請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23320完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林育誼(Yu-Yi Lin) | |
| dc.contributor.author | Ching-Yu Liu | en |
| dc.contributor.author | 劉晴語 | zh_TW |
| dc.date.accessioned | 2021-06-08T04:59:09Z | - |
| dc.date.copyright | 2011-10-05 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-19 | |
| dc.identifier.citation | References
Ahima, R. S., D. Prabakaran, et al. (1998). 'Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function.' J Clin Invest 101(5): 1020-1027. Alberti, K. G., P. Zimmet, et al. (2006). 'Metabolic syndrome--a new world-wide definition. A Consensus Statement from the InteRNAtional Diabetes Federation.' Diabet Med 23(5): 469-480. Ambros, V. (2004). 'The functions of animal microRNAs.' Nature 431(7006): 350-355. Ando, H., H. Yanagihara, et al. (2005). 'Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue.' Endocrinology 146(12): 5631-5636. Arendt, J. and D. J. Skene (2005). 'Melatonin as a chronobiotic.' Sleep Med Rev 9(1): 25-39. Asher, G. and U. Schibler (2006). 'A CLOCK-less clock.' Trends Cell Biol 16(11): 547-549. Asher, G. and U. Schibler (2011). 'Crosstalk between components of circadian and metabolic cycles in mammals.' Cell Metab 13(2): 125-137. Atkinson, G., B. Edwards, et al. (2007). 'Exercise as a synchroniser of human circadian rhythms: an update and discussion of the methodological problems.' Eur J Appl Physiol 99(4): 331-341. Baggs, J. E. and C. B. Green (2003). 'Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA.' Curr Biol 13(3): 189-198. Bartel, D. P. (2004). 'MicroRNAs: genomics, biogenesis, mechanism, and function.' Cell 116(2): 281-297. Bartel, D. P. (2009). 'MicroRNAs: target recognition and regulatory functions.' Cell 136(2): 215-233. Beezhold, K. J., V. Castranova, et al. (2010). 'Microprocessor of microRNAs: regulation and potential for therapeutic intervention.' Mol Cancer 9: 134. Bhatt, K., Q. S. Mi, et al. (2011). 'microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles.' Am J Physiol Renal Physiol 300(3): F602-610. Bodosi, B., J. Gardi, et al. (2004). 'Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation.' Am J Physiol Regul Integr Comp Physiol 287(5): R1071-1079. Brodersen, P. and O. Voinnet (2009). 'Revisiting the principles of microRNA target recognition and mode of action.' Nat Rev Mol Cell Biol 10(2): 141-148. Buermans, H. P., Y. Ariyurek, et al. (2010). 'New methods for next generation sequencing based microRNA expression profiling.' BMC Genomics 11: 716. Buhr, E. D., S. H. Yoo, et al. (2010). 'Temperature as a universal resetting cue for mammalian circadian oscillators.' Science 330(6002): 379-385. Bunger, M. K., L. D. Wilsbacher, et al. (2000). 'Mop3 is an essential component of the master circadian pacemaker in mammals.' Cell 103(7): 1009-1017. Bushati, N. and S. M. Cohen (2007). 'microRNA functions.' Annu Rev Cell Dev Biol 23: 175-205. Cai, Y., X. Yu, et al. (2009). 'A brief review on the mechanisms of miRNA regulation.' Genomics Proteomics Bioinformatics 7(4): 147-154. Carthew, R. W. and E. J. Sontheimer (2009). 'Origins and Mechanisms of miRNAs and siRNAs.' Cell 136(4): 642-655. Cermakian, N., L. Monaco, et al. (2001). 'Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene.' EMBO J 20(15): 3967-3974. Cheloufi, S., C. O. Dos Santos, et al. (2010). 'A dicer-independent miRNA biogenesis pathway that requires Ago catalysis.' Nature 465(7298): 584-589. Chendrimada, T. P., R. I. Gregory, et al. (2005). 'TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing.' Nature 436(7051): 740-744. Cheng, H. Y., J. W. Papp, et al. (2007). 'microRNA modulation of circadian-clock period and entrainment.' Neuron 54(5): 813-829. Cheng, M. Y., C. M. Bullock, et al. (2002). 'Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus.' Nature 417(6887): 405-410. Chua, J. H., A. Armugam, et al. (2009). 'MicroRNAs: biogenesis, function and applications.' Curr Opin Mol Ther 11(2): 189-199. Damiola, F., N. Le Minh, et al. (2000). 'Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus.' Genes Dev 14(23): 2950-2961. Davidson, A. J., O. Castanon-Cervantes, et al. (2004). 'Daily oscillations in liver function: diurnal vs circadian rhythmicity.' Liver Int 24(3): 179-186. Davies, S. P., D. Carling, et al. (1992). 'Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets.' Eur J Biochem 203(3): 615-623. Davis-Dusenbery, B. N. and A. Hata (2010). 'Mechanisms of control of microRNA biogenesis.' J Biochem 148(4): 381-392. Davis, B. N. and A. Hata (2009). 'Regulation of MicroRNA Biogenesis: A miRiad of mechanisms.' Cell Commun Signal 7: 18. De Boer, S. F. and J. Van der Gugten (1987). 'Daily variations in plasma noradrenaline, adrenaline and corticosterone concentrations in rats.' Physiol Behav 40(3): 323-328. Debruyne, J. P., E. Noton, et al. (2006). 'A clock shock: mouse CLOCK is not required for circadian oscillator function.' Neuron 50(3): 465-477. Dupressoir, A., A. P. Morel, et al. (2001). 'Identification of four families of yCCR4- and Mg2+-dependent endonuclease-related proteins in higher eukaryotes, and characterization of orthologs of yCCR4 with a conserved leucine-rich repeat essential for hCAF1/hPOP2 binding.' BMC Genomics 2: 9. Eckel-Mahan, K. and P. Sassone-Corsi (2009). 'Metabolism control by the circadian clock and vice versa.' Nat Struct Mol Biol 16(5): 462-467. Edery, I. (1999). 'Role of posttranscriptional regulation in circadian clocks: lessons from Drosophila.' Chronobiol Int 16(4): 377-414. Elmen, J., M. Lindow, et al. (2008). 'LNA-mediated microRNA silencing in non-human primates.' Nature 452(7189): 896-899. Esau, C., S. Davis, et al. (2006). 'miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting.' Cell Metab 3(2): 87-98. Esau, C., X. Kang, et al. (2004). 'MicroRNA-143 regulates adipocyte differentiation.' J Biol Chem 279(50): 52361-52365. Fernandez-Hernando, C., Y. Suarez, et al. (2011). 'MicroRNAs in lipid metabolism.' Curr Opin Lipidol 22(2): 86-92. Filipowicz, W., S. N. Bhattacharyya, et al. (2008). 'Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?' Nat Rev Genet 9(2): 102-114. Frederiks, W. M., F. Marx, et al. (1987). 'Diurnal variation in glycogen phosphorylase activity in rat liver. A quantitative histochemical study.' Eur J Cell Biol 43(3): 339-341. Friedman, R. C., K. K. Farh, et al. (2009). 'Most mammalian mRNAs are conserved targets of microRNAs.' Genome Res 19(1): 92-105. Froy, O. (2007). 'The relationship between nutrition and circadian rhythms in mammals.' Front Neuroendocrinol 28(2-3): 61-71. Froy, O. (2009). 'Cytochrome P450 and the biological clock in mammals.' Curr Drug Metab 10(2): 104-115. Froy, O. (2010). 'Metabolism and circadian rhythms--implications for obesity.' Endocrine Reviews 31(1): 1-24. Froy, O. and N. Chapnik (2007). 'Circadian oscillation of innate immunity components in mouse small intestine.' Mol Immunol 44(8): 1954-1960. Fukuda, H. and N. Iritani (1991). 'Diurnal variations of lipogenic enzyme mRNA quantities in rat liver.' Biochim Biophys Acta 1086(3): 261-264. Gallego, M. and D. M. Virshup (2007). 'Post-translational modifications regulate the ticking of the circadian clock.' Nat Rev Mol Cell Biol 8(2): 139-148. Garbarino-Pico, E., S. Niu, et al. (2007). 'Immediate early response of the circadian polyA ribonuclease Nocturnin to two extracellular stimuli.' RNA 13(5): 745-755. Gatfield, D., G. Le Martelot, et al. (2009). 'Integration of microRNA miR-122 in hepatic circadian gene expression.' Genes Dev 23(11): 1313-1326. Gekakis, N., D. Staknis, et al. (1998). 'Role of the CLOCK protein in the mammalian circadian mechanism.' Science 280(5369): 1564-1569. Glossop, N. R. and P. E. Hardin (2002). 'Central and peripheral circadian oscillator mechanisms in flies and mammals.' J Cell Sci 115(Pt 17): 3369-3377. Green, C. B. and J. C. Besharse (1996). 'Identification of a novel vertebrate circadian clock-regulated gene encoding the protein Nocturnin.' Proc Natl Acad Sci U S A 93(25): 14884-14888. Green, C. B., N. Douris, et al. (2007). 'Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity.' Proc Natl Acad Sci U S A 104(23): 9888-9893. Green, C. B., J. S. Takahashi, et al. (2008). 'The meter of metabolism.' Cell 134(5): 728-742. Griffiths-Jones, S., H. K. Saini, et al. (2008). 'miRBase: tools for microRNA genomics.' Nucleic Acids Res 36(Database issue): D154-158. Guay, C., E. Roggli, et al. (2011). 'Diabetes mellitus, a microRNA-related disease?' Transl Res 157(4): 253-264. Harms, E., S. Kivimae, et al. (2004). 'Posttranscriptional and posttranslational regulation of clock genes.' J Biol Rhythms 19(5): 361-373. He, A., L. Zhu, et al. (2007). 'Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes.' Mol Endocrinol 21(11): 2785-2794. Heneghan, H. M., N. Miller, et al. (2010). 'Role of microRNAs in obesity and the metabolic syndrome.' Obes Rev 11(5): 354-361. Hirota, T. and Y. Fukada (2004). 'Resetting mechanism of central and peripheral circadian clocks in mammals.' Zoolog Sci 21(4): 359-368. Jones-Rhoades, M. W., D. P. Bartel, et al. (2006). 'MicroRNAS and their regulatory roles in plants.' Annu Rev Plant Biol 57: 19-53. Kaasik, K. and C. C. Lee (2004). 'Reciprocal regulation of haem biosynthesis and the circadian clock in mammals.' Nature 430(6998): 467-471. Kadener, S., J. S. Menet, et al. (2008). 'Circadian transcription contributes to core period determination in Drosophila.' PLoS Biol 6(5): e119. Kadener, S., J. S. Menet, et al. (2009). 'A role for microRNAs in the Drosophila circadian clock.' Genes Dev 23(18): 2179-2191. Kadener, S., J. Rodriguez, et al. (2009). 'Genome-wide identification of targets of the drosha-pasha/DGCR8 complex.' RNA 15(4): 537-545. Kalra, S. P., M. Bagnasco, et al. (2003). 'Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity.' Regul Pept 111(1-3): 1-11. Kalsbeek, A., E. Fliers, et al. (2001). 'The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels.' Endocrinology 142(6): 2677-2685. Kawai, M., C. B. Green, et al. (2010). 'A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-gamma nuclear translocation.' Proc Natl Acad Sci U S A 107(23): 10508-10513. Kawai, M. and C. J. Rosen (2010). 'PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis.' Nat Rev Endocrinol 6(11): 629-636. Kim, V. N., J. Han, et al. (2009). 'Biogenesis of small RNAs in animals.' Nat Rev Mol Cell Biol 10(2): 126-139. Kohsaka, A. and J. Bass (2007). 'A sense of time: how molecular clocks organize metabolism.' Trends Endocrinol Metab 18(1): 4-11. Kojima, S., D. Gatfield, et al. (2010). 'MicroRNA-122 modulates the rhythmic expression profile of the circadian deadenylase Nocturnin in mouse liver.' PLoS One 5(6): e11264. Kozomara, A. and S. Griffiths-Jones (2011). 'miRBase: integrating microRNA annotation and deep-sequencing data.' Nucleic Acids Res 39(Database issue): D152-157. Kramer, A., F. C. Yang, et al. (2001). 'Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling.' Science 294(5551): 2511-2515. Kraves, S. and C. J. Weitz (2006). 'A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity.' Nat Neurosci 9(2): 212-219. Krol, J., I. Loedige, et al. (2010). 'The widespread regulation of microRNA biogenesis, function and decay.' Nat Rev Genet 11(9): 597-610. La Fleur, S. E. (2003). 'Daily rhythms in glucose metabolism: suprachiasmatic nucleus output to peripheral tissue.' J Neuroendocrinol 15(3): 315-322. La Fleur, S. E., A. Kalsbeek, et al. (1999). 'A suprachiasmatic nucleus generated rhythm in basal glucose concentrations.' J Neuroendocrinol 11(8): 643-652. Lagos-Quintana, M., R. Rauhut, et al. (2002). 'Identification of tissue-specific microRNAs from mouse.' Curr Biol 12(9): 735-739. Lanford, R. E., E. S. Hildebrandt-Eriksen, et al. (2010). 'Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.' Science 327(5962): 198-201. Le Minh, N., F. Damiola, et al. (2001). 'Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators.' EMBO J 20(24): 7128-7136. Lee, C., J. P. Etchegaray, et al. (2001). 'Posttranslational mechanisms regulate the mammalian circadian clock.' Cell 107(7): 855-867. Lee, R. C., R. L. Feinbaum, et al. (1993). 'The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.' Cell 75(5): 843-854. Lee, Y., I. Hur, et al. (2006). 'The role of PACT in the RNA silencing pathway.' EMBO J 25(3): 522-532. Liu, C., S. Li, et al. (2007). 'Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism.' Nature 447(7143): 477-481. Lowrey, P. L., K. Shimomura, et al. (2000). 'Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau.' Science 288(5465): 483-492. Metzker, M. L. (2010). 'Sequencing technologies - the next generation.' Nat Rev Genet 11(1): 31-46. Mineno, J., S. Okamoto, et al. (2006). 'The expression profile of microRNAs in mouse embryos.' Nucleic Acids Res 34(6): 1765-1771. Moore, K. J., K. J. Rayner, et al. (2010). 'microRNAs and cholesterol metabolism.' Trends Endocrinol Metab 21(12): 699-706. Nagel, R., L. Clijsters, et al. (2009). 'The miRNA-192/194 cluster regulates the Period gene family and the circadian clock.' FEBS J 276(19): 5447-5455. Nelson, P. T., W. X. Wang, et al. (2008). 'Technical variables in high-throughput miRNA expression profiling: much work remains to be done.' Biochim Biophys Acta 1779(11): 758-765. Panda, S., J. B. Hogenesch, et al. (2002). 'Circadian rhythms from flies to human.' Nature 417(6886): 329-335. Pandey, A. K., P. Agarwal, et al. (2009). 'MicroRNAs in diabetes: tiny players in big disease.' Cell Physiol Biochem 23(4-6): 221-232. Poy, M. N., M. Spranger, et al. (2007). 'microRNAs and the regulation of glucose and lipid metabolism.' Diabetes Obes Metab 9 Suppl 2: 67-73. Preitner, N., F. Damiola, et al. (2002). 'The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator.' Cell 110(2): 251-260. Quintero, J. E., S. J. Kuhlman, et al. (2003). 'The biological clock nucleus: a multiphasic oscillator network regulated by light.' J Neurosci 23(22): 8070-8076. Ramsey, K. M., B. Marcheva, et al. (2007). 'The clockwork of metabolism.' Annu Rev Nutr 27: 219-240. Rensing, L. and P. Ruoff (2002). 'Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases.' Chronobiol Int 19(5): 807-864. Reppert, S. M. and D. R. Weaver (2002). 'Coordination of circadian timing in mammals.' Nature 418(6901): 935-941. Rivera-Coll, A., X. Fuentes-Arderiu, et al. (1993). 'Circadian rhythms of serum concentrations of 12 enzymes of clinical interest.' Chronobiol Int 10(3): 190-200. Ruiter, M., S. E. La Fleur, et al. (2003). 'The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior.' Diabetes 52(7): 1709-1715. Ruvkun, G. (2001). 'Molecular biology. Glimpses of a tiny RNA world.' Science 294(5543): 797-799. Sahar, S. and P. Sassone-Corsi (2009). 'Metabolism and cancer: the circadian clock connection.' Nat Rev Cancer 9(12): 886-896. Sato, T. K., S. Panda, et al. (2004). 'A functional genomics strategy reveals Rora as a component of the mammalian circadian clock.' Neuron 43(4): 527-537. Scheer, F. A., M. F. Hilton, et al. (2009). 'Adverse metabolic and cardiovascular consequences of circadian misalignment.' Proc Natl Acad Sci U S A 106(11): 4453-4458. Schibler, U., J. Ripperger, et al. (2003). 'Peripheral circadian oscillators in mammals: time and food.' J Biol Rhythms 18(3): 250-260. Shearman, L. P., S. Sriram, et al. (2000). 'Interacting molecular loops in the mammalian circadian clock.' Science 288(5468): 1013-1019. Shen, J., M. Tanida, et al. (2007). 'In vivo effects of leptin on autonomic nerve activity and lipolysis in rats.' Neurosci Lett 416(2): 193-197. Shin, C., J. W. Nam, et al. (2010). 'Expanding the microRNA targeting code: functional sites with centered pairing.' Mol Cell 38(6): 789-802. Siomi, H. and M. C. Siomi (2010). 'Posttranscriptional regulation of microRNA biogenesis in animals.' Mol Cell 38(3): 323-332. Sokol, N. S., P. Xu, et al. (2008). 'Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis.' Genes Dev 22(12): 1591-1596. Staiger, D. and T. Koster (2011). 'Spotlight on post-transcriptional control in the circadian system.' Cellular and Molecular Life Sciences 68(1): 71-83. Stokkan, K. A., S. Yamazaki, et al. (2001). 'Entrainment of the circadian clock in the liver by feeding.' Science 291(5503): 490-493. Tang, X., J. Gal, et al. (2007). 'A simple array platform for microRNA analysis and its application in mouse tissues.' RNA 13(10): 1803-1822. Tang, X., L. Muniappan, et al. (2009). 'Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription.' RNA 15(2): 287-293. Teboul, M., F. Guillaumond, et al. (2008). 'The nuclear hormone receptor family round the clock.' Mol Endocrinol 22(12): 2573-2582. Teran-Garcia, M. and C. Bouchard (2007). 'Genetics of the metabolic syndrome.' Appl Physiol Nutr Metab 32(1): 89-114. Turek, F. W., C. Joshu, et al. (2005). 'Obesity and metabolic syndrome in circadian Clock mutant mice.' Science 308(5724): 1043-1045. VitateRNA, M. H., D. P. King, et al. (1994). 'Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior.' Science 264(5159): 719-725. Voelkerding, K. V., S. A. Dames, et al. (2009). 'Next-generation sequencing: from basic research to diagnostics.' Clin Chem 55(4): 641-658. Wang, Q., Y. C. Li, et al. (2008). 'miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130.' Proc Natl Acad Sci U S A 105(8): 2889-2894. Wang, Y., D. L. Osterbur, et al. (2001). 'Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse.' BMC Dev Biol 1: 9. Wang, Z., M. Gerstein, et al. (2009). 'RNA-Seq: a revolutionary tool for transcriptomics.' Nat Rev Genet 10(1): 57-63. Werner, T. (2011). 'Next generation sequencing allows deeper analysis and understanding of genomes and transcriptomes including aspects to fertility.' Reprod Fertil Dev 23(1): 75-80. Wightman, B., I. Ha, et al. (1993). 'Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.' Cell 75(5): 855-862. Wold, B. and R. M. Myers (2008). 'Sequence census methods for functional genomics.' Nat Methods 5(1): 19-21. Ximenes da Silva, A., G. Gendrot, et al. (2000). 'Daily changes of cytochrome oxidase activity within the suprachiasmatic nucleus of the Syrian hamster.' Neurosci Lett 286(2): 139-143. Xu, S., P. D. Witmer, et al. (2007). 'MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster.' J Biol Chem 282(34): 25053-25066. Yang, M., J. E. Lee, et al. (2008). 'Circadian regulation of a limited set of conserved microRNAs in Drosophila.' BMC Genomics 9: 83. Yang, S., A. Liu, et al. (2009). 'The role of mPer2 clock gene in glucocorticoid and feeding rhythms.' Endocrinology 150(5): 2153-2160. Yang, X., M. Downes, et al. (2006). 'Nuclear receptor expression links the circadian clock to metabolism.' Cell 126(4): 801-810. Yang, X., Y. K. Zhang, et al. (2009). 'Gender disparity of hepatic lipid homoeostasis regulated by the circadian clock.' J Biochem 145(5): 609-623. Young, M. E. (2006). 'The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function.' Am J Physiol Heart Circ Physiol 290(1): H1-16. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23320 | - |
| dc.description.abstract | 發生在生物體內一天中的各種規律變化,謂之日夜節律。哺乳動物的中央節律時鐘位處下視丘上視神經交叉核,負責驅動生物體的日夜節律、整合全身的生理與行為模式,如睡眠、能量衡定、周邊循環荷爾蒙濃度及新陳代謝等等。中央驅動日夜節律,可以自發性的產生,然而一些環境的線索,如光線、溫度等,也可以重置日夜節律。大多數哺乳動物的周邊組織例如肝臟等器官,也存在其日夜節律的時鐘,可以經由循環於血液的訊號,如荷爾蒙,達成與中央日夜節律時鐘同步的生理狀態。
從分子的角度來探討,日夜節律的現象是源自細胞中存在一個自動地轉錄與轉譯後回饋路徑,許多轉錄因子參與其中的核心部分,其表現量呈現日夜節律變化,因而使其下游調控的基因表現也呈現日夜節律的變化。其中一個下游的產出基因 ─ Nocturnin,是一個去腺嘧啶酶 (deadenylase),會特異性的移除RNA polymerase II所驅動的轉錄子聚腺苷尾部 (poly (A) tails),因此降低這些轉錄子的穩定性。先前研究指出,Nocturnin在許多組織中皆存在,尤其午夜時分時,在老鼠的肝臟有極高的表現量,而此基因會影響體內葡萄糖和脂質的代謝,雖然詳細機制目前尚未被完整研究。相關文獻報導指出,體內許多新陳代謝會呈現日夜節律的現象;此外,微型核醣核酸(microRNA)也被發現其參與日夜節律的調控。釐清這些詳細的分子機制有助於我們獲得更多的訊息,期望對於預防或治療代謝相關疾病能有更多突破性的進展。 此篇論文希望藉由比較野生型與Nocturnin基因剔除型老鼠,進而找到肝臟中會呈現日夜節律變化的微型核醣核酸,並研究Nocturnin對於微型核醣核酸穩定度的影響。在微陣列(microarray)與後續即時定量聚合酶連鎖反應分析中發現,miR-709在兩組老鼠中皆會呈現白天較午夜高的規律變化,顯示其可能參與調控生物體的日夜節律;此外,在 Nocturnin基因剔除型老鼠中,miR-690的表現量會明顯地升高,說明Nocturnin與miR-690之間存在有某些關連性。隨後我們利用北方墨點法來探討miR-709晝夜變化的現象是源自於轉錄或轉錄後的階段,結果顯示,miR-709的前驅物 (pri-miR-709與pre-miR-709) 在午夜時表現量皆有下降的現象,而pre-miR-709的變化量與表現量顯著較pri-miR-709為多; 另外,在北方墨點法中無法偵測到mature miR-709表現量的現象,可能意味著從pre- miR-709到mature miR-709的過程中存在一個非典型的調控機制。我們希望藉由解開這些謎團,能找到同時調控日夜節律與新陳代謝功能的轉錄後修飾機制,並期望有朝一日,能有助於代謝相關疾病的預防或治療。 | zh_TW |
| dc.description.abstract | Rhythms that occur regularly with a 24-hour periodicity are considered circadian. In mammalian species, circadian rhythms are regulated by a master pacemaker in the hypothalamic suprachiasmatic nucleus (SCN), which coordinates many physiological and behavioral processes such as sleep-wake cycles and metabolic functions. Peripheral clocks are also present in almost all mammalian tissues including liver, where they are synchronized by the central clock program by various circulating entraining factors to maintain circadian rhythms and modulate output pathways in a tissue-specific manner. At the molecular level, circadian rhythms are generated by interlocking transcriptional feedback loops and post-translational modifications of several “clock” proteins. Nocturnin is one of the downstream circadian output genes, which encodes an RNA deadenylase, involved in the regulation of glucose and lipid metabolism at the post-transcriptional level in multiple tissues, particularly in the liver. Many metabolic events have been shown to exhibit circadian oscillation, and previous studies also revealed miRNAs as important modulators of the circadian processes. Understanding the functional relationships between miRNA and complex metabolic pathway will gain more information to design new therapy strategies for metabolic disease.
In order to identify rhythmic miRNAs in mouse liver and examine the effect of Nocturnin knockout on miRNA stability, we performed miRNA microarray and validated the results by TaqMan qRT-PCR assay. Using this method we have confirmed the rhythmic expression pattern of miR-709 and Nocturnin-dependency of miR-690. miR-709 exhibits rhythmic expression in both wild-type (WT) and Nocturnin knockout (KO) mice, with particular high amplitude at ZT 0, suggesting its possible role in the regulation of circadian processes. miR-690 is significantly upregulated in Nocturnin KO mice at both time points, indicating a potential connection between Nocturnin and miR-690. To distinguish between transcriptional and/or post-transcriptional control for the mature miR-709 diurnal variations, we analyzed the expression levels of miR-709 precursor RNAs by Northern blot analysis. Both pri-miR-709 and pre-miR-709 increase at ZT 0, but the fold-change of pre-miR-709 is disproportionately more than that of pri-miR-709. In addition, mature miR-709 signal was surprisingly undetectable on the blot, compatible with an unusual processing mechanism of pre-miR-709 to mature miRNAs. By unraveling these puzzles, we expect to identify novel post-transcriptional mechanisms regulating circadian rhythm and the metabolic output in mammals. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T04:59:09Z (GMT). No. of bitstreams: 1 ntu-100-R98442029-1.pdf: 923033 bytes, checksum: a64ce9db240d55248474a06cd48dc286 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Table of Contents
List of tables...........................................iii List of figures...........................................iv Abstract in Chinese........................................v Abstract..................................................vi Chapter 1 Introduction.....................................1 1.1 Crosstalk between circadian clock and cellular metabolism..............................................1 1.1.1 Circadian rhythm...................................1 1.1.2 Circadian clocks...................................2 1.1.2.1 The location of the mammalian biological clock..2 1.1.2.2 Current models of the mammalian molecular clocks3 1.1.3 The connection between circadian rhythms and metabolism.................................................5 1.1.4 Nocturnin in circadian clock and cellular metabolism.................................................8 1.2 The roles for miRNAs in the circadian clock and metabolism................................................11 1.2.1 Overview of miRNA................................11 1.2.2 General miRNA biogenesis and functions...........12 1.2.3 Roles of miRNAs in metabolism....................15 1.2.4 The interlock between circadian clocks and miRNAs16 1.3 Next-generation sequencing (NGS).....................19 1.4 Specific aims........................................21 Chapter 2 Materials and Methods...........................23 2.1 Total RNA isolation..................................23 2.2 miRNA microarray.....................................23 2.3 Small RNA library preparation (Illumina/Solexa)......24 2.4 TaqMan quantitative real-time PCR analysis...........25 2.5 Northern blotting....................................27 2.6 Statistical analysis.................................29 Chapter 3 Results.........................................30 3.1 Several miRNAs showing cyclic expression patterns in mouse liver...............................................30 3.2 Confirmation of array data by TaqMan quantitative real-time PCR..................................................31 3.3 miR-709 exhibits an unusual processing pattern observed by Northern blot.................................32 Chapter 4 Discussion......................................33 4.1 Low signal of mature miR-709 signals observed on Northern blot.............................................33 4.2 The possible crosslink between Nocturnin and miR-690.34 4.3 Potential mechanisms of miR-690 and miR-709 in the Regulation of circadian rhythms...........................35 Figures...................................................37 Tables....................................................41 References................................................44 | |
| dc.language.iso | en | |
| dc.subject | 肝臟代謝 | zh_TW |
| dc.subject | 日夜節律 | zh_TW |
| dc.subject | 微小核醣核酸 | zh_TW |
| dc.subject | 轉錄後調節 | zh_TW |
| dc.subject | circadian rhythm | en |
| dc.subject | metabolism | en |
| dc.subject | post-transcriptional regulation | en |
| dc.subject | microRNA | en |
| dc.title | 研究哺乳動物日夜節律之肝臟組織特異性轉錄後調節 | zh_TW |
| dc.title | Explore the liver-specific post-transcriptional regulation of circadian rhythm related to Nocturnin in mammals | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊立民,詹世鵬 | |
| dc.subject.keyword | 日夜節律,微小核醣核酸,轉錄後調節,肝臟代謝, | zh_TW |
| dc.subject.keyword | circadian rhythm,microRNA,post-transcriptional regulation,metabolism, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 901.4 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
