請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23380
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 范光照 | |
dc.contributor.author | Bor-Cheng Lee | en |
dc.contributor.author | 李博正 | zh_TW |
dc.date.accessioned | 2021-06-08T05:00:10Z | - |
dc.date.copyright | 2010-08-18 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-17 | |
dc.identifier.citation | 參考文獻
【1】 S. Ishii, T. Nishimura, K. Ishizuka, and M. Tsukiji, “Optical type encoder including diffraction grating for producing interference fringes that are processed to measure displacement.” U.S. Patent No. 4,912,320, 1990. 【2】 T. Nishimura, Y. Kubota, S. Ishii, S. Ishizuka, and M. Tsukiji, “Encoder incorporating a displaceable diffraction grating,” U.S. Patent No. 5,038,032, 1991. 【3】 K. Ishizuka, and T. Nishimura, “Encoder with high resolving power and accuracy,” U.S. Patent No. 5,4164,085, 1992. 【4】 W. Huber, and M. Allgauer, “Interferential linear and angular displacement apparatus having scanning and scale grating respectively greater than and less than the source wavelength,” U.S. Patent No. 5,424,833, 1995. 【5】 蘇宗德,”超精密繞射干涉接觸式探頭及系統之研製”,國立台灣大學機械工程學研究所碩士論文,1999。 【6】 Y. Jourlin*, J. Jay, and O. Parriaux, “Compact diffractive interferometric displacement sensor in reflection,” Prec. Eng., Vol. 26, pp.1-6, 2002. 【7】 吳乾埼,”繞射式雷射光學尺之研製”,國立台灣大學應用力學研究所博士論文,2001。 【8】 潘政晟,”自校準繞射式雷射光學尺之設計與實驗”,國立台灣大學應用力學研究所碩士論文,2002。 【9】 沈欣懋,”高對位公差之微小化雷射繞射式光學尺的研製”,國立台灣大學機械工程學系研究所碩士論文,2005 【10】 李佰,”簡易型高對位公差之雷射繞射式光學尺之研製”,國立台灣大學機械工程學系研究所碩士論文,2007 【11】 HEIDENHAIN” Exposed Linear Encoders” pp.36-37, February 2010. 【12】 S. Ichikawa, M. Suzuki, W. Ishibashi, and S. Kuroki, “Two-dimensional optical encoder with three gratings in each dimension,” U.S. Patent No. 5,204,524, 1993. 【13】 高清芬、張中柱、李世光,“一種共軛光路式二維位移量測方法”,中華民國發明專利第479,125號,2002。 【14】 W.Gao, S Dejima, S Kiyono, A dual-mode surface encoder for position measurement ,sensors and actuators A, Vol. 117/1, pp.95-102, 2005. 【15】 高清芬、張中柱、林慶芳,“二維位移量之量測裝置”,中華民國I224351,2004。 【16】 林慶芳、高清芬、張中柱,“二維尺讀頭裝置”,中華民國I230779,2005。 【17】 W.Gao, A. Kimura,A Three-axis Displacement Sensor with Nanometric Resolution,Annals of the CIRP, Vol. 56/1, pp.529-532, 2007. 【18】 A. Kimura, W.Gao, Y. Arai, Z Lijiang, Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness,Precision Engineering A, Vol. 34/1, pp.145-155, 2010. 【19】 P. L. M. Heydemann, “Determination and correction of quadrature correction of fringe measurement errors in interferometers,” Appl. Opt., No. 19, pp. 3382-3384, October 1981. 【20】 J. R. R. Mayer, “High resolution of rotary encoder analog quadrature signals,” IEEE Trans. Insrum. Meas., Vol. 43, No. 3, pp. 82-89, Jun. 1994. 【21】 T. Emura, “A high-resolution interpolator for incremental encoders based on the quadrature PLL method,” IEEE Trans. Indus. elec., Vol. 47, No. 1, pp. 84-90, Feb. 2000. 【22】 T. Eom, J. Kin, and K. Jeong, “The dynamic compensation of nonlinearity in a homodyne laser interferometer,” Meas. Sci. Technol., Vol. 12, pp. 1-5, 2001. 【23】 王因明,”光學計量儀器設計”,機械工業出版社,1989。 【24】 F. L. Petrotti, and L.S. Petrotti, “Introduction to Optics,” 2nd Ed., Prentice-Hall, Englewood Cliffs, 1996. 【25】 E. Hecht, “Optics”, Addison-Wesley, 1998. 【26】 范光照、張郭益,”精密量測”,高立圖書有限公司,2003。 【27】 Kenneth S. Krane, “MODERN PHYSICS”, second edition, P.36,Copyright © 1996, by John Wiley & Sons, Inc. 【28】 原著:A. P. French , 譯者:林爾康 , 魏元勳 ,「狹義相對論」,P.134-P.147 , 財團法人徐氏基金會 , 1996 年。 【29】 L. E. Drain, “The Laser Doppler Technique”, P.38-P.42, P.46-P.47,Copyright © 1980 by John Wiley & Sons Ltd. 【30】 Grant R. Fowles, “Introduction to Modern Optics”, P.15-P.17,P.310-P.312, Copyright © 1975, by Holt, Rinehart and Winston, Inc. 【31】 孫長庫、葉聲華,”激光測量技術”,天津大學出版社,2001。 【32】 張良知,”實用光干涉學”,工業技術研究院,2003。 【33】 孫曉明,”半導體激光干涉理論及應用”,國防工業出版社,2000。 【34】 吳錦源,”創新雷射都卜勒振動/干涉儀之研治-高性能微光機電系統之量測”,國立台灣大學應用力學研究所博士論文,1997。 【35】 M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc, Vol. 5, pp. 12, 1995. 【36】 K.C. Fan, C.D. Su, and J.I. Mou, “Error analysis for a diffraction grating interferometric stylus probing system,” Meas. Sci. Technol., Vol. 12, pp. 482-490, 2001. 【37】 R. Guenther, “Modern Optics,” John Wiley & Sons, 1990 【38】 ORA, “LightTools Users Guide, ORA Manual,” 2000. 【39】 Agilent, “Quadrature Decoder/Counter Interface ICs,” Agilent data sheet, 2003. 【40】 傅毓芬,”實用性相位信號編碼與解碼技術的研究”,師大書苑, 1997。 【41】 M. A. Vona, “Metrology Techniques for Compound Rotary Linear Motion,” Master Thesis in Massachusetts Institute of Technology, 2001. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23380 | - |
dc.description.abstract | 摘要
現今許多奈米加工與量測系統都有賴於奈米位移量測技術;然而,一般具長行程奈米解析度的感測器不僅昂貴還容易受到環境的影響,於是感測器的簡易化、低成本、高解析、不易受環境影響等是量測科技中重要的方向。 目前已發展出許多一維具有奈米解析度的感測器,但二維奈米解析度的感測器仍然稀少而且複雜;傳統的二維量測系統多由兩組一維量測系統組合而成,兩個一維量測系統的組裝對位將造成使用上的障礙,並且造成量測誤差的產生。綜合以上兩點,發展具高解析與準度之二維感測器是當前量測技術的重要課題。 本論文發展一種新的平面雷射繞射式光學尺(PDGI),以平面光柵同時獲得二維的移動,並克服組裝對位上的問題。其為一種光柵干涉儀,原理是利用都卜勒效應,將量測之基準由雷射波長轉換為光柵節距,使環境所造成之量測誤差減小,最後將光干涉訊號轉換成電壓訊號,經過解碼得知實際位移至1nm解析度。 光學架構上,本光學尺採用偏極光學元件設計特殊的光路,能大幅提高光柵與光學頭間之對位公差同時簡化光學系統,並獲得四組正交光學干涉訊號。另一方面,使用光柵模擬軟體模擬平面光柵,進而完成平面光柵的製作與驗證。利用光學架構上的特性設計了以平面光柵為轉換基準的高度量測系統。並在光學分析軟體的模擬下,確認了能有效地提高對位公差。在訊號解析上,採用NI DAQ卡配合LabVIEW,訊號修正後以計數與細分計算出位移。 完成之平面雷射繞射式光學尺(PDGI)之尺寸為40×40×45mm3。經德國SIOS NMM-1奈米定位平台校驗後,在25mm×25mm×5mm量測範圍內,兩軸最大誤差值分別在17nm,-20nm以下,量測重複性在15nm,11nm以下;高度軸最大誤差值在-20nm以下,量測重複性在12nm以下。 | zh_TW |
dc.description.abstract | Abstract
Nowadays, many nano manufacturing and measuring systems depend on the metrology in the nanometer displacement. However, sensors with long measuring distance and nano-scale resolution are not only expensive, but easily affected by the unstable environment. Thus, to develop sensors that have compact, low cost, high resolution, and low environment effect is becoming more indispensable. Many 1D sensors with nano-scale resolution was been developed at present, but 2D sensors with nano-scale resolution are still scarce and complicated. Traditional 2D sensor use a pair of 1D sensors in crossed construction. The alignment tolerance among two 1D sensors become adoption barriers, and caused the metrology errors. To sum up, developed a 2D sensors with high resolution and accuracy is important topic of metrology currently. In this thesis a novel planar diffraction grating interferometer (PDGI) is developed. Obtain 2D displacement with planar grating, and overcome alignment problem. It is a kind of grating interferometer which is based on the principle of light diffraction and Doppler Effect , and take the grating pitch as the length unit, instead of laser wavelength. It can reduce errors caused by the unstable environment. The interference signals are finally converted into voltage signals, and are decoded to the displacement with resolution of 1 nm. In the optical system, the PDGI adopts polarized optical components to design special optical path that improved the head-to-scale tolerance substantially and simplifies the optical system, and obtain four interference quadrature signals. On the other hand, simulate planar grating by the grating analysis software, and then make one to put to the test. Use the feature of optical system to design Z-axis measure system which is based on the planar grating. And the high head-to-scale alignment tolerance is confirmed by the simulation of optics analysis software. In the signal processing, by combing NI DAQ and LabView, after the signal correction the displacement is calculated by pulse count and waveform interpolation. The outcome size of PDGI is 40×40×45mm3. The Germany SIOS NMM-1 nano-stage was adopted as the calibration tool. Within the measuring distance of 25mm×25mm×5mm, the three axes measurement accuracy is below 17 nm, -20 nm and -20 nm and the measurement repeatability is below 15 nm, 11 nm and 12 nm. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:00:10Z (GMT). No. of bitstreams: 1 ntu-99-R97522714-1.pdf: 2496015 bytes, checksum: 43c896d04424c6ffe801de449d3f1d29 (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 目錄
摘要.......................................................I Abstract..................................................II 目錄.....................................................III 圖目錄.....................................................V 表目錄....................................................IX 第ㄧ章 緒論................................................1 1-1研究動機與目的..........................................1 1-2參考文獻回顧............................................4 1-3研究方法與內容概要.....................................15 第二章 平面光柵干涉儀的量測原理...........................16 2-1 前言..................................................16 2-2 平面光柵繞射原理......................................16 2-3 都卜勒效應............................................20 2-3-1 光學的都卜勒效應....................................20 2-3-2 雙重都卜勒效應......................................23 2-3-3 移動繞射光柵的都卜勒頻移效應........................24 2-3-4 二維光柵的都卜勒頻移效應............................25 2-4 量測原理..............................................26 2-4-1 干涉原理............................................26 2-4-2 光干涉之行為與成立條件..............................28 2-4-3 差頻干涉............................................32 2-4-4 光柵干涉儀的位移轉換原理............................33 第三章 光學頭系統設計.....................................34 3-1 前言..................................................34 3-2光路設計原理...........................................34 3-2-1 設計概念............................................34 3-2-2 偏極光學理論–瓊司向量及瓊司矩陣....................36 3-3 光路架構..............................................38 3-3-1 光路系統簡述........................................38 3-3-2 光路理論推導........................................40 3-3-3 光干涉對比度討論....................................43 3-4平面光柵設計模擬與製作.................................44 3-4-1平面光柵模擬.........................................44 3-4-2平面光柵製作.........................................46 3-4-3平面光柵驗證.........................................49 3-5 高度軸量測設計........................................49 3-6 光學系統安裝機構設計..................................50 第四章 公差分析...........................................52 4-1 前言..................................................52 4-2 光學頭與光柵對位公差分析..............................52 4-3 光學頭元件定位公差分析................................59 4-3-1 元件位置公差........................................59 4-3-2 元件角度公差........................................62 4-3-3 Q1、Q2快軸角度對量測訊號的影響.....................63 4-3-4 Q3快軸角度對量測訊號的影響.........................64 第五章 訊號解析...........................................65 5-1 前言..................................................65 5-2 電路設計..............................................65 5-3 PDGI信號即時修正......................................67 5-4 訊號之計數及細分割....................................69 5-4-1 分向法及計數程式....................................69 5-4-2 細分割程式..........................................71 第六章 實驗結果...........................................72 6-1 前言..................................................72 6-2 光學尺元件調校及組裝步驟..............................72 6-4 光學尺系統之量測重複性實驗............................77 6-5 誤差來源分析..........................................94 第七章 結論與未來展望.....................................95 7-1 結論..................................................95 7-2 未來展望..............................................96 參考文獻..................................................98 | |
dc.language.iso | zh-TW | |
dc.title | 一種高對位公差之平面雷射繞射式光學尺之研製 | zh_TW |
dc.title | Development of a Planar Laser Diffraction Encoder with High Alignment Tolerance | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 絲國一,朱自良 | |
dc.subject.keyword | 雷射光學尺,平面光柵,干涉,繞射,細分, | zh_TW |
dc.subject.keyword | Laser optical encoder,Planar grating,Interference,Diffraction,Interpolation, | en |
dc.relation.page | 100 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2010-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 2.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。