Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2336
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭智馨(Chih-Hsin Cheng)
dc.contributor.authorPei-Chen Leeen
dc.contributor.author李咅蓁zh_TW
dc.date.accessioned2021-05-13T06:39:15Z-
dc.date.available2017-09-01
dc.date.available2021-05-13T06:39:15Z-
dc.date.copyright2017-08-24
dc.date.issued2017
dc.date.submitted2017-08-15
dc.identifier.citation行政院農業委員會水土保持局 (2002) 九十一年度行政院農業委員會水土保持局年報。台北。
交通部中央氣象局 (2008) 地震百問。交通部中央氣象局。台北。
余建勳 (2004) 九份二山地區岩生植群與樹種萌蘗更新之研究。臺灣大學生態學與演化生物學研究所碩士論文。
吳秋雅 (2007) 九份二山山崩前後構造地形特徵及坡體破壞機制探討。臺灣大學地質科學研究所碩士論文。
林文賜、馮梓琁、周文杰、林昭遠、黃碧慧 (2007) 崩塌地對生態環境影響之評估-以九份二山崩塌地為例。明道學術論壇 3: 27-48。
林俐玲、蔡義誌、王永琦、馮美禎 (2009) 崩塌地植生復育與土壤性質之調查研究。坡地防災學報 8: 25-39。
洪如江、林美聆、陳天健、王國隆 (2000) 921集集大地震相關的坡地災害、坡地破壞特性與案例分析。地工技術 17-32。
陳明杰、曾俊偉、周明德 (2004) 應用食鹽水檢層法於九份二山崩塌地地下水特性之研究。中華林學季刊 37: 269-281。
陳聯光、游繁結、劉格非、林聖琪、柯明淳 (2009) 莫拉克重大崩塌災害歷程探討。中華水土保持學報 40: 329-337。
廖軒吾 (2000) 集集地震誘發之山崩。國立中央大學地球物理研究所碩士論文。
鄭世楠和葉永田 (2004) 台灣百年來的大地震。科學發展 373: 68-75。
Abbasi, M. K., Zafar, M., and Khan, S. R. (2007). Influence of different land-cover types on the changes of selected soil properties in the mountain region of Rawalakot Azad Jammu and Kashmir. Nutrient Cycling in Agroecosystems, 78, 97-110.
Adams, M. A., Attiwill, P. M., and Polglase, P. J. (1989). Availability of nitrogen and phosphorus in forest soils in northeastern Tasmania. Biology and Fertility of Soils, 8, 212-218.
Aranibar, J. N., Otter, L., Macko, S. A., Feral, C. J., Epstein, H. E., Dowty, P. R., Eckardt, F., Shugart, H. H., and Swap, R. J. (2004). Nitrogen cycling in the soil–plant system along a precipitation gradient in the Kalahari sands. Global Change Biology, 10, 359-373.
Armentrout, S. M., and Pieper, R. D. (1988). Plant distribution surrounding Rocky Mountain pinyon pine and oneseed juniper in south-central New Mexico. Journal of Range Management, 139-143.
Black, A. S., and Waring, S. A. (1978). Nitrate determination in an oxisol using K2SO4 extraction and the nitrate-specific ion electrode. Plant and Soil, 49, 207-211.
Breshears, D. D., Nyhan, J. W., Heil, C. E., and Wilcox, B. P. (1998). Effects of woody plants on microclimate in a semiarid woodland: soil temperature and evaporation in canopy and intercanopy patches. International Journal of Plant Sciences, 159, 1010-1017.
Carter, M. R., and Gregorich, E. G. (1993). Soil sampling and methods of analysis. CRC Press, Florida, USA.
Chang, K. J., Taboada, A., and Chan, Y. C. (2005). Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake. Geomorphology, 71, 293-309.
Cheng, C. H., Hsiao, S. C., Huang, Y. S., Hung, C. Y., Pai, C. W., Chen, C. P. and Menyailo, O. V. (2016). Landslide-induced changes of soil physicochemical properties in Xitou, Central Taiwan. Geoderma, 265, 187-195.
