Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23281
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芳仁
dc.contributor.authorYi-Yun Liuen
dc.contributor.author劉宜昀zh_TW
dc.date.accessioned2021-06-08T04:51:27Z-
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citationAkao, Y., O. Marukawa, H. Morikawa, K. Nakao, M. Kamei, T. Hachiya & Y. Tsujimoto, (1995) The rck/p54 candidate proto-oncogene product is a 54-kilodalton D-E-A-D box protein differentially expressed in human and mouse tissues. Cancer Res 55: 3444-3449.
Anderson, P. & N. Kedersha, (2006) RNA granules. J Cell Biol 172: 803-808.
Bardwell, L., J. G. Cook, D. Voora, D. M. Baggott, A. R. Martinez & J. Thorner, (1998) Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes Dev 12: 2887-2898.
Bester, M. C., I. S. Pretorius & F. F. Bauer, (2006) The regulation of Saccharomyces cerevisiae FLO gene expression and Ca2+ -dependent flocculation by Flo8p and Mss11p. Curr Genet 49: 375-383.
Brengues, M., D. Teixeira & R. Parker, (2005) Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310: 486-489.
Broach, J. R., (1991) RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet 7: 28-33.
Buu, L. M., L. T. Jang & F. J. Lee, (2004) The yeast RNA-binding protein Rbp1p modifies the stability of mitochondrial porin mRNA. J Biol Chem 279: 453-462.
Caro, L. H., H. Tettelin, J. H. Vossen, A. F. Ram, H. van den Ende & F. M. Klis, (1997) In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13: 1477-1489.
Conlan, R. S. & D. Tzamarias, (2001) Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309: 1007-1015.
Costanzo, M. C., M. E. Crawford, J. E. Hirschman, J. E. Kranz, P. Olsen, L. S. Robertson, M. S. Skrzypek, B. R. Braun, K. L. Hopkins, P. Kondu, C. Lengieza, J. E. Lew-Smith, M. Tillberg & J. I. Garrels, (2001) YPD, PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res 29: 75-79.
De Las Penas, A., S. J. Pan, I. Castano, J. Alder, R. Cregg & B. P. Cormack, (2003) Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17: 2245-2258.
de Valoir, T., M. A. Tucker, E. J. Belikoff, L. A. Camp, C. Bolduc & K. Beckingham, (1991) A second maternally expressed Drosophila gene encodes a putative RNA helicase of the 'DEAD box' family. Proc Natl Acad Sci U S A 88: 2113-2117.
Douglas, L. J., (2003) Candida biofilms and their role in infection. Trends Microbiol 11: 30-36.
Elion, E. A., (2000) Pheromone response, mating and cell biology. Curr Opin Microbiol 3: 573-581.
Erdman, S., L. Lin, M. Malczynski & M. Snyder, (1998) Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol 140: 461-483.
Gagiano, M., F. F. Bauer & I. S. Pretorius, (2002) The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2: 433-470.
Gagiano, M., M. Bester, D. van Dyk, J. Franken, F. F. Bauer & I. S. Pretorius, (2003) Mss11p is a transcription factor regulating pseudohyphal differentiation, invasive growth and starch metabolism in Saccharomyces cerevisiae in response to nutrient availability. Mol Microbiol 47: 119-134.
Gagiano, M., D. Van Dyk, F. F. Bauer, M. G. Lambrechts & I. S. Pretorius, (1999a) Divergent regulation of the evolutionarily closely related promoters of the Saccharomyces cerevisiae STA2 and MUC1 genes. J Bacteriol 181: 6497-6508.
Gagiano, M., D. van Dyk, F. F. Bauer, M. G. Lambrechts & I. S. Pretorius, (1999b) Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol 31: 103-116.
Gavrias, V., A. Andrianopoulos, C. J. Gimeno & W. E. Timberlake, (1996) Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol 19: 1255-1263.
Gimeno, C. J. & G. R. Fink, (1994) Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14: 2100-2112.
Gimeno, C. J., P. O. Ljungdahl, C. A. Styles & G. R. Fink, (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077-1090.
Guo, B., C. A. Styles, Q. Feng & G. R. Fink, (2000) A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 97: 12158-12163.
Halme, A., S. Bumgarner, C. Styles & G. R. Fink, (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116: 405-415.
Hoyer, L. L., (2001) The ALS gene family of Candida albicans. Trends Microbiol 9: 176-180.
Hoyer, L. L., T. L. Payne & J. E. Hecht, (1998) Identification of Candida albicans ALS2 and ALS4 and localization of als proteins to the fungal cell surface. J Bacteriol 180: 5334-5343.
