請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23344
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳信銘 | |
dc.contributor.author | Yu-Ping Hsieh | en |
dc.contributor.author | 謝郁平 | zh_TW |
dc.date.accessioned | 2021-06-08T04:59:29Z | - |
dc.date.copyright | 2010-09-09 | |
dc.date.issued | 2010 | |
dc.date.submitted | 2010-08-18 | |
dc.identifier.citation | Benyamin, Y., Roustan, C., and Boyer, M. (1986). Anti-actin antibodies. Chemical modification allows the selective production of antibodies to the N-terminal region. J Immunol Methods 86, 21-29.
Brouty-Boye, D., Raux, H., Azzarone, B., Tamboise, A., Tamboise, E., Beranger, S., Magnien, V., Pihan, I., Zardi, L., and Israel, L. (1991). Fetal myofibroblast-like cells isolated from post-radiation fibrosis in human breast cancer. Int J Cancer 47, 697-702. Bulinski, J.C., Kumar, S., Titani, K., and Hauschka, S.D. (1983). Peptide antibody specific for the amino terminus of skeletal muscle alpha-actin. Proc Natl Acad Sci U S A 80, 1506-1510. Cheng, K., Yang, N., and Mahato, R.I. (2009). TGF-beta1 gene silencing for treating liver fibrosis. Mol Pharm 6, 772-779. Chiang, C.P., Huang, J.S., Wang, J.T., Liu, B.Y., Kuo, Y.S., Hahn, L.J., and Kuo, M.Y. (1999). Expression of p53 protein correlates with decreased survival in patients with areca quid chewing and smoking-associated oral squamous cell carcinomas in Taiwan. J Oral Pathol Med 28, 72-76. Chiu, C.J., Lee, W.C., Chiang, C.P., Hahn, L.J., Kuo, Y.S., and Chen, C.J. (2002). A scoring system for the early detection of oral submucous fibrosis based on a self-administered questionnaire. J Public Health Dent 62, 28-31. Cintorino, M., Bellizzi de Marco, E., Leoncini, P., Tripodi, S.A., Xu, L.J., Sappino, A.P., Schmitt-Graff, A., and Gabbiani, G. (1991). Expression of alpha-smooth-muscle actin in stromal cells of the uterine cervix during epithelial neoplastic changes. Int J Cancer 47, 843-846. Clement, S., Stouffs, M., Bettiol, E., Kampf, S., Krause, K.H., Chaponnier, C., and Jaconi, M. (2007). Expression and function of alpha-smooth muscle actin during embryonic-stem-cell-derived cardiomyocyte differentiation. J Cell Sci 120, 229-238. Cox, S.C., and Walker, D.M. (1997). Establishing a normal range for mouth opening: its use in screening for oral submucous fibrosis. Br J Oral Maxillofac Surg 35, 40-42. Darby, I., Skalli, O., and Gabbiani, G. (1990). Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63, 21-29. Dawes, K.E., Gray, A.J., and Laurent, G.J. (1993). Thrombin stimulates fibroblast chemotaxis and replication. Eur J Cell Biol 61, 126-130. Deng, Y.T., Chen, H.M., Cheng, S.J., Chiang, C.P., and Kuo, M.Y. (2009). Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: Modulation by curcumin. Oral Oncol 45, e99-e105. Desmouliere, A., and Gabbiani, G. (1994). Modulation of fibroblastic cytoskeletal features during pathological situations: the role of extracellular matrix and cytokines. Cell Motil Cytoskeleton 29, 195-203. Desmouliere, A., Geinoz, A., Gabbiani, F., and Gabbiani, G. (1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122, 103-111. Desmouliere, A., Rubbia-Brandt, L., Abdiu, A., Walz, T., Macieira-Coelho, A., and Gabbiani, G. (1992). Alpha-smooth muscle actin is expressed in a subpopulation of cultured and cloned fibroblasts and is modulated by gamma-interferon. Exp Cell Res 201, 64-73. Eddy, R.J., Petro, J.A., and Tomasek, J.J. (1988). Evidence for the nonmuscle nature of the 'myofibroblast' of granulation tissue and hypertropic scar. An immunofluorescence study. Am J Pathol 130, 252-260. Franke, W.W., Schmid, E., Vandekerckhove, J., and Weber, K. (1980). Permanently proliferating rat vascular smooth muscle cell with maintained expression of smooth muscle characteristics, including actin of the vascular smooth muscle type. J Cell Biol 87, 594-600. Gabbiani, G. (1994). Modulation of fibroblastic cytoskeletal features during wound healing and fibrosis. Pathol Res Pract 190, 851-853. Garrels, J.I., and Gibson, W. (1976). Identification and characterization of multiple forms of actin. Cell 9, 793-805. Glenisson, W., Castronovo, V., and Waltregny, D. (2007). Histone deacetylase 4 is required for TGFbeta1-induced myofibroblastic differentiation. Biochim Biophys Acta 1773, 1572-1582. Grinnell, F. (1994). Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 124, 401-404. Guo, W., Shan, B., Klingsberg, R.C., Qin, X., and Lasky, J.A. (2009). Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol 297, L864-870. Gupta, P.C., Mehta, F.S., Daftary, D.K., Pindborg, J.J., Bhonsle, R.B., Jalnawalla, P.N., Sinor, P.N., Pitkar, V.K., Murti, P.R., Irani, R.R., et al. (1980). Incidence rates of oral cancer and natural history of oral precancerous lesions in a 10-year follow-up study of Indian villagers. Community Dent Oral Epidemiol 8, 283-333. Gupta, P.C., Sinor, P.N., Bhonsle, R.B., Pawar, V.S., and Mehta, H.C. (1998). Oral submucous fibrosis in India: a new epidemic? Natl Med J India 11, 113-116. Hardie, J. (1987). Oral submucous fibrosis. A review with case reports. J Can Dent Assoc 53, 389-393. Hecker, L., Vittal, R., Jones, T., Jagirdar, R., Luckhardt, T.R., Horowitz, J.C., Pennathur, S., Martinez, F.J., and Thannickal, V.J. (2009). NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15, 1077-1081. Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127, 526-537. Hinz, B., Celetta, G., Tomasek, J.J., Gabbiani, G., and Chaponnier, C. (2001). Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12, 2730-2741. Hinz, B., Gabbiani, G., and Chaponnier, C. (2002). The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157, 657-663. Horiba, K., and Fukuda, Y. (1994). Synchronous appearance of fibronectin, integrin alpha 5 beta 1, vinculin and actin in epithelial cells and fibroblasts during rat tracheal wound healing. Virchows Arch 425, 425-434. Hu, Y., Liang, H., Du, Y., Zhu, Y., and Wang, X. (2010). Curcumin inhibits transforming growth factor-beta activity via inhibition of Smad signaling in HK-2 cells. Am J Nephrol 31, 332-341. Jallali, N., Ridha, H., Thrasivoulou, C., Butler, P., and Cowen, T. (2007). Modulation of intracellular reactive oxygen species level in chondrocytes by IGF-1, FGF, and TGF-beta1. Connect Tissue Res 48, 149-158. Jeng, J.H., Kuo, M.L., Hahn, L.J., and Kuo, M.Y. (1994). Genotoxic and non-genotoxic effects of betel quid ingredients on oral mucosal fibroblasts in vitro. J Dent Res 73, 1043-1049. Jeng, J.H., Lan, W.H., Hahn, L.J., Hsieh, C.C., and Kuo, M.Y. (1996). Inhibition of the migration, attachment, spreading, growth and collagen synthesis of human gingival fibroblasts by arecoline, a major areca alkaloid, in vitro. J Oral Pathol Med 25, 371-375. Klass, B.R., Branford, O.A., Grobbelaar, A.O., and Rolfe, K.J. (2010). The effect of epigallocatechin-3-gallate, a constituent of green tea, on transforming growth factor-beta1-stimulated wound contraction. Wound Repair Regen 18, 80-88. Kovacs, E.J. (1991). Fibrogenic cytokines: the role of immune mediators in the development of scar tissue. Immunol Today 12, 17-23. Kovacs, E.J., and DiPietro, L.A. (1994). Fibrogenic cytokines and connective tissue production. FASEB J 8, 854-861. Kuo, M.Y., Chen, H.M., Hahn, L.J., Hsieh, C.C., and Chiang, C.P. (1995). Collagen biosynthesis in human oral submucous fibrosis fibroblast cultures. J Dent Res 74, 1783-1788. Leibovich, S.J., and Ross, R. (1976). A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. Am J Pathol 84, 501-514. Liu, Y. (2004). Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15, 1-12. Maher, R., Lee, A.J., Warnakulasuriya, K.A., Lewis, J.A., and Johnson, N.W. (1994). Role of areca nut in the causation of oral submucous fibrosis: a case-control study in Pakistan. J Oral Pathol Med 23, 65-69. McHugh, K.M., Crawford, K., and Lessard, J.L. (1991). A comprehensive analysis of the developmental and tissue-specific expression of the isoactin multigene family in the rat. Dev Biol 148, 442-458. Meghji, S., Scutt, A., Harvey, W., and Canniff, J.P. (1987). An in-vitro comparison of human fibroblasts from normal and oral submucous fibrosis tissue. Arch Oral Biol 32, 213-215. Mitchell, J., Woodcock-Mitchell, J., Reynolds, S., Low, R., Leslie, K., Adler, K., Gabbiani, G., and Skalli, O. (1989). Alpha-smooth muscle actin in parenchymal cells of bleomycin-injured rat lung. Lab Invest 60, 643-650. Mossakowska, M., and Strzelecka-Golaszewska, H. (1985). Identification of amino acid substitutions differentiating actin isoforms in their interaction with myosin. Eur J Biochem 153, 373-381. Murti, P.R., Bhonsle, R.B., Gupta, P.C., Daftary, D.K., Pindborg, J.J., and Mehta, F.S. (1995). Etiology of oral submucous fibrosis with special reference to the role of areca nut chewing. J Oral Pathol Med 24, 145-152. Murti, P.R., Bhonsle, R.B., Pindborg, J.J., Daftary, D.K., Gupta, P.C., and Mehta, F.S. (1985). Malignant transformation rate in oral submucous fibrosis over a 17-year period. Community Dent Oral Epidemiol 13, 340-341. Nakamuta, M., Higashi, N., Kohjima, M., Fukushima, M., Ohta, S., Kotoh, K., Kobayashi, N., and Enjoji, M. (2005). Epigallocatechin-3-gallate, a polyphenol component of green tea, suppresses both collagen production and collagenase activity in hepatic stellate cells. Int J Mol Med 16, 677-681. Nedelec, B., Ghahary, A., Scott, P.G., and Tredget, E.E. (2000). Control of wound contraction. Basic and clinical features. Hand Clin 16, 289-302. North, A.J., Gimona, M., Lando, Z., and Small, J.V. (1994). Actin isoform compartments in chicken gizzard smooth muscle cells. J Cell Sci 107 ( Pt 3), 445-455. Otey, C.A., Kalnoski, M.H., Lessard, J.L., and Bulinski, J.C. (1986). Immunolocalization of the gamma isoform of nonmuscle actin in cultured cells. J Cell Biol 102, 1726-1737. Park, G., Yoon, B.S., Moon, J.H., Kim, B., Jun, E.K., Oh, S., Kim, H., Song, H.J., Noh, J.Y., Oh, C., et al. (2008). Green tea polyphenol epigallocatechin-3-gallate suppresses collagen production and proliferation in keloid fibroblasts via inhibition of the STAT3-signaling pathway. J Invest Dermatol 128, 2429-2441. Park, S., Ahn, J.Y., Lim, M.J., Kim, M.H., Yun, Y.S., Jeong, G., and Song, J.Y. (2010). Sustained expression of NADPH oxidase 4 by p38 MAPK-Akt signaling potentiates radiation-induced differentiation of lung fibroblasts. J Mol Med. Pindborg, J.J. (1972). Is submucous fibrosis a precancerous condition in the oral cavity? Int Dent J 22, 474-480. Pindborg, J.J., and Sirsat, S.M. (1966). Oral submucous fibrosis. Oral Surg Oral Med Oral Pathol 22, 764-779. Pollard, T.D., and Cooper, J.A. (1986). Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 55, 987-1035. Powell, D.W., Mifflin, R.C., Valentich, J.D., Crowe, S.E., Saada, J.I., and West, A.B. (1999). Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277, C1-9. Ronnov-Jessen, L., Celis, J.E., Van Deurs, B., and Petersen, O.W. (1992a). A fibroblast-associated antigen: characterization in fibroblasts and immunoreactivity in smooth muscle differentiated stromal cells. J Histochem Cytochem 40, 475-486. Ronnov-Jessen, L., and Petersen, O.W. (1993). Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 68, 696-707. Ronnov-Jessen, L., and Petersen, O.W. (1996). A function for filamentous alpha-smooth muscle actin: retardation of motility in fibroblasts. J Cell Biol 134, 67-80. Ronnov-Jessen, L., Petersen, O.W., and Bissell, M.J. (1996). Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76, 69-125. Ronnov-Jessen, L., Petersen, O.W., Koteliansky, V.E., and Bissell, M.J. (1995). The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95, 859-873. Ronnov-Jessen, L., van Deurs, B., Celis, J.E., and Petersen, O.W. (1990). Smooth muscle differentiation in cultured human breast gland stromal cells. Lab Invest 63, 532-543. Ronnov-Jessen, L., Van Deurs, B., Nielsen, M., and Petersen, O.W. (1992b). Identification, paracrine generation, and possible function of human breast carcinoma myofibroblasts in culture. In Vitro Cell Dev Biol 28A, 273-283. Sappino, A.P., Masouye, I., Saurat, J.H., and Gabbiani, G. (1990). Smooth muscle differentiation in scleroderma fibroblastic cells. Am J Pathol 137, 585-591. Sappino, A.P., Skalli, O., Jackson, B., Schurch, W., and Gabbiani, G. (1988). Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 41, 707-712. Schoenenberger, C.A., Steinmetz, M.O., Stoffler, D., Mandinova, A., and Aebi, U. (1999). Structure, assembly, and dynamics of actin filaments in situ and in vitro. Microsc Res Tech 47, 38-50. Scotton, C.J., and Chambers, R.C. (2007). Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest 132, 1311-1321. Seedat, H.A., and van Wyk, C.W. (1988). Betel-nut chewing and submucous fibrosis in Durban. S Afr Med J 74, 568-571. Shah, N., and Sharma, P.P. (1998). Role of chewing and smoking habits in the etiology of oral submucous fibrosis (OSF): a case-control study. J Oral Pathol Med 27, 475-479. Shi-Wen, X., Leask, A., and Abraham, D. (2008). Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev 19, 133-144. Shiau, Y.Y., and Kwan, H.W. (1979). Submucous fibrosis in Taiwan. Oral Surg Oral Med Oral Pathol 47, 453-457. Shih, Y.T., Chen, P.S., Wu, C.H., Tseng, Y.T., Wu, Y.C., and Lo, Y.C. (2010). Arecoline, a major alkaloid of areca nut, causes neurotoxicity through enhancement of oxidative stress and suppression of antioxidant protective system. Free Radic Biol Med. Shirname, L.P., Menon, M.M., Nair, J., and Bhide, S.V. (1983). Correlation of mutagenicity and tumorigenicity of betel quid and its ingredients. Nutr Cancer 5, 87-91. Sinor, P.N., Gupta, P.C., Murti, P.R., Bhonsle, R.B., Daftary, D.K., Mehta, F.S., and Pindborg, J.J. (1990). A case-control study of oral submucous fibrosis with special reference to the etiologic role of areca nut. J Oral Pathol Med 19, 94-98. Sirsat, S.M., and Pindborg, J.J. (1967). Subepithelial changes in oral submucous fibrosis. Acta Pathol Microbiol Scand 70, 161-173. Small, J.V. (1995). Structure-function relationships in smooth muscle: the missing links. Bioessays 17, 785-792. Stoflet, E.S., Schmidt, L.J., Elder, P.K., Korf, G.M., Foster, D.N., Strauch, A.R., and Getz, M.J. (1992). Activation of a muscle-specific actin gene promoter in serum-stimulated fibroblasts. Mol Biol Cell 3, 1073-1083. Tipoe, G.L., Leung, T.M., Liong, E.C., Lau, T.Y., Fung, M.L., and Nanji, A.A. (2010). Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology 273, 45-52. Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C., and Brown, R.A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3, 349-363. Vandekerckhove, J., and Weber, K. (1978). At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126, 783-802. Vandekerckhove, J., and Weber, K. (1979). The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. A protein-chemical analysis of muscle actin differentiation. Differentiation 14, 123-133. Vandekerckhove, J., and Weber, K. (1981). Actin typing on total cellular extracts: a highly sensitive protein-chemical procedure able to distinguish different actins. Eur J Biochem 113, 595-603. Wallace, K., Burt, A.D., and Wright, M.C. (2008). Liver fibrosis. Biochem J 411, 1-18. Willems, I.E., Havenith, M.G., De Mey, J.G., and Daemen, M.J. (1994). The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145, 868-875. Xu, J., Lamouille, S., and Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19, 156-172. Siao. (2010). TGF-β stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: Modulation by Curcumin http://www.ch.com.tw/index.asp?chapter=ABB930901 http://www.egcg.com.tw/greentea-shopinfo/green-tea-shop-info1.html | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23344 | - |
dc.description.abstract | 口腔黏膜下纖維化症( Oral submucous fibrosis,OSF)是一種慢性發炎的口腔黏膜病變, 因嚼食檳榔而使口腔黏膜下的結締組織層產生過多的膠原蛋白,並過度堆積所造成的潛在性癌變障礙。 在許多研究中發現,在肺臟、肝臟、皮膚的纖維化症疾病中,其纖維母細胞都有過度的α-Smooth muscle actin (α-SMA)表現。因此,本研究的目的在探討 α-SMA與口腔黏膜下纖維化症致病機轉的關聯性。首先我們利用α-SMA抗體進行免疫組織化學染色法,偵測α-SMA在正常口腔頰黏膜組織(normal oral mucosa;NOM )與口腔黏膜下纖維化症組織(OSF)的表現情形。結果發現 NOM組織只在血管的平滑肌細胞( positive control )有表現α-SMA ,而OSF 組織其纖維母細胞卻有α-SMA 過度表現。其次,我們將NOM纖維母細胞以TGF-β或Arecoline處理之後, 萃取其蛋白質以西方墨點法分析之,發現這兩者都能誘導 α-SMA 的表現量增加, 並且呈現 dose-dependent 的情形。 最後, 我們利用 Curcumin和Epigallocatechin-3-gallate ( EGCG ), 以及 Histone deacetylase (HDAC) 的抑制劑 Trichostatin A (TSA) 這幾種藥物作用於NOM纖維母細胞, 發現它們都能抑制Arecoline或TGF-β誘導α-SMA的表現量增加。 在本研究中,我們證實了口腔黏膜下纖維化症的纖維母細胞會比正常口腔頰黏膜纖維母細胞表現較多的α-SMA。而Arecoline 和TGF-β 確實可以誘導口腔頰黏膜纖維母細胞表現較多的α-SMA蛋白質,最後我們發現EGCG、Curcumin 及TSA都可以有效的降低正常口腔頰黏膜纖維母細胞α-SMA蛋白質的表現量。
關鍵字:口腔黏膜下纖維化症、OSF、α-SMA | zh_TW |
dc.description.abstract | Oral submucous fibrosis (OSF) is a chronic and inflammatory disease of oral mucous. Epidemiological evidences strongly indicate the association of chewing areca quid habit and OSF which is a kind of potentially malignant disorders. Many evidences have showed that α-smooth muscle actin (α-SMA) is overexpressed in some organs, such as lung, liver, and skin, but the α-SMA expression in OSF is not clear, therefore, in this study, we investigated the correlation of α-SMA expression and the pathogenesis in OSF by immunohistochemistry (IHC). The result shows that the expression of α-SMA in normal buccal mucosa only exists in the smooth muscle cells (positive control) of blood vessels, however, α-SMA is overexpressed in OSF. For detecting the effect of arecoline and TGF-β in OSF we treated normal oral mucous fibroblasts (NOM) with above components, and then analyzed the expression of α-SMA by Western Blot. The result showed that both arecoline and TGF-β were able to induce the expression of α-SMA in the dose-dependent manner. Finally, we treated NOM with Curcumin, Epigallocatechin-3-gallate (EGCG), or Trichostatin A (TSA), the result showed that all of them were able to reduce the expression of α-SMA induced by arecoline or TGF-β. In our study, we found that OSF expressed much more α-SMA than NOM. Besides, both arecoline and TGF-β can induce the expression of α-SMA. The induced expression of α-SMA by arecoline or TGF-β can be reduced by Curcumin, EGCG, or TSA.
Keywords: oral submucous fibrosis, OSF, α-SMA | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T04:59:29Z (GMT). No. of bitstreams: 1 ntu-99-R97450016-1.pdf: 1563980 bytes, checksum: 4c1b9868b7a3f63fd0c921a6d5066a5a (MD5) Previous issue date: 2010 | en |
dc.description.tableofcontents | 中文摘要...........................................................................................................................1
Abstract.............................................................................................................................2 第一章 導論.....................................................................................................................3 第一節 口腔黏膜下纖維化症.................................................................................3 1-1 口腔黏膜下纖維化症的簡介....................................................................3 1-2 口腔黏膜下纖維化症的組織學................................................................3 1-3 口腔黏膜下纖維化症的致病機轉............................................................3 1-4 口腔黏膜下纖維化症的文獻回顧............................................................4 第二節 α-SMA(α-smooth muscle actin)..................................................................7 2-1 α-SMA的簡介............................................................................................7 2-2 α-SMA的文獻回顧....................................................................................7 第三節 薑黃素 ( Curcumin ).................................................................................11 第四節 兒茶素EGCG............................................................................................12 第二章 實驗目的...........................................................................................................14 第三章 實驗材料與方法...............................................................................................15 第一節 實驗組與控制組檢體的收集...................................................................15 第二節 免疫組織化學染色法 ( Immunohistochemical stain ) ...........................15 第三節 人類頰黏膜纖維母細胞之初代培養.......................................................17 第四節 人類頰黏膜纖維母細胞之繼代培養.......................................................17 第五節 藥物的處理...............................................................................................18 第六節 細胞毒性試驗...........................................................................................18 第七節 西方墨點法...............................................................................................18 第八節 統計方法...................................................................................................20 第四章 結果...................................................................................................................21 OSF比NOM表現較多的α-SMA.........................................................................21 免疫組織化學染色之統計分析.............................................................................21 不同濃度的Arecoline影響NOM生長的情形.....................................................21 Arecoline會誘導α-SMA蛋白質的表現量增加.................................................. 22 Curcumin和EGCG會抑制Arecoline誘導α-SMA蛋白質的表現....................22 TGF-β會誘導α-SMA蛋白質的表現量增加.........................................................23 TSA會抑制TGF-β誘導α-SMA蛋白質的表現...................................................23 Curcumin會抑制TGF-β誘導α-SMA蛋白質的表現...........................................24 EGCG會抑制TGF-β誘導α-SMA蛋白質的表現.................................................24 不同濃度的TSA、Curcumin、EGCG影響NOM生長的情形...............................25 第五章 討論...................................................................................................................26 第六章 總結...................................................................................................................30 第七章 圖與表...............................................................................................................32 第八章 Reference...........................................................................................................46 | |
dc.language.iso | zh-TW | |
dc.title | 口腔黏膜下纖維化症中α-SMA表現之研究 | zh_TW |
dc.title | The Research of α-SMA Expression in
Oral Submucous Fibrosis | en |
dc.type | Thesis | |
dc.date.schoolyear | 98-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 郭彥彬 | |
dc.contributor.oralexamcommittee | 江俊斌 | |
dc.subject.keyword | 口腔黏膜下纖維化症,OSF,α-SMA, | zh_TW |
dc.subject.keyword | oral submucous fibrosis,OSF,α-SMA, | en |
dc.relation.page | 54 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2010-08-18 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
顯示於系所單位: | 口腔生物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-99-1.pdf 目前未授權公開取用 | 1.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。