Choi, Y., Wang, Y., Hsieh, Y. P., and Robinson, L. (2001). Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes. Global Biogeochemical Cycles, 15, 311-319.
Cross, A. F., and Schlesinger, W. H. (1995). A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 64, 197-214.
Cruden, D. M., and Varnes, D. J. (1996). Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation Research Board Special Report, 247.
Curtis, R. O., and Post, B. W. (1964). Estimating bulk density from organic-matter content in some Vermont forest soils. Soil Science Society of America Journal, 28, 285-286.
Dhakal, G., Yoneda, T., Kato, M., and Kaneko, K. (2002). Slake durability and mineralogical properties of some pyroclastic and sedimentary rocks. Engineering Geology, 65, 31-45.
Deines, P. (1980). The isotopic composition of reduced organic carbon. Handbook of Environmental Isotope Geochemistry, 329-406.
Dobermann, A., George, T., and Thevs, N. (2002). Phosphorus fertilizer effects on soil phosphorus pools in acid upland soils. Soil Science Society of America Journal, 66, 652-660.
Dubois, M. R., Chappelka, A. H., Robbins, E., Somers, G., and Baker, K. (2000). Tree shelters and weed control: effects on protection, survival and growth of cherrybark oak seedlings planted on a cutover site. New Forests, 20, 105-118.
Elias, R., and Dias, E. (2009). Effects of landslides on the mountain vegetation of Flores Island, Azores. Journal of Vegetation Science, 20, 706-717.
Epstein, H. E., Lauenroth, W. K., Burke, I. C., and Coffin, D. P. (1997). Productivity patterns of C3 and C4 functional types in the US Great Plains. Ecology, 78, 722-731.
Finzi, A. C. (2009). Decades of atmospheric deposition have not resulted in widespread phosphorus limitation or saturation of tree demand for nitrogen in southern New England. Biogeochemistry, 92, 217-229.
Geertsema, M., and Pojar, J. J. (2007). Influence of landslides on biophysical diversity—a perspective from British Columbia. Geomorphology, 89, 55-69.
Guariguata, M. R. (1990). Landslide disturbance and forest regeneration in the upper Luquillo Mountains of Puerto Rico. Ecology, 78, 814-832.
Guo, F., Yost, R. S., Hue, N. V., Evensen, C. I., and Silva, J. A. (2000). Changes in phosphorus fractions in soils under intensive plant growth. Soil Science Society of America Journal, 64, 1681-1689.
Harris, R. F. (1981). Effect of water potential on microbial growth and activity. Water Potential Relations in Soil Microbiology, 23-95.
Hedley, M. J., Stewart, J. W. B., and Chauhan, B. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46, 970-976.
Huang, C. S., Chen, M. M., and Hsu, M. I. (2002). A preliminary report on the Chiufenershan landslide triggered by the 921 Chichi earthquake in Nantou, central Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 13, 387-395.
Jobbágy, E. G., and Jackson, R. B. (2003). Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry, 64, 205-229.
Keefer, D. K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95, 406-421.
Krämer, S., and Green, D. M. (2000). Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry, 32, 179-188.
Kuhns, M. R., Garrett, H. E., Teskey, R. O., and Hinckley, T. M. (1985). Root growth of black walnut trees related to soil temperature, soil water potential, and leaf water potential. Forest Science, 31, 617-629.
Larsen, M. C., and Simon, A. (1993). A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler. Series A. Physical Geography, 13-23.
Murphy, J. and Riley, J. P. (1962). A modified single solution method for the determination of phosphates in natural water. Analytica Chimica Acta, 27, 31–36.
Midwood, A. J., and Boutton, T. W. (1998). Soil carbonate decomposition by acid has little effect on δ 13 C of organic matter. Soil Biology and Biochemistry, 30, 1301-1307.
Malhi, S. S., Nyborg, M., and Harapiak, J. T. (1998). Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay. Soil and Tillage Research, 48, 91-101.
Nakaji, T., Fukami, M., Dokiya, Y., and Izuta, T. (2001). Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees-Structure and Function, 15, 453-461.