Jang, L. T., L. M. Buu & F. J. Lee, (2006) Determinants of Rbp1p localization in specific cytoplasmic mRNA-processing foci, P-bodies. J Biol Chem 281: 29379-29390.
Kedersha, N. & P. Anderson, (2002) Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans 30: 963-969.
Kedersha, N., S. Chen, N. Gilks, W. Li, I. J. Miller, J. Stahl & P. Anderson, (2002) Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell 13: 195-210.
Kim, J., (2002) KEM1 is involved in filamentous growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 216: 33-38.
Kobayashi, O., N. Hayashi, R. Kuroki & H. Sone, (1998) Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 180: 6503-6510.
Kojic, E. M. & R. O. Darouiche, (2004) Candida infections of medical devices. Clin Microbiol Rev 17: 255-267.
Lee, F. J. & J. Moss, (1993) An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs. J Biol Chem 268: 15080-15087.
Liu, H., C. A. Styles & G. R. Fink, (1993) Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262: 1741-1744.
Liu, H., C. A. Styles & G. R. Fink, (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144: 967-978.
Lo, W. S. & A. M. Dranginis, (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9: 161-171.
Lorsch, J. R., (2002) RNA chaperones exist and DEAD box proteins get a life. Cell 109: 797-800.
Lu, C. F., R. C. Montijn, J. L. Brown, F. Klis, J. Kurjan, H. Bussey & P. N. Lipke, (1995) Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol 128: 333-340.
Maekawa, H., T. Nakagawa, Y. Uno, K. Kitamura & C. Shimoda, (1994) The ste13+ gene encoding a putative RNA helicase is essential for nitrogen starvation-induced G1 arrest and initiation of sexual development in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 244: 456-464.
Mata, J., S. Marguerat & J. Bahler, (2005) Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem Sci 30: 506-514.
Mosch, H. U., R. L. Roberts & G. R. Fink, (1996) Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93: 5352-5356.
Orphanides, G. & D. Reinberg, (2002) A unified theory of gene expression. Cell 108: 439-451.
Park, Y. U., H. Hur, M. Ka & J. Kim, (2006) Identification of translational regulation target genes during filamentous growth in Saccharomyces cerevisiae: regulatory role of Caf20 and Dhh1. Eukaryot Cell 5: 2120-2127.
Proudfoot, D., J. D. Davies, J. N. Skepper, P. L. Weissberg & C. M. Shanahan, (2002) Acetylated low-density lipoprotein stimulates human vascular smooth muscle cell calcification by promoting osteoblastic differentiation and inhibiting phagocytosis. Circulation 106: 3044-3050.
Robertson, L. S. & G. R. Fink, (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A 95: 13783-13787.
Roemer, T. & H. Bussey, (1991) Yeast beta-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc Natl Acad Sci U S A 88: 11295-11299.
Roy, A., C. F. Lu, D. L. Marykwas, P. N. Lipke & J. Kurjan, (1991) The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol 11: 4196-4206.
Schroder, K., P. Graumann, A. Schnuchel, T. A. Holak & M. A. Marahiel, (1995) Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol Microbiol 16: 699-708.
Sheth, U. & R. Parker, (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300: 805-808.
Sieiro, C., N. M. Reboredo, P. Blanco & T. G. Villa, (1997) Cloning of a new FLO gene from the flocculating Saccharomyces cerevisiae IM1-8b strain. FEMS Microbiol Lett 146: 109-115.
Smukalla, S., M. Caldara, N. Pochet, A. Beauvais, S. Guadagnini, C. Yan, M. D. Vinces, A. Jansen, M. C. Prevost, J. P. Latge, G. R. Fink, K. R. Foster & K. J. Verstrepen, (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135: 726-737.
Spingola, M. & M. Ares, Jr., (2000) A yeast intronic splicing enhancer and Nam8p are required for Mer1p-activated splicing. Mol Cell 6: 329-338.
Stefl, R., L. Skrisovska & F. H. Allain, (2005) RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep 6: 33-38.
Stratford, M., (1989) Yeast flocculation: calcium specificity. Yeast 5: 487.
Thevelein, J. M. & J. H. de Winde, (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33: 904-918.
Tu, L., W. C. Tai, L. Chen & D. K. Banfield, (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321: 404-407.
van Dyk, D., I. S. Pretorius & F. F. Bauer, (2005) Mss11p is a central element of the regulatory network that controls FLO11 expression and invasive growth in Saccharomyces cerevisiae. Genetics 169: 91-106.
Vasudevan, S. & S. W. Peltz, (2001) Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol Cell 7: 1191-1200.
Vernet, T., D. Dignard & D. Y. Thomas, (1987) A family of yeast expression vectors containing the phage f1 intergenic region. Gene 52: 225-233.
Verstrepen, K. J. & F. M. Klis, (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60: 5-15.
Vitali, J., J. Ding, J. Jiang, Y. Zhang, A. R. Krainer & R. M. Xu, (2002) Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res 30: 1531-1538.
Watari, J., Y. Takata, M. Ogawa, H. Sahara, S. Koshino, M. L. Onnela, U. Airaksinen, R. Jaatinen, M. Penttila & S. Keranen, (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10: 211-225.
Yang, Y. L., J. Suen, M. P. Brynildsen, S. J. Galbraith & J. C. Liao, (2005) Inferring yeast cell cycle regulators and interactions using transcription factor activities. BMC Genomics 6: 90.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/23281-
dc.description.abstract真核細胞中,基因的調控需要核醣核酸結合蛋白與核醣核酸形成複合體,稱為核醣核蛋白。核醣核酸結合蛋白(Rbp1p)轉譯成一個六百七十二個胺基酸組成,約八十kD的蛋白質;包含三個核醣核酸識別基序 (RRM)及兩個富含麩氨酸區域。核醣核酸結合蛋白(Rbp1p)在發現時,被定義為一個負調控生長的因子。在我們實驗室中,已經發現在細胞內大量表現核醣核酸結合蛋白(Rbp1p) 能夠抑制酵母菌生長、促進粒腺體外模孔蛋白(porin)訊息核醣核酸降解、並抑制蛋白質的轉譯。核醣核酸結合蛋白(Rbp1p)在細胞中會座落到細胞質中特殊的聚集顆粒,稱為P-bodies。本實驗中,我們發現在第四百二十八個胺基酸由絲胺酸變成脯胺酸的突變株,會部份或完全喪失上述已知三項核醣核酸結合蛋白(Rbp1p)的功能。但這樣的核醣核酸結合蛋白(Rbp1p)突變株依然能夠座落到P-bodies。我們也發現:核醣核酸結合蛋白(Rbp1p)的絲胺酸-脯胺酸突變株及三個核醣核酸識別基序(RRM) 突變株均能夠引發絮凝現象(flocculation) 及洋菜入侵生長現象(invasive growth)這兩種附著現象。絮凝基因(Flo1p)和(Flo11p)是細胞膜上能夠進行附著的糖化蛋白。絮凝基因(Flo1p)剔除細胞株表現核醣核酸結合蛋白絲胺酸-脯胺酸突變株時不能夠引發絮凝現象;絮凝基因(Flo11p)剔除細胞株表現核醣核酸結合蛋白絲胺酸-脯胺酸突變株時則會降低洋菜入侵生長現象。絮凝基因(Flo1p)和(Flo11p)共同的轉錄因子(Mss11p)對於絲胺酸-脯胺酸突變株引發的附著現象也是必需的,推測核醣核酸結合蛋白(Rbp1p)的絲胺酸-脯胺酸突變株透過調控轉錄因子MSS11引發絮凝現象及洋菜入侵生長現象。與核醣核酸結合蛋白(Rbp1p)有交互作用的蛋白質中,Dhh1p、Xrn1p和Kre6p是可能的目標蛋白,藉由與絲胺酸-脯胺酸突變株及三個核醣核酸識別基序(RRM) 突變株的交互作用,調控附著現象。zh_TW
dc.description.abstractRNA-binding proteins forming dynamic messenger ribonucleoproteins with the transcript are required for the regulation of eukaryotic gene expression. The RNA-binding protein RBP1 encodes a 672-amino acid, ~80-kD protein containing three RNA recognition motifs (RRM) and two glutamine-rich stretches. It is first identified as a negative growth regulator. Our lab has demonstrated overexpression of Rbp1p shows a slow-growth phenotype, decreases the porin mRNA level by enhancing degradation, and suppresses the translation. Rbp1p localized to cytoplasm foci, named P-bodies. Here we showed that serine-428-Proline mutation loses the function of Rbp1p in slow-growth, translation repression and decreasing the stability of POR1 mRNA, but it still can localize to P-bodies. Rbp1p-S428P and Rbp1p RRM motif mutants induce flocculation and invasive growth. Flocculins, FLO1 and FLO11, are membrane surface glycoproteins for adhesion. FLO1 deletion suppresses flocculation; however FLO11 deletion decreases the invasive-growth level. It is also demonstrated that MSS11, transcription factor of FLO1 and FLO11 is required for both adhesion phenotypes, suggesting RNA-binding proteins mutation might regulate flocculation and invasive growth through MSS11. Rbp1p interacting proteins, DHH1, XRN1 and KRE6 might be possible candidates interacting with Rbp1p-S428P and Rbp1p RRM motif mutants to regulate adhesion phenotypes.en
dc.description.provenanceMade available in DSpace on 2021-06-08T04:51:27Z (GMT). No. of bitstreams: 1
ntu-98-R96448003-1.pdf: 3102748 bytes, checksum: d5e25dd72318e567e6184dd349156bfa (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTable of Contents .....................................II
中文摘要 ...............................................IV
Abstract ................................................V
Introduction.............................................1
Materials and Methods....................................9
Results.................................................17
Discussion .............................................26
Figures.................................................31
Figure 1. Rbp1p-S428P shows no growth inhibition in YPH499. ................................................31
Figure 2. Serine-428-Proline mutation partially loses the functions of Rbp1p. ....................................32
Figure 3. P-bodies localization of Rbp1p is not affected by mutation on Ser-428-Proline. ........................33
Figure 4. Rbp1p-S428P induces flocculation and invasive growth in BY4741. ......................................34
Figure 5. Rbp1p-S428P induces flocculation and invasive growth in YPH499. ......................................35
Figure 6. Rbp1p-RRMs mutations also induce flocculation and invasive growth. ...................................36
Figure 7. FLO1 is required for RBP1-S428P induced flocculation; FLO11 is required for RBP1-S428P induced invasive growth in BY4741. .............................37
Figure 8. MSS11 is required for RBP1-S428P induced flocculation and invasive growth in BY4741. ...........39
Figure 9. FLO1 and MSS11 are required for RBP1-S428P induced flocculation and invasive growth in YPH499.......40
Figure 10. Steady-state mRNA level of indicated strains expressing HA-Rbp1p and -S428P. .........................41
Figure 11. TPK2, TPK3, KSS1, and SFL1 could regulate RBP1-S428P induced flocculation, but not invasive growth. ....42
Figure 12. DHH1 and KRE6 are required for RBP1-S428P induced flocculation and invasive growth in BY4741. .....43
Figure 13. DHH1 and KRE6 are required for RBP1-rrm1, -rrm2 and -rrm3 induced flocculation and invasive growth in BY4741. ................................................44
Figure 14. Rbp1p-SPSA decreases the interaction with Rbp1p interacting proteins, Dhh1p and Kre6p. ..................45
Figure 15. XRN1 is required for RBP1-S428P induced flocculation and invasive growth in BY4741. .............46
Figure 16. XRN1 is required for RBP1-rrm1, -rrm2 and -rrm3 induced flocculation and invasive growth in BY4741. .....47
Figure 17. DHH1 and XRN1 are required for RBP1-S428P induced flocculation and invasive growth in YPH499. .....48
Figure 18. Models of this study ....................49
Appendix 1. Overexpression of HA-RBP1 suppresses Σ1278b invasive growth and decreases FLO11 RNA level. ..........50
Appendix 2. Rbp1p-S428P and –rrm2 precipitates less Dhh1p than Rbp1p full-length in immunoprecipitation. ..........51
Appendix 3. P-bodies localization of Rbp1p is not affected by mutation on Ser-428-Proline. .........................52
Table 1. Yeast strains used in this study ...............53
Table 2. Primers used in this study .....................54
Table 3. A brief summary of plasmids used in this study..56
Table 4. Antibodies used in this study...................57
References...............................................58
dc.language.isoen
dc.subject核醣核酸結合蛋白zh_TW
dc.subject絮凝現象zh_TW
dc.subject核醣核酸識別基序zh_TW
dc.subject洋菜入侵生長現象zh_TW
dc.subjectinvasive growthen
dc.subjectRNA-binding proteinsen
dc.subjectRNA recognition motifsen
dc.subjectflocculationen
dc.title酵母菌核醣核酸蛋白Rbp1p絲胺酸-脯胺酸及核醣核酸辨識區域突變株之功能探討zh_TW
dc.titleFunctional characterization of Ser-428-Pro and RRMs mutations in Rbp1pen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧述諄,張典顯,鄭明媛,羅?升
dc.subject.keyword核醣核酸結合蛋白,核醣核酸識別基序,絮凝現象,洋菜入侵生長現象,zh_TW
dc.subject.keywordRNA-binding proteins,RNA recognition motifs,flocculation,invasive growth,en
dc.relation.page63
dc.rights.note未授權
dc.date.accepted2009-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved