., Timmis, K.N., Golyshin, P.N., 2005. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ. Microbiol. 7, 1996–2010. Gessesse, A., Dueholm, T., Petersen, S.B., Nielsen, P.H., 2003. Lipase and protease extraction from activated sludge. Water Res. 37, 3652–3657. Gilbert, E.J., 1993. Pseudomonas lipases: biochemical properties and molecular cloning. Enzyme Microb. Technol. 15, 634–645. Gillespie, D.E., Brady, S.F., Bettermann, A.D., Cianciotto, N.P., Liles, M.R., Rondon, M.R., Clardy, J., Goodman, R.M., Handelsman, J., 2002. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl. Environ. Microbiol. 68, 4301–4306 Gupta, R., Gupta, N., Rathi, P., 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64, 763–781. Handelsman, J., 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685. Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J., Goodman, R.M., 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, 245–249. Hårdeman, F., Sjöling. S., 2007. Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol. Ecol. 59, 524–534. Heath, C., Hu, X.P., Cary, S.C., Cowan, D., 2009. Identification of a novel alkaliphilic esterase active at low temperatures by screening a metagenomic library from antarctic desert soil. Appl. Environ. Microbiol. 75, 4657–4659. Heijnen, J.J., Mulder, A., Weltevrede, R., Hols, J., Vanleeuwen, H., 1991. Large-scale anaerobic-aerobic treatment of complex industrial-wastewater using biofilm reactors. Water Sci. Technol. 23, 1427–1436. Henne, A., Schmitz, R.A., Bomeke, M., Gottschalk, G., Daneil, R., 2000. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl. Environ. Microbiol. 66, 3113–3116. Hong, K.H., Jang, W.H., Choi, K.D., Yoo, O.J., 1991. Characterization of Pseudomonas fluorescens carboxylesterase: cloning and expression of the esterase gene in Escherichia coli. Agric. Biol. Chem. 55, 2839–2845. Hu, Y., Fu, C., Huang, Y., Yin, Y., Cheng, G., Lei, F., Lu, N., Li, J., Ashforth, E.J., Zhang, L., Zhu, B., 2010. Novel lipolytic genes from the microbial metagenomic library of the South China Sea marine sediment. FEMS Microbiol. Ecol. 72, 228–237. Huber, T., Faulkner, G., Hugenholtz, P., 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20, 2317–2319. Jaeger, K.E., Dijkstra, B.W., Reetz, M.T., 1999. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53, 315–351. Jaeger, K.E., Eggert, T., 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13, 390–397. Jeon, J.H., Kim, J.T., Kang, S.G., Lee, J.H., Kim, S.J., 2009a. Characterization and its potential application of two esterases derived from the arctic sediment metagenome. Mar. Biotechnol. 11, 307–316. Jeon, J.H., Kim, J.T., Kim, Y.J., Kim, H.K., Lee, H.S., Kang, S.G., Kim, S.J., Lee, J.H., 2009b. Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl. Microbiol. Biotechnol. 81, 865–874. Jiang, C., Wu, B., 2007. Molecular cloning and functional characterization of a novel decarboxylase from uncultured microorganisms. Biochem. Biophys. Res. Commun. 357, 421–426. Kim, E.Y., Oh, K.H., Lee, M.H., Kang, C.H., Oh, T.K., Yoon, J.H., 2009. Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Appl. Environ. Microbiol. 75, 257–260. Kim, Y.H., Kwon, E.J., Kim, S.K., Jeong, Y.S., Kim, J., Yun, H.D., Kim, H., 2010. Molecular cloning and characterization of a novel family VIII alkaline esterase from a compost metagenomic library. Biochem. Biophys. Res. Commun. 393, 45–49. Knietsch, A., Bowien, S., Whited, G., Gottschalk, G., Daniel, R., 2003. Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl. Environ. Microbiol. 69, 3048–3060. Koh, M.T., Hsiao, T.M., Cheng M.P., 2008. A brief introduction of swine wastewater treatment system in Taiwan. Livestock Research Institute, Hsin-Hua, Tainan, Taiwan. Lämmle, K., Zipper, H., Breuer, M., Hauer, B., Buta, C., Brunner, H., Rupp, S., 2007. Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning. J. Biotechnol. 127, 575–592. Lane, D. J., 1991. 16S/23S rRNA sequencing, in: Stackenbrandt, E., Goodfellow, M. (Eds.