Newman, E. I. (1966). Relationship between root growth of flax (Linum usitatissimum) and soil water potential. New Phytologist, 65, 273-283.
Niinemets, Ü., and Kull, K. (2005). Co-limitation of plant primary productivity by nitrogen and phosphorus in a species-rich wooded meadow on calcareous soils. Acta Oecologica, 28, 345-356.
Ollinger, S. V., Smith, M. L., Martin, M. E., Hallett, R. A., Goodale, C. L., and Aber, J. D. (2002). Regional variation in foliar chemistry and N cycling among forests of diverse history and composition. Ecology, 83, 339-355.
Perie, C., and Ouimet, R. (2008). Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science, 88, 315-325.
Pregitzer, K. S., King, J. S., Burton, A. J., and Brown, S. E. (2000). Responses of tree fine roots to temperature. The New Phytologist, 147, 105-115.
Prietzel, J., Dümig, A., Wu, Y., Zhou, J., and Klysubun, W. (2013). Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences. Geochimica et Cosmochimica Acta, 108, 154-171.
Qi, M. Q., and Redmann, R. E. (1993). Seed germination and seedling survival of C3 and C4 grasses under water stress. Journal of Arid Environments, 24, 277-285.
Reichert, J. M., Suzuki, L. E. A. S., Reinert, D. J., Horn, R., and Håkansson, I. (2009). Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil and Tillage Research, 102, 242-254.
Richards, L. A., and Wadleigh, C. H. (1952). Soil water and plant growth. Soil Physical Conditions and Plant Growth, 2, 74-253.
Ross, D. J., Tate, K. R., Scott, N. A., and Feltham, C. W. (1999). Land-use change: effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems. Soil Biology and Biochemistry, 31, 803-813.
Robertson, G. P., and Vitousek, P. M. (1981). Nitrification potentials in primary and secondaryary succession. Ecology, 62, 376-386.
Salem, H. M., Valero, C., Muñoz, M. Á., Rodríguez, M. G., and Silva, L. L. (2015). Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma, 237, 60-70.
Santiago, L. S., Wright, S. J., Harms, K. E., Yavitt, J. B., Korine, C., Garcia, M. N., and Turner, B. L. (2012). Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. Journal of Ecology, 100, 309-316.
Schrumpf, M., G. Guggenberger, C. Valarezo, W. Zech. (2001) Tropical montane rain forest soils. Development and nutrient status along an altitudinal gradient in the South Ecuadorian Andes. Erde 132, 43-59.
Shiels, A. B., West, C. A., Weiss, L., Klawinski, P. D., and Walker, L. R. (2008). Soil factors predict initial plant colonization on Puerto Rican landslides. Plant Ecology, 195, 165-178.
Shin, T. C., and Teng, T. L. (2001). An overview of the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 91, 895-913.
Shinners, K. J., Nelson, W. S., and Wang, R. (1994). Effects of residue-free band width on soil temperature and water content. Transactions of the ASAE, 37, 39-49.
Singh, K. P., Mandal, T. N., and Tripathi, S. K. (2001). Patterns of restoration of soil physciochemical properties and microbial biomass in different landslide sites in the sal forest ecosystem of Nepal Himalaya. Ecological Engineering,17, 385-401.
Sparling, G., Ross, D., Trustrum, N., Arnold, G., West, A., Speir, T., and Schipper, L. (2003). Recovery of topsoil characteristics after landslip erosion in dry hill country of New Zealand, and a test of the space-for-time hypothesis. Soil Biology and Biochemistry, 35, 1575-1586.
Turner, B. L., Yavitt, J. B., Harms, K. E., Garcia, M. N., Romero, T. E., and Wright, S. J. (2013). Seasonal changes and treatment effects on soil inorganic nutrients following a decade of fertilizer addition in a lowland tropical forest. Soil Science Society of America Journal, 77, 1357-1369.
Vašák, F., Černý, J., Buráňová, Š., Kulhanek, M., and Balík, J. (2015). Soil pH changes in long-term field experiments with different fertilizing systems. Soil and Water Research, 10, 19-23.
Walbridge, M. R. (1991). Phosphorus availability in acid organic soils of the lower North Carolina coastal plain. Ecology, 72, 2083-2100.
Walker,L.R., Zarin,D.J., Fetcher,N., Myster,R.W., Johnson,A.H. (1996). Ecosystem development and plant succession on landslides in the Caribbean. Biotropica, 28, 566-576.
Went, F. W. (1953). The effect of temperature on plant growth. Annual Review of Plant Physiology, 4, 347-362.
Wilcke, W., Valladarez, H., Stoyan, R., Yasin, S., Valarezo, C., and Zech, W. (2003). Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. Catena, 53, 79-95.
Williams, B. L., Shand, C. A., Hill, M., O'Hara, C., Smith, S., and Young, M. E. (1995). A procedure for the simultaneous oxidation of total soluble nitrogen and phosphorus in extracts of fresh and fumigated soils and litters.Communications in Soil Science and Plant Analysis, 26, 91-106.
Yin, Y., Wang, F., and Sun, P. (2009). Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides, 6, 139-152.
Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich, W. E. (2006). Spatial patterns of soil organic carbon on hillslopes: integrating geomorphic processes and the biological C cycle. Geoderma, 130, 47-65.
Zarin, D. J., and Johnson, A. H. (1995). Base saturation, nutrient cation, and organic matter increases during early pedogenesis on landslide scars in the Luquillo Experimental Forest, Puerto Rico. Geoderma, 65, 317-330.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2336-
dc.description.abstract土壤性質、養分型態與森林生態受到崩塌影響甚大,土壤性質的改變不只受到崩塌過程 (堆積或崩落) 與規模的影響,亦會因崩塌後植生演替的差異,而造成崩塌後土壤性質在崩塌地區有著極大的空間異質性。本研究調查九份二山崩塌後,崩塌過程 (堆積或崩落) 與植生演替對土壤性質與養分型態的影響,並與鄰近的非崩塌地做比較。我們依崩塌過程的不同,先將樣區分為3處(土石移動、土石堆積與非崩塌樣區),再依植生不同,總共區分為6個採樣樣區,包括 (1) 土石移動無草區 (2) 土石移動有草區 (3) 土石移動芒草區 (4) 次生林堆積區 (5) 人工林堆積區與 (6) 非崩塌樣區。
結果顯示土石移動無草區、土石移動有草區和土石移動芒草區的土壤性質與養分,較次生林堆積區、人工林堆積區與非崩塌樣區等,有較高的含石率、總體密度、pH值,較低的有機碳、總氮、氮礦化速率和CEC,其中又以土石移動無草區的測值呈現最高或最低,顯示該區域土壤化育明顯受崩塌干擾的影響。磷分層萃取的結果顯示土石移動處與堆積處總磷含量皆低於非崩塌樣區,而非崩塌樣區的可利用磷 (resin-P、NaHCO3-Pi和NaHCO3-Po) 含量也最多,土石移動處則以HCl-P佔總磷百分比最高,土石堆積處以Residual-P和NaOH-P比例最高,皆為植物不易吸收利用的磷型態。由苗圃施肥試驗,土石移動處與堆積處的土壤中,磷並非植物生長的限制因子,然而NP肥的施用可以促進苗木生長。另外,由現地水分勢能的監測得知,次生林堆積區與土石移動芒草區表層土壤的水分勢能在一年的觀測中皆能維持在- 1.5 MPa以上,而土石移動無草區與土石移動有草區在冬天枯水期時,水分勢能低於- 1.5 MPa,不適宜植物生長。綜觀實驗結果,土石移動無草區位於演替初期階段,土壤化育程度最低,其次為土石移動有草區與土石移動芒草區,次生林堆積區則因崩塌後有次生林生成,植物加速土壤化育,但部分的土壤性質與養分型態仍與非崩塌樣區呈顯著差異。因此崩塌造成的土壤性質與養分型態的改變,是影響土壤化育與植生生態的關鍵因子。
zh_TW
dc.description.abstractLandslides may exert immense impacts on soil properties, nutrient speciation and forest ecosystems. The impacts of landslides on soil properties not only vary with their movement type (deposition or removal) or scale but also the succeeding vegetation can have great contribution to spatial variation inside landslide. In this study, the effects of movement type (deposition or removal) and succeeding vegetation on soil properties and nutrient speciation inside the Chiufenershan landslide scar were evaluated. Landslide soil was also compared with the adjacent undisturbed soil. According to the movement type and vegetation, we divided soil samples into three main sites (removal, deposition and undisturbed sites). And then divided soil samples into six small sites, including (i) removal site without vegetation, REM-NG (ii) removal site with vegetation, REM-G1 (iii) removal site at a gentle slope with vegetation, REM-G2 (iv) deposition site with secondary forest, DEP-SEC (v) deposition site with plantation forest, DEP-PLA and (vi) Adjacent undisturbed sites, UND.
Our results indicated that soil properties and nutrient at removal sites (REM-NG, REM-G1 and REM-G2) had higher bulk density, rock fragment content and pH value, but less soil organic carbon, total nitrogen, CEC and N-mineralization rate than both deposition (DEP-SEC and DEP-PLA) and undisturbed (UND) sites. The soil properties without vegetation (REM-NG) even showed the extreme end compared to the soils with grass vegetation. The removal and deposition sites had similar total phosphorus concentrations, but were significantly less than that at the undisturbed sites (p < 0.05). Most of the phosphorous were HCl-P in the removal sites, Residual-P and NaOH-P in the deposition sites. Although the main phosphorus speciation in the removal and deposition sites were biologically unavailable, our results did not showed that P was the limiting nutrient for soil. However, applying both N and P could improve seedling growth. In addition, the long-term field monitoring data of soil water potential showed the deposition site (DEP-SEC) and the lower removal site (REM-G2) had water potential maintained above -1.5 MPa throughout the whole year. While the removal site without vegetation (REM-NG) and removal site with vegetation (REM-G1) had soil water potential lower than -1.5 MPa in winter, indicating that the adverse effects for both sites. Overall, the soil in removal sites without vegetation (REM-NG) showed its early stage of succession, and the soil weathering was less severe than removal sites with vegetation (REM-G1 and REM-G2). By contrast, the deposition sites had more advanced soil weathering, but the soil properties and nutrient speciation were still different from the undisturbed sites. Therefore, the Chiufenershan landslide has changed the soil properties and nutrient speciation, and it is speculated that these changes played important roles on soil and ecosystem development.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:39:15Z (GMT). No. of bitstreams: 1
ntu-106-R04625022-1.pdf: 5722853 bytes, checksum: 443b060212b6dd914bd2d603047d8a9d (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents謝誌 I
中文摘要 II
Abstract IV
圖目錄 VIII
表目錄 X
1. 前言 1
2. 材料方法 4
2.1 研究地點 4
2.2 土壤採集與實驗分析 14
2.2.1 物理性質 14
2.2.2 化學性質 16
2.2.3 養分型態 17
2.2.4 實驗樣區土壤溫度與水分勢能 (water potential) 長期監測 21
2.2.5 盆栽試驗 21
2.2.6 資料分析 23
3. 結果 24
3.1 物理性質 24
3.2 化學性質 28
3.3養分型態 32
3.4 實驗樣區土壤溫度與水分勢能 (water potential) 長期監測 40
3.5 盆栽試驗 43
4. 討論 47
4.1 物理性質 47
4.2 化學性質 49
4.3 養分型態 51
4.4 實驗樣區土壤溫度與水分勢能 (water potential) 長期監測 54
4.5 盆栽試驗 57
5. 結論 59
6. 參考文獻 60
附錄 68
dc.language.isozh-TW
dc.title九份二山崩塌地之土壤性質與養分型態zh_TW
dc.titleSoil properties and nutrient speciation
on the Chiufenershan landslide
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏江河,白創文
dc.subject.keyword九份二山,崩塌,土壤性質,演替,次生森林,磷,zh_TW
dc.subject.keywordChiufenernshan,landslide,soil properties,succession,secondary forest,phosphorus,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201703115
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf5.59 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved