請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23336完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙(Hsiu-Hsi Chen) | |
| dc.contributor.author | Ruei-Fang Wang | en |
| dc.contributor.author | 王瑞芳 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:59:23Z | - |
| dc.date.copyright | 2010-09-09 | |
| dc.date.issued | 2010 | |
| dc.date.submitted | 2010-08-19 | |
| dc.identifier.citation | 1. Zhang Y, Bi P, Hiller JE. Meterological variables and malaria in a Chinese temperate city: A twenty-year time-series data analysis. Environ Int. 2010 Jul;36(5):439-45
2. Zhang SJ, Chen ZX, Jiang KP, Wu WK, Zhang CY, Gu YL. Effect of seasonal variation on the clinical course of chronic hepatitis B. J Gastroenterol. 2006 Nov;41(11):1107-15. 3. Hu W, Mengersen K, Bi P, Tong S. Time-series analysis of the risk factors for haemorrhagic fever with renal syndrome: comparison of statistical models. Epidemiol Infect. 2007 Feb;135(2):245-52. 4. Lyytika‥inen O, Kanerva M, Agthe N, Mo‥tto‥nen T, Ruutu P. Healthcare-associated infections in Finnish acute care hospitals: a national prevalence survey, 2005. J Hosp Infect 2008; 69:288e294. 5. Smyth ETM, McIlvenny G, Enstone JE, et al. Four country healthcare associated infection prevalence survey 2006: overview of the results. J Hosp Infect 2008;69:230e248. 6. Humphreys H, Newcombe RG, Enstone J, et al. Four country healthcare associated infection prevalence survey 2006: risk factor analysis. J Hosp Infect 2008;69:249e257. 7. Klevens RM, Edwards JR, Richards CL Jr, et al. Estimating health careassociated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007;122(2):160-6. 8. Eber MR, Laxminarayan R, Perencevich EN, Malani A. Clinical and economic outcomes attributable to health care-associated sepsis and pneumonia. Arch Intern Med. 2010;170(4):347-353. 9. Foxman B. Epidemiology of urinary tract infections: Incidence, morbidity and economic costs. Am J Med. 2002;113:5s–13s. 10. WHO. Epidemiology of nosocomial infections. In: Ducel G, Fabry J, Nicolle L, editors. Prevention of hospital acquired infections: A practical guide. 2nd ed. Geneva: WHO; 2002. p. 5. 11. Czaja, CA, Scholes, D, Hooton, TM, Stamm, WE. Population-based epidemiologic analysis of acute pyelonephritis. Clin Infect Dis 2007; 45:273. 12. Oelschlaeger, TA, Dobrindt, U, Hacker, J. Virulence factors of uropathogens. Curr Opin Urol 2002; 12:33. 13. Mulvey, MA. Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol 2002; 4:257. 14. Johnson, JR. Virulence factors in Escherichia coli urinary tract infections. Clin Microbiol Rev 1991; 4:80. 15. Haley RW, Hooton TM, Culver DH, Stanley RC, Emori TG, Hardison CD, et al. Nosocomial infections in U.S. hospitals, 1975-1976: estimated frequency by selected characteristics of patients. Am J Med. 1981;70:947-59. 16. Haley RW, Culver DH, White JW, Morgan WM, Emori TG. The nationwide nosocomial infection rate. A new need for vital statistics. Am J Epidemiol. 1985;121:159-67. 17. Sedor J, Mulholland SG. Hospital-acquired urinary tract infections associated with the indwelling catheter. Urol Clin N Am 1999; 26:821±828. 18. Johansson, C., Molander, U., Milsom, I., Ekelund, P., 1996. Association between urinary incontinence and urinary tract infections, and fractures in postmenopausal women. Maturitas 23, 265–271. 19. Yoshikawa, T.T., Nicolle, L.E., Norman, D.C., 1996. Management of complicated urinary tract infection in older patients. J Am Geriatr Soc. 44, 1235–1241. 20. Hu, K.K., Boyko, E.J., Scholes, D., Normand, E., Chen, C.L., Grafton, J., Fihn, S.D., 2004. Risk factors for urinary tract infections in postmenopausal women. Arch Intern Med. 164, 989–993. 21. Harrington, R.D., Hooton, T.M., 2000. Urinary tract infection risk factors and gender. J Gend Specif Med. 3, 27–34. 22. Stamm WE. Urinary tract infections. In: Benett JV, Brachman PS, editors. Hospital infections. 4th ed. Philadelphia: Lipincott-Raven Publishers; 1998. pp. 477–85. 23. Molander, U., Arvidsson, L., Milsom, I., Sandberg, T., 2000. A longitudinal cohort study of elderly women with urinary tract infections. Maturitas 34, 127–131. 24. Richards, C.L., 2004. Urinary tract infections in the frail elderly: issues for diagnosis, treatment and prevention. Int. Urol. Nephrol. 36, 457–463. 25. Stamm WE. Catheter associated urinary tract infections: Epidemiology, pathogenesis and prevention. Am J Med. 1991;91:65s–71s. 26. Yardy, GW, Cox, RA. An outbreak of Pseudomonas aeruginosa infection associated with contaminated urodynamic equipment. J Hosp Infect 2001; 47:60. 27. Pena, C, Dominguez, MA, Pujol, M, et al. An outbreak of carbapenem-resistant Pseudomonas aeruginosa in a urology ward. Clin Microbiol Infect 2003; 9:938. 28. Boutiba-Ben Boubaker, I, Boukadida, J, Triki, O, et al. [Outbreak of nosocomial urinary tract infections due to a multidrug resistant Pseudomonas aeruginosa]. Pathol Biol (Paris) 2003; 51:147. 29. Dessau RB, Steenberg P. Computerized surveillance in clinical microbiology with time series analysis. J Clin microbiol 1993;857-60. 30. MacKenzie FM, Lopez-Lozano JM, Monnet DL, Stuart D, Beyaert A, Wilson R, Gould IM. Temporal relationship between prevalence of meticillin-resistant Staphylococcus aureus (MRSA) in one hospital and prevalence of MRSA in the surrounding community: a time-series analysis. J Hosp Infect 2007;67:225-31. 31. Fernandez-Perez C, Tejada J, Carrasco M. Multivariate time series analysis in nosocomial infection surveillance: a case study. Int J Epidemiol 1998;27:282-8. 32. Harbarth S, Sax H, Gastmeier P. The preventable proportion of nosocomial infections: an overview of published reports. J Hosp Infect. 2003;54(4):258-66 33. Kaier K, Frank U, Hagist C, Conrad A, Meyer E. The impact of antimicrobial drug consumption and alcohol-based hand rub use on the emergence and spread of extended-spectrum b-lactamase-producing strains: a time-series analysis. J antimicrob Chemother 2009(63):609–14. 34. Vernaz N, Sax H, Pittet D et al. Temporal effects of antibiotic use and hand rub consumption on the incidence of MRSA and Clostridium difficile. J Antimicrob Chemother 2008; 62: 601–7. 35. Khan R, Cheesbrough J. Impact of changes in antibiotic policy on Clostridium difficile-associated diarrhoea (CDAD) over a five-year period in a district general hospital. J Hosp Infect. 2003 Jun;54(2):104-8. 36. Aldeyab MA, Monnet DL, Lo′pez-Lozano JM et al. Modelling the impact of antibiotic use and infection control practices on the incidence of hospital-acquired methicillin-resistant Staphylococcus aureus: a time-series analysis. J Antimicrob Chemother 2008; 62: 593–600. 37. Rosenthal VD, Maki DG, Jamulitrat S, Medeiros EA, Todi SK, Gomez DY, Leblebicioglu H, Abu Khader I, Miranda Novales MG, Berba R, Ramírez Wong FM, Barkat A, Pino OR, Dueñas L, Mitrev Z, Bijie H, Gurskis V, Kanj SS, Mapp T, Hidalgo RF, Ben Jaballah N, Raka L, Gikas A, Ahmed A, Thu le TA, Guzmán Siritt ME; INICC Members. International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003-2008, issued June 2009. Am J Infect Control 2010;38:95-106. 38. Szász M, Lehotkai N, Kristóf K, Szabó D, Nagy K. Prevalence and antimicrobial resistance of uropathogens in different inpatient wards. Acta Microbiol Immunol Hung. 2009 Dec;56(4):375-87. 39. Mamdani M, McNeely D, Evans G, Hux J, Oh P, Forde N, Conly J. Impact of a Fluoroquinolone restriction policy in an elderly population. Am J Med. 2007 Oct;120(10):893-900. 40. Bowerman BL, O’Connell RT. Forecasting and time series: an applied approach. 3rd ed. Duxbury Press. p291-591. 41. Montgomery DC, Jennings CL, Kulahci M. Introduction to time series analysis and forecasting. Wiley series. pp38 42. Bronsema, D. A., Adams, J. R., Pallares, R., Wenzel, R. P.: Secular trends in rates and etiology of nosocomial urinary tract infections at a university hospital. J. Urol. 1993; 150, 414–6. 43. Corti, G., Giganti, E., Paradisi, F., Nicoletti, P.: Urinary tract infections in the city of Florence: epidemiological considerations over a twenty-year period. Eur. J. Epidemiol. 1993; 9, 335–40. 44. Szász M, Lehotkai N, Kristóf K, Szabó D, Nagy K. Prevalence and antimicrobial resistance of uropathogens in different inpatient wards. Acta Microbiol Immunol Hung. 2009; 56(4):375-87. 45. Kamat US, Fereirra A, Amonkar D, Motghare DD,Kulkarni MS. Epidemiology of hospital acquired urinary tract infections in a medical college hospital in Goa. Indian J Urol. 2009 Jan–Mar; 25(1): 76–80. 46. Rubin RH, Tolkoff-Rubin NE, Cotrans RS. Urinary tract infection, pyelonephritis and reflux nephropathy. In: Brenner BM, Rector FC Jr, editors. The kidney. 5th ed. vol. 2. PA: WB Saunders Company; 1996. pp. 1597–654. 47. Weisent J, Seaver W, Odoi A, Rohrbach B. Comparison of three time-series models for predicting campylobacteriosis riskEpidemiol Infect. 2010 Jun;138(6):898-906. 48. Casella G, Berger RL. Statistical inference. 2nd ed. Duxbury Press. P135-6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23336 | - |
| dc.description.abstract | 前言
醫療照護相關感染長時期的資料型態依時間為軸排序可呈現出趨勢、季節、循環等成分。尤其是醫療照護相關感染最常見的泌尿系統部位,描述這樣資料型態的趨勢及季節型態是相當重要的,此外,此資料型態亦可能存在不同時間點觀察值之間的自我相關性,增加了描述上的挑戰性。 目的 為了描述醫療照護相關感染的資料型態,應用一系列系統時間序列來描述之。呈現菌種發生次數及發生率對於趨勢、季節、循環演變,找尋菌種發生次數及發生率以時間為軸的自我相關現象,進而對未來主要菌種發生次數及發生率做出預測。 材料與方法 自1994年至2009年6月期間,以在台灣台北新光吳火獅紀念醫院感染控制中心由醫師判斷收集之醫療照護相關感染病患族群做分析。此研究收納其中泌尿系統部位之醫療照護相關感染病患進行研究。收集資料包含有:(1)病患背景資料;(2)患病資料:住院出院日期、病房;(3)感染病原菌種資料:菌種、採檢部位、菌種抗藥性敏感試驗;(4)侵入性治療處置:放導尿管、使用中心靜脈營養、置放中央靜脈導管、手術;(5)全院之住院人數計數及人日數。將一個月做為最小單位之發生感染次數及感染發生率依菌種做區分,分別使用分解法、Durbin-Watson統計量、以及Box-Jenkins模式分析,並使用模式化之方法進一步做未來一年之感染預測。 結果 自1994年至2008年期間,此醫學中心共收集有6519人次的泌尿道系統醫療照護相關感染。就菌種分類而言感染累計前四名,依序是酵母菌、大腸桿菌、綠膿桿菌,腸球菌。以革蘭氏陰性菌占多數,為61.7%(4024/6519)。時間序列分析顯示分解法在酵母菌、大腸桿菌、綠膿桿菌及腸球菌發生上顯示出具有季節差異、趨勢的變化。其中綠膿桿菌感染發生隨時間呈現下降的趨勢,而其他主要三種菌種則呈現上升趨勢。Box-Jenkins模式在酵母菌及大腸桿菌之感染發生次數及發生率均具有級數一之移動平均模式,綠膿桿菌時間序列為隨機模式,腸球菌在感染發生率上為級數二即級數四之自我回歸模式。 結論 本研究發現根據感染之菌種不同,時間序列分析法能呈現出不同的趨勢、季節、循環模式、及自我相關性模式,依據感染事件及發生率過去的變化型態是建立個別菌種之感染預測模式,以及作出未來的預測相當有用的方式。 | zh_TW |
| dc.description.abstract | Background
The time-series longitudinal incidence data on healthcare-associated infection (HAI) can reveal its trend, seasonal, and cyclical components. As far as the urinary tract system, the most common type of healthcare-associated infection, is concerned modeling trend and seasonal components is therefore of great interest. However, the time-series data are often challenged by autocorrelations between successive time measurements. Objectives This study aimed to utilize a combination of time series models to analyze the long-term healthcare-associated infection time series data, to elucidate the trend, seasonal, cyclical patterns, making allowance for autocorrelations, and to forecast future events and incidences of each major urinary system HAI pathogens. Material and Methods Those who were diagnosed as healthcare-associated infection during the period of January, 1994 and June, 2009 in Shin-Kong Wu Ho-Su memorial hospital in Taipei, Taiwan were included for analysis. This study focused on the major pathogens of healthcare-associated urinary tract infections, such as yeast, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus species. Information used for the study includes (1) patients background; (2) infection data: admission and discharged date, ward of getting infection; (3) pathogen classification: species, sampling sites, antibiotics sensitivity tests; (4) invasive procedures: urinary catheter usage, parenteral nutrition via central line, central venous catheter usage, and surgery; (5) whole hospital admission patients number and person-day of the admitted patients. The infection events per month and the incidences time series of different pathogens were analyzed using decomposition methods, Durbin-Watson statistics, and Box-Jenkins model. We also projected the outcome of the coming year by using these models. Results There were 6519 infection events during the inclusion period of 15.5 years in the Shin-Kong Wu Ho-Su medical center. The first four ranks of urinary tract healthcare-associated infections in order were yeast, Escherichia coli, Pseudomonas aeruginosa, and Enterococcus species. The Gram-negative bacteria were the most common pathogens, accounting for 61.7%(4024/6519) of all urinary system HAIs。 Time series analysis of decomposition methods revealed the remarkable trend and seasonal patterns in these four major pathogens. The time trend of infection incidence and events of Pseudomonas aeruginosa has been decreasing, whereas those of the other three major pathogens have been increasing with time. Box-Jenkins models of both yeast and Escherichia coli had first-order auto-regression, and those of Enterococcus species had second-order and fourth-order auto-regression (time lag, 2 and 4 months). The time series of Pseudomonas aeruginosa are shown in stochastic process. Conclusion We observed that the trend, seasonal, cyclic patterns, and autocorrelations were different with respect to different infectious pathogens associated with healthcare-associated urinary tract infections by using time series analysis. The historical patterns of the events and the incidences patterns are very useful for model construction and forecasting of such time-series data. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:59:23Z (GMT). No. of bitstreams: 1 ntu-99-R97842004-1.pdf: 2020650 bytes, checksum: f370b05e5d3c823bcf28d9cc926a011e (MD5) Previous issue date: 2010 | en |
| dc.description.tableofcontents | 口試委員會審定書
中文摘要 Abstract 章節目錄………………………………………………………………………… vi 圖表目錄…………………………………………………………………………viii 章節目錄 第一章、 研究背景、動機與目的 1 第一節、研究背景與動機 1 第二節、研究目的 2 第二章、 文獻回顧 3 第一節、醫療照護相關感染 3 一、 醫療照護相關感染流行病學暨致病機轉簡介 3 二、泌尿系統醫療照護相關感染致病機轉、危險因子及其影響 4 (一)致病機轉 4 (二)危險因子 4 第二節、醫療照護相關感染暨時間序列分析 6 一、時間序列分析於醫療照護相關感染控制系統應用 6 二、時間序列分析法於感染症介入性研究應用 7 第三節、時間序列模型建構 10 一、簡介 10 二、時間序列模式類型: 10 (一) 分解法(Decomposition methods) 10 (二) Durbin-Watson 統計量 15 (三) Box-Jenkins 模式 19 第三章、 材料與方法 30 第一節、 資料來源 30 第二節、 泌尿道感染名詞定義 32 一、有症狀的泌尿道感染(Symptomatic Urinary Tract Infection) 32 二、無症狀菌尿症(Asymptomatic Bacteriuria) 33 三、其它泌尿系統之感染(Other Infections of The Urinary Tract) 34 第三節、 統計模式假設 34 一、分解法(Decomposition methods) 35 (一)、乘積模式 35 (二)、加成模式 35 二、Durbin-Watson 統計量 36 (一)、一級正自我相關 (First order) positive autocorrelation 36 (二)、一級負自我相關 (First order) negative autocorrelation 37 三、Box-Jenkins 模式 37 第四節、統計方法 40 第四章、結果 41 一、泌尿道醫療照護相關感染在主要菌種隨時間變遷之模式 41 二、分解法(Decomposition method ) 41 (一) 感染發生次數: 41 (二) 感染發生率: 43 三、Durbin-Watson一次自我相關統計量 45 四、Box-Jenkins模式分析 47 (一) 感染發生次數角度: 47 (二) 感染發生率角度: 48 (三)Box-Jenkins模式配適後之殘差評估: 48 五、分解法模式預測 48 六、Box-Jenkins模式預測 49 第五章、討論 51 參考文獻 115 | |
| dc.language.iso | zh-TW | |
| dc.subject | 醫療照護相關感染 | zh_TW |
| dc.subject | 時間序列 | zh_TW |
| dc.subject | 泌尿系統 | zh_TW |
| dc.subject | Health Care-Associated infection | en |
| dc.subject | time series | en |
| dc.subject | urinary tract infection | en |
| dc.title | 泌尿系統醫療照護相關感染之時間序列分析 | zh_TW |
| dc.title | Time Series Analysis of Health Care-Associated Urinary Tract Infections | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 98-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴政,張淑惠,嚴明芳,黃崑明 | |
| dc.subject.keyword | 醫療照護相關感染,泌尿系統,時間序列, | zh_TW |
| dc.subject.keyword | Health Care-Associated infection,urinary tract infection,time series, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2010-08-19 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-99-1.pdf 未授權公開取用 | 1.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