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons Ltd., Chichester, United Kingdom, pp. 115–175. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G., 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948. LeCleir, G.R., Buchan, A., Hollibaugh, J.T., 2004. Chitinase gene sequences retrieved from diverse aquatic habitats reveal environment-specific distributions. Appl. Environ. Microbiol. 70, 6977-6983. Lee, M.H., Lee, C.H., Oh, T.K., Song, J.K., Yoon, J.H., 2006. Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl. Environ. Microbiol. 72, 7406–7409. Lee, S., Hallam, S.J., 2009. Extraction of high molecular weight genomic DNA from soils and sediments. J. Vis. Exp. 33. http://www.jove.com/index/details.stp?id= 1569, doi: 10.3791/1569 Lee, S.W., Won, K., Lim, H.K., Kim, J.C., Choi, G.J., Cho, K.Y., 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65, 720–726. Li, J., Derewenda, U., Dauter, Z., Smith, S., Derewenda, Z.S., 2000. Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme. Nat. Struct. Biol. 7, 555–559. Liaw, R.B., Cheng, M.P., Wu, M.C., Lee, C.Y., 2010. Use of metagenomic approaches to isolate lipolytic genes from activated sludge. Bioresour. Technol. 101, 8323–8329. Liles, M.R., Williamson, L.L., Rodbumrer, J., Torsvik, V., Goodman, R.M., Handelsman, J. 2008. Recovery, purification, and cloning of high-molecular-weight DNA from soil microorganisms. Appl. Environ. Microbiol. 74, 3302–2205. Lim, H.K., Chung, E.J., Kim, J.C., Choi, G.J., Jang, K.S., Chung, Y.R., Cho, K.Y., Lee, S.W., 2005. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl. Environ. Microbiol. 71, 7768–7777. Lo, K.V., Liao, P.H., 1989. Anaerobic-aerobic biological treatment of a mixture of cheese whey and dairy manure. Biol. Wastes 28, 91–101. Lorenz, P., Liebeton, K., Niehaus, F., Eck, J., 2002. Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr. Opin. Biotechnol. 13, 572–577. Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker, C.T. Jr., Saxman, P.R., Farris, R.J., Garrity, G.M., Olsen, G.J., Schmidt, T.M., Tiedje, J.M., 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 29:173–174. Margesin, R., Schinner, F., 1994. Properties of cold-adapted microorganisms and their potential role in biotechnology. J. Biotechnol. 33, 1–14. Mathews, I., Soltis, M., Saldajeno, M., Ganshaw, G., Sala, R., Weyler, W., Cervin, M.A., Whited, G., Bott, R., 2007. Structure of a novel enzyme that catalyzes acyl transfer to alcohols in aqueous conditions. Biochemistry 46, 8969–8979. Maugard, T., Rejasse, B., Legoy, M.D., 2002. Synthesis of water-soluble retinol derivatives by enzymatic method. Biotechnol. Prog. 18, 424–428. Mayumi, D., Akutsu-Shigeno, Y., Uchiyama, H., Nomura, N., and Nakajima-Kambe, T., 2008. Identification and characterization of novel poly(DL-lactic acid) depolymerases from metagenome, Appl Microbiol Biotechnol 79, 743–750. Molgaard, A., Kauppinen, S., Larsen, S., 2000. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Struct. Fold Des. 8, 373–83. Okamura, Y., Kimura, T., Yokouchi, H., Meneses-Osorio, M., Katoh, M., Matsunaga, T., Takeyama, H., 2009. Isolation and characterization of a GDSL esterase from the metagenome of a marine sponge-associated bacteria. Mar. Biotechnol. DOI 10.1007/s10126-009-9226-x. Pandey A., Benjamin, S., Soccol, C.R., Nigam, P., Krieger, N., Soccol, V.T., 1999. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29, 119–131. Prim, N., Bofill, C., Pastor, F.I.J., Diaz, P., 2006. Esterase EstA6 from Pseudomonas sp. CR-611 is a novel member in the utmost conserved cluster of family VI bacterial lipolytic enzymes. Biochimie 88, 859–867. Ranjan, R., Grover, A., Kapardar, R.K., Sharma, R., 2005. Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem. Biophys. Res. Commun. 335, 57–65. Rashid, N., Shimada, Y., Ezaki, S., Atomi, H., Imanaka, T., 2001. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl. Environ. Microbiol. 67, 4064–4069. Roh, C., Villatte, F., 2008. Isolation of a low-temperature adapted lipolytic enzyme from uncultivated microorganism. J. Appl. Microbiol. 105, 116–123. Roh, C., Villatte, F., Kim, B.G., Schmid, R.D., 2007. Screening and purification for novel cytochrome b5 from uncultured environmental micro-organisms. Lett. Appl. Microbiol. 44, 475–480. Rondon, M.R., August, P.R., Bettermann, A.D., Brady, S.F., Grossman, T.H., Liles, M.R., Loiacono, K.A., Lynch, B.A., MacNeil, I.A., Minor, C., Tiong, C.L., Gilman, M., Osburne, M.S., Clardy, J., Handelsman, J., Goodman, R.M., 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541–2547. Sambrook, J., Russell, D.W., 2001. Molecular Cloning: A Laboratory Manual, third ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Simon, C., Daniel, R., 2009. Achievements and new knowledge unraveled by metagenomic approaches. Appl. Microbiol. Biotechnol. 85, 265–276. Snaidr, J., Amann, R., Huber, I., Ludwig, W., Schleifer, K.H., 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63, 2884–2896. Soberón-Chávez, G., Palmeros, B., 1994. Pseudomonas lipases: molecular genetics and potential industrial applications. Crit. Rev. Microbiol. 20, 95–105. Supaka, N., Juntongjin, K., Damronglerd, S., Delia, M.-L., Strehaiano, P., 2004. Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system. Chem. Eng. J. 99: 169–176. Suzuki, T., Nakayama, T., Choo, D.W., Hirano, Y., Kurihara, T., Nishino, T., Esaki, N., 2003. Cloning, heterologous expression, renaturation, and characterization of a cold-adapted esterase with unique primary structure from a psychrotroph Pseudomonas sp. strain B11-1. Protein Expr. Purif. 30, 171–178. Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599. Tirawongsaroj, P., Sriprang, R., Harnpicharnchai, P., Thongaram, T., Champreda, V., Tanapongpipat, S., Pootanakit, K., Eurwilaichitr, L., 2008. Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J. Biotechnol. 133, 42–49. Torsvik, V., Øvreås, L., 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5, 240–245. Vainio, E.J., Moilanen, A., Koivula, T.T., Bamford, D.H., Hantula, J., 1997. Comparison of partial 16S rRNA gene sequences obtained from activated sludge bacteria. Appl. Microbiol. Biotechnol. 48, 73–79. Valentin, K., John, U., Medlin, L., 2005. Nucleic acid isolation from environmental aqueous samples. Methods Enzymol. 395, 15–37. Wagner, M. Loy, A., 2002. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 13, 218–227. Waschkowitz, T., Rockstroh, S., Daniel, R., 2009. Isolation and characterization of metalloproteases with a novel domain structure by construction and screening of metagenomic libraries. Appl. Environ. Microbiol. 75, 2506–2516. Wexler, M., Bond, P.L., Richardson, D.J., Johnston, A.W., 2005. A wide host-range metagenomic library from a waste water treatment plant yields a novel alcohol/aldehyde dehydrogenase. Environ. Microbiol. 7, 1917–1926. Yu, W.H., Su, S.C., Lee, C.Y., 2008. A novel retrieval system for nearly complete microbial genomic fragments from soil samples. J. Microbiol. Methods 72, 197–205. Yu, Y., Breitbart, M., McNairnie, P., Rohwer, F., 2006. FastGroupII: A web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7, 57. Yuhong, Z., Shi, P., Liu, W., Meng, K., Bai, Y., Wang, G., Zhan, Z., Yao, B., 2009. Lipase diversity in glacier soil based on analysis of metagenomic DNA fragments and cell culture. J. Microbiol. Biotechnol. 19, 888–897. Yun, J., Kang, S., Park, S., Yoon, H., Kim, M.J., Heu, S., Ryu, S., 2004. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl. Environ. Microbiol. 70, 7229–7235. Zhang, J., Lin, S., Zeng, R., 2007. Cloning, expression, and characterization of a cold-adapted lipase gene from an antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp. 7195. J. Microbiol. Biotechnol. 17, 604–610. Zhang, J.W., Zeng, R.Y., 2008. Molecular cloning and expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium Pseudomonas sp. 7323. Mar. Biotechnol. 10, 612–621. Zhang, T., Han, W.J., Liu, Z.P., 2009. Gene cloning and characterization of a novel esterase from activated sludge metagenome. Microb. Cell. Fact. 8, 67. Zhou, J., Bruns, M.A., Tiedje, J.M., 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23381 | - |
dc.description.abstract | 廢水處理設施中之活性污泥含有複雜的微生物聚落。以BLASTN方法分析活性污泥中16S rRNA基因庫得知,大部分的細菌(90%)是屬於未培養者。因此,利用多源基因體學方式,從活性污泥樣品中篩選出新穎生物催化劑基因的機率將頗高。本研究採直接萃取法,將DNA從活性污泥樣品中分離純化,並利用質體系統建立多源基因庫。基因庫中重組質體之平均插入片段大小約5.1 kb。利用三丁酸甘油酯平板分析,總共發現12個具有脂解活性的株系,其篩選機率高達0.31%。經由分子分析,12個株系中含有16個可能的脂解基因ORFs,與資料庫的蛋白質序列比對分析後發現,大部分ORFs與最相近蛋白質之相同度介於28–55%。簡而言之,由本研究結果得知,活性污泥為一個可從中篩選新穎脂解基因之理想生物資源。由於其中兩個酯酶基因est6與est13在胺基酸序列上具有高新穎性,因此進行深入的研究分析。est6基因長729 bp可轉譯出242個胺基酸的蛋白質稱為Est6。而est13基因長1326 bp可轉譯出441個胺基酸的蛋白質稱為Est13。經BLASTP比對分析,大部分與Est6和Est13相近的蛋白質都是未經特性分析,且從微生物全基因組定序資料所推測轉譯出來的。從多重序列分析與類緣遺傳分析得知,Est6是屬於第六類之脂解酵素,Est13則屬於第二類脂解酵素之新成員。est6與est13基因可在大腸桿菌中表現,且所表現出來的可溶性產物可藉由親和性管柱純化成無多餘標籤的同質狀態酵素。純化的Est6不管是溶在pH 7或pH 8緩衝液中,皆以單體的狀態存在並具活性。以分光光度分析法測試,Est6對受質具有明顯的位置選擇性。然純化的Est13溶在pH 8緩衝液中,則以12倍體的狀態存在並具活性。Est6在pH 8和45°C狀態下具有最佳的活性表現;Est13則在pH 8和35°C狀態下,具有最佳的活性表現,且其在5-20°C低溫範圍內具有45-72%最大活性。此兩種酯酶在廣大的溫度與pH範圍活性穩定,且在有機溶劑、金屬離子和清潔劑環境中具有活性。綜而言之,兩種酯酶皆具有值得注意的生化特性,因此具有潛力可被開發以應用於生物技術產業。 | zh_TW |
dc.description.abstract | Activated sludge in a swine wastewater treatment facility comprises a complicated microbiological community. Based on BLASTN analysis of cloned 16S rRNA genes, we found that most of these communities (90%) were of uncultivated bacteria. It is highly possible that we may to discover new biocatalyst genes from activated sludge samples collected from such facilities using the metagenomic approach. The metagenomic library was constructed using a plasmid vector and DNA extracted directly from samples of activated sludge. The average insert size was approximately 5.1 kb. A total of 12 unique and lipolytic clones were obtained using the tributyrin plate assay. The rate of discovering lipolytic clones in this study was as high as 0.31%. Molecular analysis revealed that most of the 16 putative lipolytic enzymes showed 28–55% identity with non-redundant protein sequences in the database. Briefly, our study demonstrated that activated sludge was an ideal bioresource for isolating new lipolytic enzymes. Two esterase genes est6 and est13 were studied in depth for their highly novel amino acid sequences compared to the database. The est6 gene with 729-bp DNA encoded a 242-amino acid protein (designated Est6), and the est13 gene with 1326-bp DNA encodes a 441-amino acid protein (designated Est6). Most of the closely related proteins of both esterases were uncharacterized and conceptually translated from whole genome sequencing data of microorganisms. Multiple sequence alignments and phylogenetic analysis of Est6 and Est13 showed that Est6 and Est13 belonged to family VI and family II esterases/lipases, respectively. In addition, both esterase genes could be over expressed in their soluble form in Escherichia coli and then purified to a tag-free, homogeneous form by affinity chromatography. The purified Est6 in pH 7.0 or pH 8.0 buffers was active as a monomer, but the purified Est13 in Tris–HCl buffer (pH 8.0) was active as a dodecamer. Est6 showed significant regioselectivity in spectrophotometric analysis. The optimum temperature and pH for Est6 and Est13 were pH 8.0, 45°C, and pH 8.0, 35°C, respectively, when using p-nitrophenyl acetate as a substrate. In particular, the Est13 esterase was active with 45%-72% of maximal activity across low temperature ranges of 5°C-20°C. Both esterases were stable over wide temperature and pH ranges, and they exhibited activity in the presence of organic solvents, cations, or detergents. Because Est6 and Est13 possess noteworthy properties, they have the potential to be developed for biotechnological applications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:00:11Z (GMT). No. of bitstreams: 1 ntu-99-D92623006-1.pdf: 3325090 bytes, checksum: 94bb622680a550c83ef4bc46106db17c (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | Certificate (Chinese) i
Acknowledgements (Chinese) ii Abstract (Chinese) iii Abstract iv Table of Contents vi List of Tables ix List of Figures x Chapter 1 Literature review 1 1.1 Microbial diversity 2 1.2 Metagenomics 3 1.2.1 Metagenomic DNA extraction 3 1.2.2 Library construction 4 1.2.3 Activity based screening 5 1.2.4 Sequence-based screening 6 1.3 Activated sludge 7 1.4 Lipolytic enzymes 10 1.5 Research objective 12 Chapter 2 Isolation of new lipolytic genes from activated sludge metagenome 18 2.1 Abstract 19 2.2 Introduction 19 2.3 Materials and methods 22 2.3.1 Bacterial strains, plasmids, and growth conditions 22 2.3.2 Sample collection 23 2.3.3 DNA extraction and purification 23 2.3.4 Generation and analysis of 16S rRNA gene clone library 24 2.3.5 Metagenomic library construction and lipolytic clone screening 25 2.3.6 Evaluation of insert size of metagenomic library 26 2.3.7 Plasmid sequencing and ORF analysis 26 2.3.8 Phylogenetic analysis 26 2.3.9 Cloning, expression, and purification of putative lipolytic enzymes 27 2.3.10 SDS-PAGE electrophoresis 29 2.3.11 Nucleotide sequence accession number 29 2.4 Results 29 2.4.1 Construction and characterization of a metagenomic library from activated sludge 29 2.4.2 Bacterial diversity of activated sludge 30 2.4.3 Functional screening of lipolytic clones from metagenomic library 31 2.4.4 Molecular analysis of lipolytic clones 32 2.4.5 Electrophoresis analysis 34 2.5 Discussion 34 Chapter 3 Expression, purification, and characterization of a new family VI esterase Est6…….….…..51 3.1 Abstract 52 3.2 Introduction 53 3.3 Materials and methods 54 3.3.1 Bacterial strains and plasmids 54 3.3.2 General DNA manipulations 55 3.3.3 Sequence and phylogenetic analysis 55 3.3.4 Cloning, expression, and purification of Est6 56 3.3.5 Electrophoresis and zymographic analysis 58 3.3.6 Substrate specificity measured using p-nitrophenyl esters 58 3.3.7 Influence of pH and temperature 59 3.3.8 Effects of organic solvents, detergents, metal ions, chelators, inhibitors, and NaCl 60 3.3.9 Positional specificity assay 61 3.4 Results 62 3.4.1 Molecular analysis of the new esterase gene est6 62 3.4.2 Over-expression and purification of Est6 63 3.4.3 Activity of Est6 on short-chain fatty acid substrates 64 3.4.4 Influence of pH and temperature on Est6 activity and stability 64 3.4.5 Effect of various compounds on the activity of Est6 65 3.4.6 Positional specificity of Est6 66 3.5 Discussion 66 Chapter 4 Expression, purification, and characterization of a novel GDSL-like esterase Est13 77 4.1 Abstract 78 4.2 Introduction 79 4.3 Materials and methods 81 4.3.1 Bacterial strains and plasmids 81 4.3.2 General DNA manipulations 81 4.3.3 Sequence and phylogenetic analysis 81 4.3.4 Cloning, expression, and purification of Est13 82 4.3.5 SDS-PAGE and Electrophoresis and zymographic analysis 84 4.3.6 Substrate specificity measured using p-nitrophenyl esters 84 4.3.7 Influence of pH and temperature 85 4.3.8 Effects of organic solvents, detergents, metal ions, chelator, and inhibitor 86 4.4 Results 87 4.4.1 Molecular analysis of the new esterase gene est13 87 4.4.2 Over-expression and purification of Est13 88 4.4.3 Activity of Est13 on short-chain fatty acid substrates 89 4.4.4 Influence of pH and temperature on Est13 activity and stability 90 4.4.5 Effect of various compounds on the activity of Est13 90 4.5 Discussion 91 Chapter 5 Conclusions 103 References 106 Appendix Published article 114 | |
dc.language.iso | en | |
dc.title | 活性污泥多源基因體中新穎酯酶基因之探勘 | zh_TW |
dc.title | Prospecting for Novel Esterase Genes in Activated Sludge Metagenome | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 曾顯雄,黃健雄,吳明哲,朱文深 | |
dc.subject.keyword | 脂解基因,活性污泥,多源基因體,第六類酯酶,位置選擇性,第二類酯酶,類GDSL酯酶, | zh_TW |
dc.subject.keyword | Lipolytic genes,Activated sludge,Metagenome,Family VI esterases,Regioselectivity,Family II esterases,GDSL-like esterases, | en |
dc.relation.page | 114 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2010-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 3.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。